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Resumo. Neste artigo apresentamos condições sob as quais definimos um processo de
assinaturas para um sistema coerente observando o tempo de vida dos componentes, or-
denados, como aparecem no tempo, até a falha do sistema. No caso dos tempos de vida
dos componentes independentes e identicamente distribuidos, o processo de assinaturas
atualiza-se no tempo e não depende da particular função de distribuição, F , dos tempos
de vida dos componentes e do instante t. O processo tambem recupera as assinaturas no
infinito.

Abstract. In this paper we give conditions,under which, we can define a signature process
of a coherent system observing the ordering components lifetimes, as they appear in time
until system failure. In the case of independent and identically distributed component
lifetimes, the signature process actualizes itself on time and does not depend of the par-
ticular components lifetimes distribution F and of the particular time t. Its also recover
the system signature at infinity.
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1.Introduction. As in Barlow and Proschan (1981) a complex engineering system is
completely characterized by its structure function Φ which relate its lifetime T and its
components lifetimes Ti, 1 ≤ i ≤ n, defined in a complete probability space (Ω,=, P )

T = Φ(T),T = (T1, ..., Tn).

A physical system would be quit unusual ( or perhaps poorly designed) if improving
the performance of a component (that is, replacing a failed component by a functioning
component) caused the system to deteriorate (that is, to change from the functioning
state to the failed state). Thus we consider structure functions which are monotonically
increasing in each coordinate. Also to avoid trivialities we will eliminate consideration of
any system whose state does not depend on the state of its components. A system is said
to be coherent if its structure function Φ is increasing and each component is relevant,
that is, there exist a time t and a configuration of T in t such that the system works if,
and only if, the component works.

The performance of a coherent system can be measured from this structural relation-
ship and the distribution function of its components lifetimes. The structure functions
offer a way of indexing the class of coherent system but such representations make the
distribution function of the system lifetime analytically very complicated (mainly in the
dependent case). An alternative representation for the coherent system distribution func-
tion is through the system signatures, as in Samaniego (2007), that, while narrower in
scope than the structure function, is substantially more useful.

Samaniego (1985) consider the order statistics of the independent and identically dis-
tributed components lifetimes of a coherent system of order n with continuous distribution.
Clearly {T = T(i)} 1 ≤ i ≤ n is a (P -a.s.) partition of the probability space and

P (T ≤ t) =
n∑

i=1

P (T ≤ t, T = T(i)) =
n∑

i=1

P (T = T(i))P (T ≤ t|T = T(i)) =

n∑
i=1

P (T = T(i))P (T(i) ≤ t|T = T(i)) =
n∑

i=1

P (T = T(i))P (T(i) ≤ t) =

n∑
i=1

αiP (T(i) ≤ t).

In the above context Samaniego (2007) defines

Definition 1.1 Let T be the lifetime of a coherent system of order n, with components
lifetimes T1, ..., Tn which are independent and identically distributed random variables with
continuous distribution F . Then the signature vector α is defined as

α = (α1, ..., αn)

where αi = P (T = T(i)) and the {T(i), 1 ≤ i ≤ n} are the order statistics of {Ti, 1 ≤ i ≤ n}.

PRÉ-ANAIS XLIIISBPO

897



The key feature of system signatures that makes them broadly useful in reliability
analysis is the fact that, in the context of independent and identically distributed (i.i.d.)
absolutely continuous components lifetimes, they are distribution free measures of system
quality, depending solely on the design characteristics of the system and independent of
the behavior of the systems components .

A detailed treatment of the theory and applications of system signatures may be found
in Samaniego (2007). This reference gives detailed justification for the i.i.d. assumption
used in the definition of system signatures. By the way there are some applications in which
the i.i.d. assumption is appropriate, and in such case, the use of system signatures for
comparisons among systems is wholly appropriate; such applications range from batteries
in lighting, to wafers or chips in a digital computer to the subsystem of spark plugs in an
automobile engine.

The utility of signatures in gauging the performance of systems in i.i.d. components
derives largely from representation and preservation results. Some of then link the char-
acteristics of system signatures with system performance.

Before stating these results, we first recall the definitions of three standard forms of
stochastic relations between random variables.

Definition 1.2 Let T1 and T2 random variables. Then:

a) T1 is stochastically smaller than T2 (T1 ≤st T2) if, and only if, P (T1 > t) ≤ P (T2 >
t),∀t;

b) T1 is stochastically smaller than T2 in the hazard rate ordering (T1 ≤hr T2) if, and
only if, P (T1>t)

P (T2>t) is nonincreasing in t,∀t;

c) in the case where T1 and T2 have absolutely continuous distributions, with densities
f1 and f2, respectively, T1 is stochastically smaller than T2 in the likelihood rate ordering
(T1 ≤lr T2) if, and only if, f1(t)

f2(t)
are nonincreasing in t,∀t.

The following result shows that certain relationships between two (discrete) signatures
ensure that a similar relationship holds between the corresponding (continuous) system
lifetimes.

Theorem 1.3( Kochar et al. (1999)) Let α1 and α2 be the signatures of two coherent sys-
tems of order n, both based on n components with i.i.d. lifetimes with common continuous
distribution F . Let S1 and S2 be their respective lifetimes. Then:

a) if
α1 ≤st α2 =⇒ S1 ≤st S2;

b) if
α1 ≤hr α2 =⇒ S1 ≤hr S2;
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c) if F is absolutely continuous and

α1 ≤lr α2 =⇒ S1 ≤lr S2.

The applications of system signature can be extended to mixed system. A mixed
system of order n is a stochastic mixture of coherent systems of order n and can be
realized in practice via randomization which selects a system at random according to a
fixed probability distribution on the class of coherent systems of order n (see Boland et
al. (2005)). The mixed system that selects among n-component systems with signatures
vectors α1, α2, ..., αn according to the distribution p = (p1, ..., pn) will have signature∑n

i=1 piαi. We note that the representation and preservation theorem above is applicable
for mixed systems.

One further important issue is the fact that we will, at times, be interested in com-
paring systems of different sizes. Although such a comparison might arise in general, it
is special relevant when comparisons involve new and used systems. Theorem 1.3 is not
immediately applicable to this problem. However, the exact relationship has been charac-
terized between the signature of a given system with a system of any larger order, which
has an equivalent lifetime distribution under the assumption of i.i.d. component lifetimes.
The following theorem is an example.

Theorem 1.4 (Samaniego (2006)) Let α = (α1, ..., αn) be the signature of a mixed system
in n i.i.d. components lifetimes with continuous distribution F . Then the mixed system
with (n+ 1) i.i.d. components lifetimes with continuous distribution F and corresponding
to the system signature

α∗ = (
nα1

n+ 1
,
α1 + (n− 1)α2

n+ 1
,

2α2 + (n− 2)α3

n+ 1
, ...,

(n− 1)αn−1 + αn

n+ 1
,
nαn

n+ 1
)

has the same distribution lifetime as the n-component system with signature α.

Samaniego (1985), Kochar, et al.(1999) and Shaked and Suarez-Llorens (2003) ex-
tended the signature concept to the case where the components lifetimes T1, ..., Tn, of a
system are exchangeable (i.e. the joint distribution function, F (t1, ..., tn), of (T1, ..., Tn)
is the same for any permutation of t1, ..., tn), an interesting and practical situation in
reliability theory.

Navarro et al. (2008) and Samaniego et al.(2009) consider dynamic (conditioned)
signatures and their use in comparing the reliability of new and used systems. Their
procedures consider the system lifetime conditioned in an event on time. Navarro et al.
(2008) consider either the event {T > t} and {T(i) ≤ t} ∩ {T > t} with system signature
P (T = T(i)|T > t) and P (T = T(i)|{T(i) ≤ t} ∩ {T > t}) respectively. A systems signature
has proven to be quite a useful proxy for a systems design, as it is a distribution-free
measure ( i.e., not depending on F ) that efficiently captures the precise features of a
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systems design which influence it performance. Unhappiness, in both Navarros above
situations, the system signatures does depend on F (t).

Samaniego et all. (2009) consider the event in time {T(i) ≤ t < T(i+1)} ∩ {T > t}
and in this case the system signature P (T = T(i)|{T(i) ≤ t < T(i+1)} ∩ {T > t}) does not
depend on t and on F (t) and have the usual signatures properties. Samaniego et all. (2009)
extend Theorem 1.3, however their conditioned signature does not capture the dynamics
aspects of the problem, as a stochastic process.

Theorem 1.5 (Samaniego et al (2009)) Consider two used mixed systems with lifetimes S1

and S2, based on n original components with i.i.d. lifetimes having the common continuous
distribution F . Suppose both systems are working and have exactly i and j failed compo-
nent, respectively, at time t. Let α1(n− i) and α2(n− j) be their dynamics signatures, as
in Samaniego, et al. (2009)[11]. Then

a) if
α1(n− i) ≤st α2(n− j) =⇒

(S1|{T(i) ≤ t < T(i+1)} ∩ {S1 > t}) ≤st (S2|{T(j+1) ≤ t < T(j+2)} ∩ {S2 > t});

b) if
α1(n− i) ≤hr α2(n− j) =⇒

(S1|{T(i) ≤ t < T(i+1)} ∩ {S1 > t}) ≤hr (S2|{T(j+1) ≤ t < T(j+2)} ∩ {S2 > t});

c) if F is absolutely continuous and if

α1(n− i) ≤lr α2(n− j) =⇒

(S1|{T(i) ≤ t < T(i+1)} ∩ {S1 > t}) ≤lr (S2|{T(j+1) ≤ t < T(j+2)} ∩ {S2 > t});

In this paper we consider the system evolution on time under a complete information
level. To make the exposition understandable, in Section 1, in the introduction, we review
results in signature theory and in Section 2 we develop the dynamics signature. We give
some examples at the end of this Section.

2. Dynamic signatures

We intend to give a new approach to dynamic systems signatures. We consider the
system evolution on time under a complete information level. In this fashion, if the com-
ponents lifetimes are independent and identically distributed and continuous, the expected
dynamic system signature enjoy the special property that they are independent of both the
distribution F and the time t. This fact has significance beyond the mere simplicity and
tractability of the signature vector, reflect only characteristics of the corresponding system
design and may be used as proxies for system designs in the comparison of system perfor-
mance. Also the dynamic system signature actualizes itself under the system evolution on
time recovering the dynamical system signature in the set {T(i) ≤ t < T(i+1)}∩{T > t}, as
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in Samaniego et all (2009) and the original coherent system signature in the set {T(n) ≤ t}
as in Samaniego (2007).

In our setup, we consider the vector (T1, ..., Tn) of n component lifetimes which are
finite, positive, independent and identically distributed and continuous random variables
defined in a complete probability space (Ω,=, P ). ( in a general setup we can assume that
P (Ti 6= Tj) = 1, for all i 6= j, i, j in E = {1, ..., n}, the index set of components. The
lifetimes can be dependent but simultaneous failure are ruled out).

In what follows, to simplify the notation, we assume that relations between random
variables and measurable sets, respectively, always hold with probability one, which means
that the term P -a.s., is suppressed.

The evolution of components in time define a marked point process given through the
failure times and the corresponding marks.

We denote by T(1) < T(2) < ... < T(n) the ordered lifetimes T1, T2, ..., Tn, as they
appear in time and by Xi = {j : T(i) = Tj} the corresponding marks. As a convention we
set T(n+1) = T(n+2) = ... =∞ and Xn+1 = Xn+2 = ... = e where e is a fictitious mark not
in E. Therefore the sequence (Tn, Xn)n≥1 defines a marked point process.

The mathematical formulation of our observations is given by a family of sub σ-
algebras of =, denoted by (=t)t≥0, where

=t = σ{1{T(i)>s}, Xi = j, 1 ≤ j ≤ n, j ∈ E, 0 < s ≤ t},

satisfies the Dellacherie conditions of right continuity and completeness .
Intuitively, at each time t the observer knows if the events {T(i) ≤ t,Xi = j} have

either occurred or not and if they have, he knows exactly the value T(i) and the mark Xi.
We assumed that Ti, 1 ≤ i ≤ n are totally inaccessible =t-stopping time. To prove the
main result we need the following Lemma:

Lemma 2.1.1 Let T be the lifetime of a coherent system of order n, with component
lifetimes T1, ..., Tn which are independent and identically distributed with continuous dis-
tribution F . Then, under the above notation

P (T ≤ t|=t) = Σn
i=1

P (T = T(i−1))
P (T ≥ T(i−1))

1{T(i−1)≤t<T(i)}.

Proof
Under the assumption that the components lifetimes are i.i.d. with continuous distri-

bution F , P (∪n
i=1{T = T(i)}) = 1. The information in =t is of the kind {T(i) ≤ t < T(i+1)},

i = 1, 2, ..., n with T(0) = 0 and T(n+1) =∞. Therefore a version of P (T ≤ t|=t) is

P (T ≤ t|=t) = 0 in the set {T(1) > t};

P (T ≤ t|=t) = P (T=T(i))

P (T≥T(i))
in the set {T(i) ≤ t < T(i+1)};

P (T ≤ t|=t) = 1 in the set {t ≥ T(n)}.
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which can be easily verified observing that∫
A

P (T ≤ t|=t)dP = P (A ∩ {T ≤ t})

∀A ∈ =t and we have

P (T ≤ t|=t) = Σn
i=1

P (T = T(i−1))
P (T ≥ T(i−1))

1{T(i−1)≤t<T(i)}.

To prove the main result we need a definition from Arjas and Norros (1984) and Norros
(1985).

Definition 2.1.2 A random vector T = (T1, ..., Tn) of lifetimes is said to be weakened
by failures with respect to a family of σ-algebra (=t)t≥o, denoted by WBF |=t if for all
increasing and measurable function f , E[f(T)|=t] jumps downwards at the failure times.

Remark 2.1.3 Follows that if f(t) = 1{T>t}, and =t = <t we have E[f(T)|=t] = P (T >
t|=t). As, for T(i−1) ≤ t < T(i), =t− = =T(i−1) we conclude that

P (T > T(i)|=T(i)) ≤ P (T > T(i−1)|=T(i−1))

which is equivalent to
P (T = T(i))
P (T ≥ T(i))

≥
P (T = T(i−1))
P (T ≥ T(i−1))

and βi ≥ 0 under the WBF |=t property of the components lifetimes.

Theorem 2.1.4 Let T be the lifetime of a coherent system of order n, with component
lifetimes T1, ..., Tn which are independent and identically distributed with continuous dis-
tribution F and with the WBF |=t property. Then,

P (T ≤ t|=t) = Σn
i=1βi1{T(i)≤t}

where

βi =
P (T = T(i))
P (T ≥ T(i))

−
P (T = T(i−1))
P (T ≥ T(i−1))

,

with T(0) = 0, T(n+1) =∞, βi ≥ 0 and Σn
i=1βi = 1.

Proof Firstly, under the WBF |=t property the βi are clearly positives.
Also

Σn
i=1βi = Σn

i=1[
P (T = T(i))
P (T ≥ T(i))

−
P (T = T(i−1))
P (T ≥ T(i−1))

] =
P (T = T(n))
P (T ≥ T(n))

= 1
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if P (T = T(n)) 6= 0 and equal to P (T=T(n−1))

P (T≥T(n−1))
= 1, if P (T = T(n)) = 0 and so successively.

From Remark 2.1.1, we have

P (T ≤ t|=t) = Σn
i=1

P (T = T(i−1))
P (T ≥ T(i−1))

1{T(i−1)≤t<T(i)} =

Σn
i=1

P (T = T(i−1))
P (T ≥ T(i−1))

[1{T(i)>t} − 1{T(i−1)>t}] =

1− Σn
i=1[

P (T = T(i))
P (T ≥ T(i))

−
P (T = T(i−1))
P (T ≥ T(i−1))

]1{T(i)>t} =

Σn
i=1βi − Σn

i=1βi1{T(i)>t} = Σn
i=1βi1{T(i)≤t}.

Therefore, under the WBF |=t property of the components lifetimes the βis define a
probability distribution and we can define
Definition 2.1.5 Let T be the lifetime of a coherent system of order n, with component
lifetimes T1, ..., Tn which are weakened by failure relative to (=t)t≥0, WBF |=t, independent
and identically distributed random variables with continuous distribution F . Then the
dynamic signature vector β is defined as

β = (β1, ..., βn)

where βi = P (T=T(i))

P (T≥T(i))
− P (T=T(i−1))

P (T≥T(i−1))
, and the T(i) are the order statistics of Ti, 1 ≤ i ≤ n.

Remarks 2.1.6: Given the information =t we knows that, in the set {T(i) ≤ t < Ti+1)} ,

P (T ≤ t|{T(i) ≤ t < Ti+1)}) =
i∑

j=1

βi =
i∑

j=1

[
P (T = T(i))
P (T ≥ T(i))

−
P (T = T(i−1))
P (T ≥ T(i−1))

] =
P (T = T(i))
P (T ≥ T(i))

,

as we have in Lemma 2.1.1.
The next Corollary shows how the dynamic signature actualizes itself on time and

how we recover the Samaniego (2007) signature vector at infinity.
We use the notation from Samaniego (2009): βn−i,j(n− i) is the j-th element of the

signature vector βn−i(n− i) of the remaining n− i residual survival lifetimes of a coherent
system of order n after its i-th components failures, 1 ≤ i ≤ n, //i + 1 ≤ j ≤ n. The
distribution conditional of the system lifetime given that the system is still working and
exactly i components have failed is denoted by

P (T ≤ t+ x|{T(i) ≤ t < Ti+1)} ∩ {T > t}).
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Corollary 2.1.7 Let T be the lifetime of a coherent system of order n, with component
lifetimes T1, ..., Tn which are WBF |=t , independent and identically distributed with con-
tinuous distribution F . Then, in the set {T(i) ≤ t < T(i+1)}∩{T > t}, the system signature
actualizes in time with

P (T ≤ t+ x|{T(i) ≤ t < Ti+1)} ∩ {T > t}) =

n∑
j=i+1

βn−i,j(n− i)P (T(j) ≤ t+ x|{T(i) ≤ t < Ti+1)} ∩ {T > t}),

and
n∑

j=i+1

βn−i,j(n − i) = 1. Also, its restores the Samaniego (2007) system signature in

the set {t ≥ T(n)}.

Proof In the set {T > t} ∩ {T(i) ≤ t < T(i+1)}, we have 1{T(j)≤t} = 0 if j ≤ i. Also,
under this information P (T = T(j)) = 0 if j ≤ i and P (T ≥ T(i+1)) = 1 affecting all the
differences defining the dynamics signature, passing from βj to βn−i,j(n− i).

Therefore we have

P (T ≤ t+ x|<t) =
n∑

j=i+1

βn−i,j(n− i)1{T(j)≤t+x},

and the coherent system signature actualizes to

P (T ≤ t+ x|{T(i) ≤ t < Ti+1)} ∩ {T > t}) =
n∑

j=i+1

βn−i,j(n− i)P (T(j) ≤ t+ x|{T(i) ≤ t < Ti+1)} ∩ {T > t}),

with

n∑
j=i+1

βn−i,j(n− i) =
n∑

j=i+1

[
P (T = T(j))
P (T ≥ T(j))

−
P (T = T(j−1))
P (T ≥ T(j−1))

] =
P (T = T(n))
P (T ≥ T(n))

= 1,

if P (T = T(n)) 6= 0 and equal to P (T=T(n−1))

P (T≥T(n−1))
= 1, if P (T = T(n)) = 0 and so successively.

Furthermore, under this information, as P (T = T(i)) = 0 and P (T ≥ T(i+1)) = 1 we
have

βn−i,i+1(n− i) =
P (T = T(i+1))
P (T ≥ T(i+1))

−
P (T = T(i))
P (T ≥ T(i))

=
P (T = T(i+1))
P (T ≥ T(i+1))

= P (T = T(i+1)) = αi+1

and the signatures actualizes itself in the set {T > t} ∩ {T(i) ≤ t < T(i+1)}.
As β1 = α1 and {Ti ≤ t} occurs successively in time for i = 1, 2, 3, ..., in the set

{t ≥ T(n)} we have:
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P (T ≤ t|<t) =
n∑

i=1

αi1{T(i)≤t}.

Taking expected values we get

P (T ≤ t) =
n∑

i=1

αiP (T(i) ≤ t)

recovering the Samaniego (2007) signature decomposition.

Examples 2.1.8 i) If T1, T2, T3 are independent and identically distributed component’s
lifetimes of the system with lifetime T = T1 ∧ (T2 ∨ T3).

The Samaniego (2007) system signatures are:
α1 = P (T = T(1)) = 1

3 , α2 = P (T = T(2)) = 2
3 and α3 = P (T = T(3)) = 0 and the

signature system distribution lifetime decomposition is

P (T ≤ t) =
1
3
P (T(1) ≤ t) +

2
3
P (T(2) ≤ t).

However P (T=T(1))

P (T≥T(1))
= 1

3 , P (T=T(2))

P (T≥T(2))
= 1 and P (T=T(3))

P (T≥T(3))
= 0 and the dynamical signature

are
β1 = 1

3 , β2 = 2
3 , β3 = 0 and the dynamic signature system distribution lifetime

decomposition is

P (T ≤ t|=t) =
1
3

1{T(1)≤t} +
2
3

1{T(2)≤t}.

Taking expected values we get

P (T ≤ t) =
1
3
P (T(1) ≤ t) +

2
3
P (T(2) ≤ t).

and note that αi = βi, i = 1, 2 in the set {T(2) < t} recovering the Samaniego (2007)
signature decomposition.

ii)The Bridge system lifetime can be set as T = (T1 ∨ T2) ∧ (T1 ∨ T3 ∨ T5) ∧ (T2 ∨
T3 ∨ T4) ∧ (T4 ∨ T5). where T1, T2, T3, T4, T5 are independent and identically distributed
lifetimes.

The Samaniego (2009) system signatures are:
α1 = P (T = T(1)) = 0, α2 = P (T = T(2)) = 1

5 , α3 = P (T = T(3)) = 3
5 , α4 =

P (T = T(4)) = 1
5 and α5 = P (T = T(5)) = 0 and the signature system distribution lifetime

decomposition is

P (T ≤ t) =
1
5
P (T(2) ≤ t) +

3
5
P (T(3) ≤ t) +

1
5
P (T(4) ≤ t).
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As P (T=T(1))

P (T≥T(1))
= 0, P (T=T(2))

P (T≥T(2))
= 1

5 , P (T=T(3))

P (T≥T(3))
= 3

4 , P (T=T(4))

P (T≥T(4))
= 1 and P (T=T(5))

P (T≥T(5))
= 0 and

follows that the
the dynamical signature are:
β1 = 0, β2 = 1

5 , β3 = 11
20 , β4 = 1

4 ,β5 = 0 and the dynamic signature system distribution
lifetime decomposition is

P (T ≤ t|=t) =
1
5

1{T(2)≤t} +
11
20

1{T(3)≤t} +
1
4

1{T(4)≤t}.

Now, in the set {T(2) ≤ t < T(3)} ∩ {T > t} the system signature actualizes to to
β5−2,3(5 − 2) = 3

4 , β5−2,4(5 − 2) = 1 − 3
4 = 1

4 and β5−2,5(5 − 2) = 0. The decomposition
system signature actualizes to

P (T ≤ t+ x|{T(2) ≤ t < T(3)} ∩ {T > t}) =

3
4
P (T(3) ≤ t+x|{T(2) ≤ t < T(3)}∩{T > t})+

1
4
P (T(4) ≤ t+x|{T(2) ≤ t < T(3)}∩{T > t}).

Also

P (T ≤ t) =
1
5
P (T(2) ≤ t) +

4
5

[
3
4
P (T(3) ≤ t) +

1
4
P (T(4) ≤ t)]

in the set {T(4) ≤ t}, recovering the Samaniego (2007) signature decomposition.

iii) If T1, T2, T3, T4 are independent and identically distributed component’s lifetimes
of the system with lifetime T = T1 ∨ (T2 ∧ T3 ∧ T4), then α1 = P (T = T(1)) = 0, α2 =
P (T = T(2)) = 1

2 and α3 = P (T = T(3)) = 1
4 and α4 = P (T = T(4)) = 1

4 and the signature
system distribution lifetime decomposition is

P (T ≤ t) =
1
2
P (T(2) ≤ t) +

1
4
P (T(3) ≤ t) +

1
4
P (T(4) ≤ t).

However P (T=T(1))

P (T≥T(1))
= 0, P (T=T(2))

P (T≥T(2))
= 1

2 , P (T=T(3))

P (T≥T(3))
= 1

2 and P (T=T(4))

P (T≥T(4))
= 1.

Follows that the dynamical signature are: β1 = 0, β2 = 1
2 , β3 = 0, and β4 = 1

2 the
dynamic signature system distribution lifetime decomposition is

P (T ≤ t|=t) =
1
2

1{T(2)≤t} +
1
2

1{T(4)≤t}.

In the set {T(2) ≤ t < T(3)} ∩ {T > t} we have β4−2,3(4− 2) = 1
2 and β4−2,4(4− 2) =

1− 1
2 = 1

2 . the dynamical system signature actualizes to

P (T ≤ t+ x|{T(2) ≤ t < T(3)} ∩ {T > t})) =
1
2
P (T(2) ≤ t+ x) +

1
2
.

[
1
2
P (T(3) ≤ t+x|{T(2) ≤ t < T(3)}∩{T > t})+

1
2
P (T(4) ≤ t+x|{T(2) ≤ t < T(3)}∩{T > t})]
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P (T ≤ t) =
1
2
P (T(2) ≤ t) +

1
2

[
1
2
P (T(3) ≤ t) +

1
2
P (T(4) ≤ t)],

recovering the Samaniego (2009) signature decomposition.

Remarks 2.1.9: As the dynamic signatures actualizes itself on time and in the set {T(n) <
t} , αi = βi, ∀i. we can rewrite either Theorem 1.3 (Kochar et al. (1999))) and Theorem
1.5 (Samaniego et al. (2009)) in the cited papers in an unified Theorem:

Theorem 2.1.10 Consider two mixed systems based on n original components with i.i.d.
lifetimes having the common continuous distribution F and the WBF |=t property. The
first system having lifetime S1, signature vector α1 and dynamic signature vector β1.
The second one having lifetime S2, signature vector α2 and dynamic signature vector β2.
Suppose that at time t, both system are working, the first system have exactly i failed
components and the second exactly j failed components. Then

a) if
α1

n(n− i) ≤st α
2
n(n− j) =⇒ (S1|<t ≤st (S2|<t);

b) if
α1

n(n− i) ≤st α
2
n(n− j) =⇒ (S1|<t) ≤hr (S2|<t);

c) if F is absolutely continuous,

α1
n(n− i) ≤lr α

2
n(n− j) and β1

n(n− i) ≤lr β
2
n(n− j) =⇒ (S1|<t) ≤lr (S2|<t);

Proof First, we always have Σn
j=iβn−i,j(n − i) = 1,∀i, 1 ≤ i ≤ n in the way that both

the vectors β1 and β2 are not relevant for stochastically comparing systems lifetimes with
respect to stochastic ordering and hazard rate ordering. However, as the stochastic com-
parisons must holds for all time t ≥ 0, the constants βn−i+1,i(n− i+ 1) actualizes itself to
αi in the set {T(i−1) ≤ t < T(i)} ∩ {T > t} and βi = αi ∀i in t > T(n), either the vectors
α1 and α2 are relevant for those comparisons and are the sufficient conditions.

As the atoms in <t is of the kind {T(i) ≤ t < T(i+1)}, i = 1, 2, ..., n with T(0) = 0 and
T(n+1) =∞, the proof of parts a) and b) follows from Theorems 1.3 of Kochar et al.(2005)
and Theorem 1.5. of Samaniego et al (2009).

To prove part c) we have to consider the likelihood ratio ordering between the vectors
β1 and β2 and the prove follows as in Theorem 1.5 of Samaniego et al (2009).
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