Lógica Difusa

       Aristóteles, filósofo grego (384 - 322 a.C.), foi o fundador da ciência da lógica, e estabeleceu um conjunto de regras rígidas para que conclusões pudessem ser aceitas logicamente válidas. O emprego da lógica de Aristóteles levava a uma linha de raciocínio lógico baseado em premissas e conclusões. Como por exemplo: se é observado que "todo ser vivo é mortal" (premissa 1), a seguir é constatado que "Sarah é um ser vivo" (premissa 2), como conclusão temos que "Sarah é mortal". Desde então, a lógica Ocidental, assim chamada, tem sido binária, isto é, uma declaração é falsa ou verdadeira, não podendo ser ao mesmo tempo parcialmente verdadeira e parcialmente falsa. Esta suposição e a lei da não contradição, que coloca que "U e não U" cobrem todas as possibilidades, formam a base do pensamento lógico Ocidental.

        A Lógica Difusa (Fuzzy Logic) viola estas suposições. O conceito de dualidade, estabelecendo que algo pode e deve coexistir com o seu oposto, faz a lógica difusa parecer natural, até mesmo inevitável. A lógica de Aristóteles trata com valores "verdade" das afirmações, classificando-as como verdadeiras ou falsas. Não obstante, muitas das experiências humanas não podem ser classificadas simplesmente como verdadeiras ou falsas, sim ou não, branco ou preto. Por exemplo, é aquele homem alto ou baixo? A taxa de risco para aquele empreendimento é grande ou pequena? Um sim ou um não como resposta a estas questões é, na maioria das vezes, incompleta. Na verdade, entre a certeza de ser e a certeza de não ser, existem infinitos graus de incerteza. Esta imperfeição intrínseca à informação representada numa linguagem natural, tem sido tratada matematicamente no passado com o uso da teoria das probabilidades.

       Contudo, a Lógica Difusa, com base na teoria dos Conjuntos Nebulosos (Fuzzy Set), tem se mostrado mais adequada para tratar imperfeições da informação do que a teoria das probabilidades. De forma mais objetiva e preliminar, podemos definir Lógica Difusa como sendo uma ferramenta capaz de capturar informações vagas, em geral descritas em uma linguagem natural e convertê-las para um formato numérico, de fácil manipulação pelos computadores de hoje em dia. Considere a seguinte afirmativa: Se o tempo de um investimento é longo e o sistema financeiro tem sido não muito estável, então a taxa de risco do investimento é muito alta. Os termos "longo", "não muito estável" e "muito alta" trazem consigo informações vagas. A extração (representação) destas informações vagas se dá através do uso de conjuntos nebulosos. Devido a esta propriedade e a capacidade de realizar inferências, a Lógica Difusa tem encontrado grandes aplicações nas seguintes áreas: Sistemas Especialistas; Computação com Palavras; Raciocínio Aproximado; Linguagem Natural; Controle de Processos; Robótica; Modelamento de Sistemas Parcialmente Abertos; Reconhecimento de Padrões; Processos de Tomada de Decisão (decision making).

           A Lógica Difusa ou Lógica Nebulosa, também pode ser definida , como a lógica que suporta os modos de raciocínio que são aproximados, ao invés de exatos, como estamos naturalmente acostumados a trabalhar. Ela está baseada na teoria dos conjuntos nebulosos e difere dos sistemas lógicos tradicionais em suas características e detalhes.

           Nesta lógica, o raciocínio exato corresponde a um caso limite do raciocínio aproximado, sendo interpretado como um processo de composição nebulosa.

           A lógica em questão foi desenvolvida por Lofti A. Zadeh da Universidade da Califórnia em Berkeley na década de 60 e combina lógica multivalorada, teoria probabilística, inteligência artificial e redes neurais para que possa representar o pensamento humano, ou seja, ligar a linguística e a inteligência humana, pois muitos conceitos são melhores definidos por palavras do que pela matemática.

           O valor verdade de uma proposição pode ser um subconjunto nebuloso de qualquer conjunto parcialmente ordenado, ao contrário dos sistemas lógicos binários, onde o valor verdade só pode assumir 2 valores : verdadeiro (1) ou falso (0).

Bibliografia. [ZAD]

             Voltar ao índice