A COMPACT CODE FOR k-TREES

Lilian Markenzon
Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro
e-mail: markenzon@nce.ufrj.br

Oswaldo Vernet
Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro
e-mail: oswaldo@nce.ufrj.br

Paulo Renato da Costa Pereira
Instituto Militar de Engenharia
e-mail: prenato@ime.eb.br

ABSTRACT

In this paper, we propose a new representation for k-trees - the compact code, which reduces the required memory space from $O(nk)$ to $O(n)$. The encoding and decoding algorithms, based on a simplification of a priority queue, are linear and very simple. As long as the k-tree is represented by its compact code, the exact vertex coloring problem can be solved in time $O(n)$.

AREA: Graph Theory.
1. Introduction.

The family of k-trees, introduced by Harary and Palmer (1968) and revisited somewhat later by Rose (1974), has an inductive definition which naturally extends the definition of a tree. As an important subclass of chordal graphs, k-trees have deserved careful attention of many researchers, either related to algorithmic (Markenzon et al. (2006), Proskurowski (1984)) or theoretical aspects (Cai and Maffray (1993), Lotker et al. (2006), Rose (1974), among several others). In Justel and Markenzon (2000), further properties of the Lexicographic Breadth-First Search were analyzed, introducing an efficient algorithm for recognizing k-trees.

The idea of associating codewords to the labelled graphs of a specific family is not recent: in Prüfer (1918), a one-to-one correspondence between the set of $(n-2)$-tuples of the integers $\{1, 2, \ldots, n\}$ and the set of all labelled 1-trees on n vertices was already proved to hold. A codeword must of course univocally represent a certain graph belonging to the family and, conversely, each graph of the family must be assigned a unique codeword. Besides sparing computer storage significantly, a well designed encoding scheme may lead to more efficient algorithms for solving algorithmic problems for the family.

Rényi and Rényi (1970) extended Prüfer’s original codification to a broader family: the labelled rooted k-trees, a subclass of chordal graphs. Initially, the authors defined an immediate extension, the primitive Prüfer code, which applied only if the k-tree had the k highest numbered vertices as its root-clique. This constraint was finally eliminated, yielding the redundant Prüfer code. Later, Chen (1993) proposes a smaller code for k-trees, based on an intermediate representation using doubly labelled trees. We proposed, in Pereira et al. (2005), an $O(n)$-space representation, called the reduced Prüfer code, which is equivalent in size to Chen’s code but much easier to compute and, in Pereira et al. (2005a), we provide the first attempts to develop linear time algorithms for this code. Recently, Caminiti et al. (2007) presented a new approach for the same problem, using an intermediate code to obtain their results.

The usual representation of k-trees through adjacency lists requires $O(nk)$ memory space. In this paper, an $O(n)$-space representation is proposed, called the compact code, which is equivalent in size to Chen’s code but much easier to compute. Its applicability is illustrated in Section 7, were the exact vertex coloring problem is solved. The solution presented can be implemented by an algorithm with worst-case time complexity of $O(n)$, in contrast to the $O(m)$ traditional one.

2. Basic Concepts on Chordal Graphs.

Let $G = (V, E)$ be a graph, where $|E| = m$ and $|V| = n > 0$. The set of neighbors of a vertex $v \in V$ is denoted as $\text{Adj}_G(v) = \{w \in V \mid \{v, w\} \in E\}$. A vertex v is said to be simplicial in G when $\text{Adj}_G(v)$ is a clique in G, i.e., a subset of V that induces a complete subgraph of G.

A perfect elimination ordering (peo) of $G = (V, E)$ is a bijective function $\sigma: \{1, \ldots, n\} \to V$ such that, for $1 \leq i < n$, $\sigma(i)$ is a simplicial vertex in the induced subgraph $G_i = G[\{\sigma(i), \ldots, \sigma(n)\}]$. A peo is ultimately an arrangement of V in a sequence $\sigma(V) = [\sigma(i), \ldots, \sigma(n)]$, which will be shortly denoted as $\sigma(V) = [v_1, \ldots, v_n]$. The position of vertex v in σ is given by $\sigma^{-1}(v)$. It is well known that a graph admits a peo if, and only if, it is chordal, i.e., has no chordless cycle with length greater than 3. Moreover, a given chordal graph G may admit several peos (Chandran et al. (2003), Golumbic (2004)).

The following lemma establish basic properties concerning chordal graphs and simplicial vertices.
Lemma 1. [Blair and Peyton (1993)] In a graph $G = (V, E)$, $v \in V$ is simplicial if, and only if, v belongs to exactly one maximal clique.

Once a peo $\sigma(V) = [\sigma(1), ..., \sigma(n)]$ is established for a chordal graph $G = (V, E)$, it is possible to define, for each vertex $v \in V$, the set $X_d(v) = \{w \in Adj_G(v) \mid \sigma^{-1}(w) > \sigma^{-1}(v)\}$, called the monotone adjacency set of v. In Theorem 2, an interesting result is shown concerning these sets, which will be important to the further development of this paper.

Theorem 2. Let $G = (V, E)$, $n > 0$, be a connected chordal graph and σ, a peo of G. For each i such that $1 \leq i < n$, there exists a unique j satisfying: $i < j \leq n$, $v_j \in X_d(v_i)$ and $X_d(v_i) \subseteq \{v_i\} \cup X_d(v_j)$.

Proof. The set $I_i = \{\sigma^{-1}(w) \mid w \in X_d(v_i)\}$ contains all feasible values for j, since the condition $v_j \in X_d(v_i)$ must be satisfied. Take $j = \min I_i$, and let $w \in X_d(v_i)$. We must prove that $w \in \{v_j\} \cup X_d(v_j)$.

- If $w = v_j$, the conclusion is trivial;
- If $w \neq v_j$, as $X_d(v_i)$ is a clique and $v_j \in X_d(v_i)$, $w \in Adj_G(v_j)$. Since $j = \min I_i$, $\sigma^{-1}(w) > j = \sigma^{-1}(v_j)$. Hence, $w \in X_d(v_j)$.

For any other value of j belonging to I_i the condition $X_d(v_i) \subseteq \{v_j\} \cup X_d(v_j)$ does not hold. Thus, j is unique. □

In Rényi and Rényi (1970), the redundant Prüfer code for k-trees was defined and used by the authors in the counting of labelled k-trees. In this section, we summarize some results about k-trees that allow us to present later an efficient code for this family.

A well-known subclass of chordal graphs, the k-trees, $k > 0$, can be inductively defined as follows:

- Every complete graph with k vertices is a k-tree.
- If $G = (V, E)$ is a k-tree, $v \notin V$ and $Q \subseteq V$ is a k-clique of G, then $G' = (V \cup \{v\}, E \cup \{(v, w) \mid w \in Q\})$ is also a k-tree.
- Nothing else is a k-tree.

A k-tree G with $n > k$ vertices have exactly $n-k$ maximal cliques, each of them with $k+1$ vertices. Moreover, simplicial vertices in k-trees with $n > k$ have degree k and are so called k-leaves. It can be proved that any maximal clique of G has at most one k-leaf. The number of simplicial vertices in a k-tree has an interesting behavior: if $n = k$ or $n = k+1$, every vertex is simplicial; for $n > k+1$, there are at least 2 (as in every chordal graph) and at most $n-k$ simplicial vertices. k-trees can be recognized through the lexicographic breadth-first search in time $O(m)$, by examining the sizes of the labels associated to the vertices during the search (Justel and Markenzon (2000)).

From the aforementioned concepts, it is straightforward to derive a procedure for constructing a peo for a k-tree G: starting with the empty sequence, at each step, choose a simplicial vertex of G, append it to the sequence and remove it from G (along with its incident edges). When $V = \{1, ..., n\}$, $n > 0$, (or any other totally ordered set), it is possible to particularize this procedure in order to obtain a unique peo: at each step, the least simplicial vertex is chosen. Since this process of successively removing the least simplicial vertex is essentially the same one employed in Prüfer's algorithm for coding labelled trees, the obtained peo will be called the Prüfer peo (ppeo) of G.
Being σ the

\[
\text{ppeo}
\]

of a k-tree $G = ([1, ..., n], E)$, we define the redundant Prüfer code of G the sequence of pairs

\[
PC(G) = [(v_i, X(v_i)) | i = 1, ..., n].
\]

The redundant Prüfer code of k-trees has several peculiarities, summarized in Lemma 3, whose proof is straightforward.

Lemma 3. Let $G = ([1, ..., n], E)$ be a k-tree, $n > k$, and $PC(G) = [(v_i, X(v_i)) | i = 1, ..., n]$ its redundant Prüfer code. The following properties hold:

1. $|X(v_i)| = k$, $i = 1, ..., n - k$;
2. $|X(v_i)| = n - i$, $i = n - k + 1, ..., n$;
3. $\{v_i\} \cup X(v_i)$, $i = 1, ..., n - k$, are the maximal cliques of G;
4. $\{v_i\} \cup X(v_i) = X(v_{i-1})$, $i = n - k + 1, ..., n$.

The set $\{v_{n-k}\} \cup X(v_{n-k})$ is a maximal clique of G (hence, with size $k + 1$) called the residual clique of G. It will be denoted $\xi(G)$.

Consider, for example, the 3-tree with 10 vertices depicted in Fig.1. Its redundant Prüfer code is

\[
PC = [(3, \{5,6,9\}), (4, \{2,9,10\}), (5, \{6,9,10\}), (7, \{2,9,10\}), (8, \{1,2,6\}), (1, \{2,6,10\}), (2, \{6,9,10\}), (6, \{9,10\}), (9, \{10\}), (10, \emptyset)].
\]

The residual clique $\xi(G) = \{2, 6, 9, 10\}$ has size $k + 1 = 4$.

![Fig. 1. A 3-tree with vertices \{1, ..., 10\}.](image)

The properties stated in Lemma 3 allow us to particularize Theorem 2, from the previous section, to k-trees.

Theorem 4. Let $G = ([1, ..., n], E)$, $n > k$, be a k-tree and $PC(G) = [(v_i, X(v_i)) | i = 1, ..., n]$ its redundant Prüfer code. For each i such that $1 \leq i \leq n - k$, there exists a unique j satisfying $i < j \leq n - k + 1$, $v_j \in X(v_i)$ and $X(v_i) \subseteq \{v_j\} \cup X(v_j)$.

Corollary 5. Let i and j be indices related to each other according to Theorem 4. Thus,

\[
|X(v_j) - X(v_i)| = \begin{cases} 1, & \text{if } j \leq n - k \\ 0, & \text{if } j = n - k + 1 \end{cases} \text{ and } X(v_i) - X(v_j) = \{v_j\}.
\]
4. The Compact Code for \(k \)-Trees.

The redundant Prüfer code of a \(k \)-tree demands half of the number of symbols required by the traditional representation through adjacency sets. However, the occupied space is \(O(m) \) in both cases, which means ultimately \(O(nk) \). In this section we show how an \(O(n) \)-space representation can be obtained for this family of graphs, no matter the value of \(k \).

The compact code of a \(k \)-tree \(G = ([1, \ldots, n], E) \), \(n > k \), is the ordered pair \(CC(G) = (\xi(G), S) \), where \(\xi(G) \) is the residual clique of \(G \) and \(S = [(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_{n-k-1}, \beta_{n-k-1})] \) is a sequence of pairs of vertices determined as follows:

For \(i = 1, 2, \ldots, n-k-1 \):

- let \(j \) be the index corresponding to \(i \), according to Theorem 4;
- \(\alpha_i = v_j; \)
- \(\beta_i = v \in X(v_j) - X(v_i) \), if \(j \leq n-k \), or \(\beta_i = 0 \), if \(j = n-k+1 \).

From Corollary 5, if \(j \leq n-k \), \(|X(v_j) - X(v_i)| = 1 \) and \(\beta_i \) is the unique vertex belonging to \(X(v_j) - X(v_i) \); if \(j = n-k+1 \), the result of the set difference is empty and \(\beta_i \) is set to 0 (a value that does not correspond to any valid vertex).

Since \(|\xi(G)| = k+1 \) and \(|S| = n-k+1 \), the values of \(n \) and \(k \) can be deduced from \(|\xi(G)| \) and \(|S| \) and do not need to appear explicitly in the compact code. Notice that \(CC(G) \) is not defined for \(k \)-trees with \(n = k \) and, if \(n = k+1 \), \(CC(G) = (V, \{ \}) \).

Applying the definition, the compact code of the 3-tree in Fig.1 is: \(CC(G) = ([2,6,9,10], [(5,10), (2,6), (6,0), (2,6), (1,10), (2,9)]) \).

5. The Encoding Algorithm.

The process to obtain the compact code \(CC(G) \) for a given \(k \)-tree \(G = ([1, \ldots, n], E) \) is called encoding and can be accomplished in two steps:

Step 1. Compute \(PC(G) = [(v_i, X(v_i)) | i = 1, \ldots, n] \);

Step 2. Compute \(CC(G) \), using the definition.

In order to develop an algorithm to perform the encoding process, we must give an special attention to Step 1, since Step 2 consists simply in the application of the definition. Given a \(k \)-tree \(G = ([1, \ldots, n], E) \), the algorithm for obtaining its redundant Prüfer code removes successively from \(G \) the least \(k \)-leaf and appends to the code the vertex and the clique formed by its neighbors.

A traditional priority queue can be used to store the initial simplicial vertex and the vertices that become simplicial during the process, providing a way to identify the least numbered one. However, the time complexity of employing this data structure is \(O(n \log n) \).

Based on the specificity of the problem, we are able to define a particular case of priority queue, that is even more simple than the one presented in Markenzon et al. (2006). First of all, the elements and their priorities coincide. Second, as we will see, after the initialization, at most one insertion operation is performed after a DeleteMin operation.
In the implementation of the encoding algorithm, the maintenance of the array \textit{degree}, that stores the degrees of the vertices of the graph, is fundamental. At the first iteration, the algorithm searches this array sequentially looking for the least k-leaf of the current graph $G_i = G$, which is stored in the variable \textit{last}. Vertex v_i, $i = 1$, is determined. At the end of the i-th iteration, v_i is removed from G_i, yielding G_{i+1}. The array \textit{degree} must be updated. The maximal clique $\{v_i\} \cup X(v_i)$ disappears from G_i and any vertex of $X(v_i)$ may become a simplicial vertex. However, as we know that any maximal clique of G has at most one simplicial vertex, only one new simplicial vertex w can appear in G_{i+1}. Two cases can happen:

- case 1: $w > \text{last}$, that is, w is not the least simplicial vertex of G_{i+1};
- case 2: $w < \text{last}$. In this case, w must be the next simplicial vertex chosen.

For the second case a new variable must be defined, completing the implementation of the priority queue. The variable \textit{pend} stores w which will be the next mandatory simplicial vertex chosen. If there is a pending element, it is simply removed; otherwise, the next element with lowest priority is sought and removed.

Graph G, represented by its adjacency lists, is the input of the algorithm.

```plaintext
Procedure DeleteMin(v):
    if pend > 0 then
        $v \leftarrow$ pend; $\text{pend} \leftarrow 0$;
    else
        while $\text{degree}[\text{last}] \neq k$ do
            $\text{last} \leftarrow \text{last} + 1$;
        $v \leftarrow \text{last}$;

Procedure Encode-Step1:
    for $u \leftarrow 1, ..., n$ do $\text{degree}(u) \leftarrow |\text{Adj}_G(u)|$;
    $\text{pend} \leftarrow 0$; $\text{last} \leftarrow 1$;
    for $i \leftarrow 1, ..., n-k-1$ do
        $\text{DeleteMin}(v_i)$; $\text{degree}(v_i) \leftarrow 0$;
        $X(v_i) \leftarrow \{w \in \text{Adj}_G(v_i) \mid \text{degree}(w) \neq 0\}$;
        for all $w \in X(v_i)$ do
            $\text{degree}(w) \leftarrow \text{degree}(w) - 1$;
            if $(\text{degree}(w) = k)$ and $(w < \text{last})$ then $\text{pend} \leftarrow w$;
        $\text{pend} \leftarrow 0$; $\text{last} \leftarrow 1$;
    for $i \leftarrow n-k, ..., n$ do
        $\text{DeleteMin}(v_i)$; $\text{degree}(v_i) \leftarrow 0$;
        $X(v_i) \leftarrow \{w \in \text{Adj}_G(v_i) \mid \text{degree}(w) \neq 0\}$;

Procedure Encode-Step2:
    for $i \leftarrow 1, ..., n$ do $\sigma^{-1}(v_i) = i$;
    for $i \leftarrow 1, ..., n-k-1$ do
        $j \leftarrow \min\{ \sigma^{-1}(u) \mid u \in X(v_i)\}$;
        $\alpha_i \leftarrow v_j$; $\beta_i \leftarrow 0$;
        if $j \neq n-k+1$ then $\beta_i \leftarrow X(v_i) - X(v_j)$;
```

1529
The encoding algorithm is linear, as show below.

Procedure Encoder-Step1 is linear. The initialization of the array degree takes $O(m)$. At each iteration the least simplicial vertex is chosen. During the DeleteMin operation two situations may arise: if there is a pending element, it is simply removed; otherwise, the next element with lowest priority is sought and removed. The first one takes $O(1)$; the second, an overall complexity of $O(n)$. The deletion of a simplicial vertex v is $O(1)$; the vertices of $\text{Adj}(v)$ that do not appear yet at the ppeo constitute the monotone adjacency set $X(v)$. So, the overall complexity is $O(m)$. Procedure Encoder-Step2 is also linear. In the proof of Theorem 2, we show that j is the first vertex of $X(v_j)$ that appears in the ppeo. At each iteration, $\min\{\sigma^{-1}(u) \mid u \in X(v_j)\}$ is determined. So, it takes $\sum_{i}^{n-k-1} X(v_i) = O(m)$.

6. The Decoding Algorithm.

The inverse task is called decoding: the pair (ξ, \emptyset) is given, being $\|S\| > 0$ and the monotone adjacency sets of the vertices of G such that $PC(G) = [(v_i, X(v_i)) \mid i = 1, ..., n]$ must be determined. We present three lemmas that support the decoding algorithm.

Lemma 6. Let G be a k-tree, $n > k+1$, $CC(G)$ its compact code and $\sigma = [v_1, ..., v_n]$ its ppeo. For $i = n-k-1$, ..., 1, if $\beta_j = 0$ then $X(v_i) = \xi - \{v_{n-k}\}$ else $X(v_i) = \{a_i\} \cup X(a_i) - \{\beta_i\}$.

Proof. By definition, if $j = n-k+1$ then $\beta_j = 0$. From Theorem 4, $X(v_i) = \{v_{n-k+1}\} \cup X(v_{n-k}) = X(v_{n-k}).$ Also by definition, if $\beta_j \neq 0, a_i = v_j$ and $\{\beta_j\} = X(a_i) - X(v_i)$. Since $a_i \notin X(a_i)$, then $X(v_i) = \{a_i\} \cup X(a_i) - \{\beta_i\}$.

Lemma 7. Let G be a k-tree, $n > k+1$ and $CC(G)$ its compact code. For $i=1, ..., n-k-1$:

$$\bigcup_{i=i}^{n} X(v_j) = \bigcup_{i=i}^{n-k-1} \{a_i\} \cup \xi.$$

Proof. By induction on the size of S.

- Let $t = n-k+1$. By Lemma 3, $X(v_{n-k-1}) \subseteq \{v_{n-k}\} \cup X(v_{n-k})$. By definition, $a_{n-k-1} = v_{n-k}$ or $a_{n-k-1} = v_{n-k+1}$, i.e., $a_{n-k-1} \in \xi$. Then S has one pair and

$$\bigcup_{i=n-k-1}^{n} X(v_j) = \{a_{n-k-1}\} \cup \xi.$$

- Suppose that the lemma is valid for $i+1$, $1 \leq i < n-k-1$. Then

$$\bigcup_{i=i+1}^{n} X(v_j) = \bigcup_{i=i+1}^{n-k-1} \{a_i\} \cup \xi.$$

By (1),

$$\bigcup_{i=i}^{n} X(v_j) = \{a_i\} \cup \bigcup_{i=i+1}^{n-k-1} \{a_i\} \cup \xi.$$
Lemma 8. The vertices \(v_i, i = 1, ..., n-k-1 \) are determined as follows:

\[
v_i = \min \left(V - \xi - \bigcup_{i=1}^{n-k-1} \{ \alpha_i \} - \bigcup_{i=1}^{n-k-1} \{ v_i \} \right).
\]

Proof. By definition, \(v_i \) is the least simplicial vertex in the induced subgraph \(G_i = G[\{ v_i, v_{i+1}, ..., v_n \}] \). Then \(v_i \notin V - \bigcup_{i=1}^{n-k-1} \{ v_i \} \) and \(v_i \notin \bigcup_{i=1}^{n-k-1} X(v_i) = \bigcup_{i=1}^{n-k-1} \{ \alpha_i \} \cup \xi \). □

The decoding algorithm consists of the following steps:
1. Set \(k = |\xi| - 1 \) and \(n = |S| + |\xi| \);
2. Compute the ppeo \(\sigma = [v_1, ..., v_n] \) of \(G \);
3. Compute \(X(v_i) \), for \(i = n, ..., 1 \).

The second step computes the ppeo \(\sigma = [v_1, ..., v_n] \). The last \(k+1 \) elements \(v_{n-k}, ..., v_n \) can be obtained by sorting the set \(\xi \) ascendingly and the elements \(v_1, ..., v_{n-k-1} \) from Lemma 8.

After having obtained the ppeo, the monotone adjacency sets \(X(v_i), i = n, ..., 1 \), must be determined. The last \(k+1 \) sets \(X(v_{n-k}), ..., X(v_n) = \emptyset \) can be easily determined by simply sorting \(\xi \) ascendingly. Lemma 6 shows how to compute the other sets.

The decoding algorithm has the same complexity as the encoding algorithm presented in Section 5. Actually, the implementation of Step 2 uses the same simplified priority queue; instead of dealing with the degree of each vertex, the algorithm must keep track of the number of times that each label \(\alpha \) appears in \(S \).

7. An Application.

Besides providing a more concise representation for a \(k \)-tree, the compact code can support better solutions for some problems. A straightforward example is the determination of the ppeo, whose solution can be achieved in time \(O(n) \), according to the results presented in Section 6. Another example is provided in this section.

Exact vertex coloring is a very important problem in algorithmic graph theory, which can be solved through polynomial algorithms only for some particular families of graphs. The problem consists in associating colors to the vertices of a graph, so that the endpoints of each edge receive distinct colors, using the minimum number of colors.

In particular, every chordal graph \(G \) can be exactly colored in time \(O(m) \) using \(\omega(G) \) distinct colors, where \(\omega(G) \) is the size of the largest clique in the graph. Due to this strong result, no further efforts are usually made to solve the problem for its subclasses. We show here a solution for a \(k \)-tree represented by its compact code in time \(O(n) \).

If a \(k \)-tree \(G = (\{1, ..., n\}, E), n > k \), is represented by its compact code, the residual clique \(\xi(G) \) has size \(k+1 \) and demands exactly \((k+1) \) colors. The remaining vertices can be colored after Lemma 9.

Lemma 9. Let \(G = (\{1, ..., n\}, E), n > k \), be a \(k \)-tree, \(CC(G) = (\xi(G), S) \) its compact code and \(\sigma = [v_1, ..., v_n] \) its ppeo. Assume that the vertices \(v_{n-k}, ..., v_n \) are already colored with \(k+1 \) distinct colors. Thus, for \(i = n-k-1, ..., 1 \):

\[
\text{color}(v_i) = \begin{cases}
\text{color}(v_{n-k}) & \text{if } \beta_i = 0; \\
\text{color}(\beta_i) & \text{otherwise.}
\end{cases}
\]
An $O(n)$-time procedure can easily implement the solution, in contrast to the corresponding $O(m)$-time algorithm for chordal graphs.

8. References.

Markenzon, L., Vernet, O., Pereira, P. R. C. (2006), (L,U)-Bounded Priority Queues, *Proc. of CLAI0'06*.

Pereira, P. R. C., Markenzon, L., Vernet, O. (2005a), Código Reduzido de Prüfer para k-Árvores Rotuladas, Anais do XXXVI Simpósio Brasileiro de Pesquisa Operacional, 2335-2342 (in portuguese).

Acknowledgement.

This work was supported by grants 306893/2006-1 and 473603/2007-1, CNPq, Brazil.