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Abstract

This paper considers a production lot sizing and scheduling problem with sequence-dependent
setup times that are not triangular. Consider, for example, a product p that contaminates some
other product r unless either a decontamination occurs as part of a substantial setup time st or
there is a third product g that can absorb p’s contamination. When setup times are triangular then
Stpr < stpq + Stgr and there is always an optimal lot sequence with at most one lot per product
per period (AM1L). However, product ¢’s ability to absorb p’s contamination presents a shortcut
opportunity and could result in shorter non-triangular setup times such that st,. > stpq + stqr.
This implies that it can sometimes be optimal for a shortcut product such as g to be produced in
more than one lot within the same period, breaking the AM1L assumption in much research. This
paper formulates and explains a new optimal model that not only permits multiple setups and
lots per product in a period (ML), but also prohibits subtours using a polynomial number of con-
straints rather than an exponential number. Computational tests demonstrate the effectiveness
of the ML model, even in the presence of just one decontaminating shortcut product, and its fast
speed of solution compared to the equivalent AM1L model.

Key Words: Lot sizing and scheduling, Sequence-dependent setup times, Non-triangular setup
times.
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1 Introduction

Some manufacturing systems have to meet a regular but varying demand for products. When
manufacturing capacity is limited, such demand cannot be met instantaneously from production,
but from inventory accumulated previously. Lot-sizing decisions then need to be made about how
much of each product to produce in each demand period and how much inventory to accumulate
in order to meet demand while keeping within production capacity.

If a setup cost or time is charged to change from one product to another, then a sequence or
schedule of lots also needs to be decided. If such setups are sequence-dependent (i.e., the size of the
setup charge depends on the product processed immediately beforehand), as illustrated in Figure
1, then the decisions become more complex.

Start of period t Start of period t+1
Period t-1 l “«————— Periodt - — - — — _ _ > l Period t+1
T T
Lot of : Setup Lot of Setup | Lot df
Product g ptoq Productq |qtor Product r
I I
Setup State for p carries Setup State for r carries
over from period t-1 to t over from period t to t+1

O—O—0O

Figure 1: Production and inventory to meet demand

Many manufacturers separate lot sizing decisions from lot sequencing in order to simplify the
complexity of the decision-making. However, this can result in production being less effective and
more costly than it needs to be. To competitively satisfy the demand for products within available
production capacity, the lot sizing and sequencing decisions should be handled simultaneously.

2 Lot Sizing and Sequencing

Research into production lot sizing and scheduling has progressed substantially over the last decades,
as shown in the reviews by Drexl and Kimms (1997) and Karimi et al. (2003), recent research (Kovacs
et al.; 2009), and a forthcoming special issue (Clark et al.; 2011). In July 2010 at the 24th European
Conference on Operational Research (EURO10) in Lisbon, a stream on lot sizing and scheduling was
organized for the first time in the history of this conference, containing seven sessions with more
than 25 presentations.

In particular, much progress has been made in the area of lot sequencing when setup times
are sequence -dependent (Meyr; 2000; Clark and Clark; 2000; Aradgjo et al.; 2007). The General Lot-
sizing and Scheduling Problem (GLSP), developed by Fleischmann and Meyr (1997), minimises
inventory and sequence-dependent setup costs on a single machine with finite capacity, allowing
multiple setups in each single "large-bucket’ time period. The GLSP was extended by Meyr (2000) to
consider sequence-dependent setup times (GLSP-ST). Toso, Morabito & Clark (2007) reformulated
the GLSP-ST model to permit backlogging and non-triangular setup times, but still assumed at most
one lot per product in each period.

Clark, Morabito & Toso (2006) pursued an alternative approach via the Asymmetric Travel-
ling Salesman Problem (ATSP), which has been very extensively researched (Lawler et al 1985;
Carpaneto et al 1995). The adaptation of the ATSP to modelling lot-sizing and scheduling with
sequence-dependent setups is not direct, since the production system is often already setup for a
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Figure 2: Triangular and Non-Triangular Setups

particular product (i.e. starting at a given city) and some products might not be produced in a given
period if the demand is sufficiently small or the capacity tight (Clark et al 2006).

Clark et al. (2010) extended a method that has been found to be successful in practice for op-
timally solving the ATSP, namely, to quickly solve the corresponding Assignment Problem (AP)
as a linear programme, identify the resulting subtours, and then resolve the AP, explicitly pro-
hibiting these subtours using a potentially exponential number of Dantzig-Fulkerson-Johnson-type
constraints adapted from Dantzig et al. (1954). The method carries on iteratively in this manner un-
til no subtours result. It can be used heuristically (and its convergence rate sometimes accelerated)
by patching the subtours into a single tour at each iteration (Karp 1979), thus providing a feasible
solution (and an upper bound). Clark et al (2006) adapted the subtour elimination method to lot se-
quencing over multiple periods with setup carryover between periods. An extension of the method
then used the patching heuristic to accelerate the time to converge to a provably optimal solution.

3 Non-triangular setup times

In some industries, e.g., animal feed supplements, some products can contaminate other products,
e.g., copper is essential for pigs but kills sheep even in tiny doses. Contamination is a particular
concern for the feed industry, although the problem is general and similar concerns also exist in a
diverse range of other industries, such as food & beverages, and the oil industry. In the feed indus-
try, blending equipment must be cleaned in order to avoid contamination, resulting in substantial
setups that consume scarce production time. Fortunately, the amount of cleaning can be minimised
by the effective sequencing of production lots.

Certain intermediate “cleansing” or shortcut products can cause non-triangular setup times.
These products clean the machines whilst being processed (e.g., certain wheat mixtures) and hence
reduce overall setup times. In other words, contamination cleaning can occur during value-adding
production time as well as during non-productive setup time.

More precisely, “triangular” setup times occur when it is never worse to setup from product
p to r directly than to setup via a third product ¢, so that triangular inequality s(p,r) < s(p,q) +
s(g,r) always holds (as shown on the left side of Figure 2). However, in the animal feed and other
industries, the contamination of a product r by a previous product p just beforehand can be often
avoided by producing enough of an intermediate product ¢ so that it absorbs p’s contamination.
For this to save time, the triangular inequality must not hold in this case, ie, the sum of the setup
times s(p,q) from p and s(g,r) to r must be short enough so that s(p,q) + s(q,r) < s(p,r) (as shown on
the right side of Figure 2).

Existing mathematical models can be used when setup times are triangular, e.g., Meyr (2000)
and Clark et al. (2010) where minimum lot-sizes are imposed to allow proper cleaning of p’s con-
taminants, i.e., to avoid a setup from p to = via zero production of ¢ rather than directly. However,
the disobeying of the triangular inequality means that it could be optimal in certain circumstances
for an intermediate shortcut product ¢ to be produced in more than one lot within the same time-
period, as shown in Figure 3. Thus the assumption of existing models (Meyr; 2000; Clark et al.;
2010) of at most one lot per product per period would not hold in such a situation. The breaking of
this assumption is the key feature of the model developed below in section 4.

The GLSP models of Fleischmann and Meyr (1997) and Meyr (2000) allow non-triangular se-
tups, as in Toso et al. (2009), but the ATSP-based model of Clark et al. (2010) assumes one lot per
product per periods and so cannot allow multiple lots of shortcut products per period, as required
to take advantage of non-triangular setup times. A sequence with multiple lots per period for some
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Figure 3: A Sequence of Non-Triangular Setups via a Shortcut Product ¢

........ > O_é_) O—) O__) O_) O_}O e

Figure 4: A main sequence and different types of subtour

products could look like that illustrated in Figure 4. Subtours connected to the main sequence S by
shortcut products are possible (e.g., subtours B and C in Fig. 4).

Thus an exact formulation must allow connected subtours but exclude disconnected subtours
(e.g., subtours A and D in Fig. 4). Menezes et al. (2010) developed such a formulation using an
iterative model and method based on a potentially exponential number of Miller-Tucker-Zemlin
subtour elimination constraints (Miller et al.; 1960).

This paper formulates and tests a new exact model for lot sizing and sequencing with non-
triangular setups. The model is developed in section 4 using a polynomial number of multi-
commodity-flow-type constraints adapted from Claus (1984), and then computationally tested in
section 5. The model is generalised in section 6 to include period-overlapping setup operations and
again tested computationally. The paper concludes in section 7 with a discussion of the model’s
value and flags remaining challenges and opportunities for future research.

4 Modelling multiple lots per product per period
The following indices are used:

p,q,r Product families, from {1,...,P} where P = the number of families.

t Time period, from {1,... T} where T' = the number of periods (e.g., days or weeks) in the
scheduling horizon.

The input data required by the model are:
Cap; Available capacity time in each period ¢.
u, Time needed to produce one batch of each product p.
ml, Minimum lot size of product p.
hy, Inventory holding cost per period for product p.
gp Backlog cost per period for product p.

co; Unit cost of machine time in period ¢.
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stpq Setup time needed to changeover from product p to product q.
dy: Forecast of demand for product p at the end of period t.
I,0 Inventory of product p at the start of the scheduling horizon.

p* The product already setup when period 1 starts (the initial setup state).
The decisions output by the model are:
I, Inventory of product p at the end of period ¢, non-negative.
I, Backlogs of product p at the end of period ¢, non-negative.
zpt Total size of all lots of product product p in period ¢ (an integer number of batches).

Ypqt Number of times that production is to be changed over from product p to product ¢ in period
t.

zpt Number of times that product p is in a setup state in period ¢.

ap: = 1if p is the product already setup when period ¢ starts (the setup state), = 0 otherwise.
Thus the model allows the setup state at the start of a period to be carried over from the
previous period. Note that ¢t € {1,...,T7 + 1} and that o, 1 = 1.

slack; Number of hours of slack capacity in period ¢.

The objective function (1) minimizes primarily backlogs via heavy penalties, then the costs of in-
ventory, while maximizing slack capacity (if backlogs and inventory are readily zeroed by an excess
of capacity):

Minimise Y (h, I, + gp I;) — Y co; slack, + 0.01) 2y 1)
t p,t

pst

Unnecessary capacity-eating setups are prevented by maximizing slack capacity in (1). The last
term [0.01) , 2;¢] is simply a mathematical device to eliminate any excessive zero-time setups.
The value of the coefficient 0.01 may need adjusting depending on the values of the other terms in
(1).

Constraints (2) balance inventory, backlogs, production and demand over consecutive weeks,
as previously shown in Figure ??:
- I

+ - _ 7t
Ip,tfl -1 i—1 T Tpt — dpr = I pt

p pt

Vp,t )

The capacity constraints (3) take into account setup and production times, and calculate any capac-
ity slack:

Zup Tpt + ZSth Ypqt + slacky = Cap, Vi (3)

p p,q

Constraints (4) ensure that a product can be produced in a period only if the machine is setup for it
at some time in period ¢:

T
Tpt < (min {W,deT—II%—&—Ip_(J}) Zpt VD, t 4)

u
P T=1

The coefficient of z,, in (4) is an upper bound on the value of z,, calculated as the minimum of (a)
the amount of product p that can be produced if period ¢t were entirely dedicated to its production,
and (b) the effective demand for product p over all periods ¢ = 1,...,T (given that backlogs of
demand may have to be produced as well as current and future demand).

Note that constraint (4) is valid, but loose as z,; need only be 1, not > 2. Constraint (19) will
tighten and replace (4) when extra binary variables for subtour-elimination are introduced below.
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Figure 5: Node flow modelled by constraints (8) and (9)

)= () (D) (D)

Figure 6: A path from carryover product po; = p|(a,e = 1) to product r

Constraints (5) impose a minimum lot size of ml, on each of product ¢’s z,4 lots in order to
force proper cleaning of a previous product p’s contaminants:

Tgt > Mlgzge VU, q (5)

Without constraints (5), a model solution could incorrectly schedule a setup from p to a third prod-
uct r via zero production of ¢ rather than directly. Note that the total lot size = can be split into
separate z4 lots, each of which is at least ml, units in size.

Constraints (6) prohibit setups between the same product:

Yppt = 0 Vp, t (6)
Constraints (7) ensure that there is exactly one product in a setup state between each period:

> ap =1 fort=2..T+1 7)
p

We have left until last the consideration of the ATSP-related constraints for sequencing products.
Constraints (8) and (9) relate the a,; and z,; setup state variables to the y,,: changeover variables,
to and from a product respectively (Figure 5).

apt + qupt = Zpt Vp,t (8)
q

Zypqt T it = zpe Yt )
q

The initial optimal solution to the model specified by expressions (1) to (9) will consist of a single
sequence starting with product p|{a,; = 1} and ending with p|{a, (+1 = 1} (possibly with embed-
ded connected subtours), and maybe one or more disconnected subtours, as previously illustrated
in Figure 4. Recall that subtours connected to the main sequence S are permitted (e.g., subtours B
and C in Fig. 4), but disconnected subtours must be prohibited (e.g., subtours A and D in Fig. 4).

The paper by Oncan et al. (2009) reviews and analytically compares of many ATSP formu-
lations, highlighting the tightness of the multi-commodity-flow (MCF) formulation by Claus (1984)
which is the inspiration for the formulation that prohibits diconnnected subtours a priori.

First define additional binary decision variables ay,, as follows. Let ay,,, = 1if the arcp — g is
on a path from carryover product py; = p|(a,r = 1) to product r within period t’s sequence of lots,
otherwise = 0, as shown in Figure 6.

The arc p — ¢ must be part of a solution, so that value of aj,, is constrained as follows:

a;qt S ypqt VP» q, T, t (10)
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Figure 7: The path from p; to r traverses only those products p for which 20} =1
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Figure 8: The path from po; must reach product r

To use apqt to prohibit subtours, a further binary decision variables zp are needed. Let 20} =1 if
product p is ever in a setup state in period t, otherwise 0. Note that z)} = 1 < 2, > 1 and that

29} = 0 & z,; = 0. This is enforced by the following constraints:

p
Zp > 20 Vp,t (1)
zpt < ZUBpz)t Vop, t (12)

where ZUB,, is a prespecified upper bound (U B) on the value of z,, calculated in the computational
tests below as the size of the ordered set {(i,j)|st;; > stip + st,;}, which will often be 1 for known
non-shortcut products.

The three sets of constraints (14, 16 and 18) below will then allow connected subtours, but
prohibit disconnected ones a priori.

Constraint (13) requires that the period ¢ path specified by the variables {apqt | ¥ p,q} starts
at carryover product pos = pl(ap; = 1) and then traverses further products in the sequence, as
illustrated in Figure 7.

apt + Z Agpt = Z Upge VT pFTE (13)
q q

However, constraint (13) should be enforced only when =0} = 2} = 1, but not when either is zero,
i.e., only when the setup states for p and r both occur during period ¢. Thus constraint (14) replaces

(13):
apt+Zaqpt+2 o — 2 > Za;qt Vor,p#r,t (14)
q q
Constraint (15) ensures that the period ¢ path specified by the variables {ay,, | V p,q} reaches
product r (Figure 8):
Qe+ Y ahy =1 ¥t (15)
q

But constraint (15) should be imposed only when the setup state is configured for r at least once
during period ¢ (i.e., only when 2% = 1), but not when the setup state is never configured for r
during period ¢, (i.e., when 22! = 0). Thus constraint (16) replaces (15):

art + Z Agry = 220 Vot (16)
q
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Figure 9: The path from po; must stop at product »

Constraint (17) requires that the ay,., path from py; stops at product r (Figure 9):
dar, =0 Vnt (17)
q

Again, this requirement can only be imposed when 2% = 1 and never when 2%} = 0, so that

constraint (18) replaces (17):

Za:qt < 1-2% vt (18)
q

Lastly, recall that constraint (4) is valid but too loose: z,: need only be 1, and not > 2. Constraint (4)
can thus be tightened by replacing z, by zp}:

T
C
Tpr < (min {W,deT—I;ﬁ—Ip_(J}) thl Vp, t (19)

Up T=1
Thus our model, denoted ML, for lot sizing and sequencing with non-triangular setup times and
setup-state carryover between periods is specified by expressions (1-3, 5-12, 14, 16, 18, 19).

5 Computational Tests

Many models in the literature assume that there will be at most one lot per product per period.
What are the pros and cons of this assumption? On the one hand, the model will be smaller with
fewer variables and constraints, so we should expect faster solution times. On the other hand,
the solutions with multiple lots per product per period will be excluded, so we will expect worse
solutions in some cases. The computational tests in this section investigate this trade-off.

To do so, the Multiple-lots-per-product-per-period (ML) model can be simplified to assume that
there will be at most one lot per product per period (AMI1L) by merging z,; and z); to be a binary
variable z,:. Thus constraints (11) and (12) disappear, and constraints (4) and (19) are now identical.

The aim of the tests was to assess how effectively the ML model took advantage of shortcut
products to reduce the total time spent on setups, compared to the equivalent AM1L model. The
tests also evaluated the consequences of less setup time on reducing demand backlogs (in the case
of tight production capacity) or increasing the spare capacity (in the case of loose capacity), as well
as the computing time of both models. The ML and AM1L models were both implemented in the
AMPL modelling language (Fourer et al.; 2003) and solved using the Gurobi optimizer v4.0.1 (64-
bit) (Gurobi Optimization Inc.; 2010) under Windows 7 on an Intel Core i5 CPU M460 at 2.53 GHz
with 4Gb of RAM.

To obtain initial insights, the performance of both models was first compared on a system with
P =10 products whose lot sizes and sequences were to be scheduled over a horizon of T' =4 demand
periods. The following data were used I,o = 0.0, Cap; = 100.0, u, = 0.4, ml, = 1.0, h, = 10.0, co; = 1.0,
p* = product P1 (arbitrarily), V p and ¢. The setup times were intially set to be st,, = (¢ — p) where
p,q € {1...10}, so that product P2 would normally be setup immediately after P1. However, P5
was then made an extreme shortcut product with zero setup times: st5; = stp,5 = 0. The periodic
demand forecasts d,; varied over product p and period ¢ to provoke non-uniform lot-sizes and
avoid lot-for-lot production. They were then randomly varied by £50% within the 25 runs of each
statistical experiment. To simulate loose capacity the overall demand was adjusted so that setup
times could take up to 15% of capacity, i.e. 15 time units per period. Tight capacity was simulated
by increasing each demand d,,; by 20% so that setups were left with no capacity in which to occur,
provoking backorders of demand.

Ubatuba/SP

3477



15a18

Q XLIII Simpésio Brasileiro de PESQUISA OPERACIONAL agosto de 2011
Ubatuba/SP

] I Mean I Median

P | Capacity | Meas. of Perf. | AMIL | ML D AMIL | ML D
No. of Setups 33.0 | 43.12 | 0.000 33.0 | 44.0 | 0.000
Setup Time 224 | 11.7 | 0.000 23.0 | 12.0 | 0.000
Slack Capacity 49.2 | 60.0 | 0.000 49.8 | 60.8 | 0.000
Inventory 131.1 | 118.1 | 0.000 121.5 | 109.0 | 0.000
Backlogs 0.00 | 0.00 | na 0.00 | 0.00 | na
CPU time 596 | 4.34 | 0.201 5.50 | 3.50 | 0.028

P | Capacity | Meas. of Perf. || AMIL | ML D AMIL | ML D
No. of Setups 27.1 | 39.2 | 0.000 27.5 | 39.5 | 0.000
Setup Time 16.0 2.6 | 0.000 16.0 2.0 | 0.000
Slack Capacity 294 | 7.96 | 0.000 0.00 | 2.80 | 0.002
Inventory || 268.5 | 302.3 | 0.001 | 264.2 | 307.2 | 0.162
Backlogs 36.8 | 15.8 | 0.000 25.0 0.0 | 0.000
CPU time 6.72 | 8.06 | 0.551 7.0 5.0 | 0.317

P | Capacity | Meas. of Perf. | AMIL | ML D AMIL | ML P
No. of Setups 66.4 | 84.0 | 0.000 66.00 | 84.00 | 0.000
Setup Time 18.0 2.0 | 0.000 17.5 1.5 | 0.000
Slack Capacity || 123.0 | 139.0 | 0.000 121.9 | 137.9 | 0.000
Inventory 240. | 225.2 | 0.000 || 233.5 | 218.5 | 0.000
Backlogs 0.00 | 0.00 | na 0.00 | 000 | na
CPU time | 3,292 | 623 | 0.000 | 3,268 | 431 | 0.000

P | Capacity | Meas. of Perf. | AMIL | ML D AMIL | ML D
No. of Setups 51.5 | 64.9 | 0.000 50.5 | 64.5 | 0.000

10 Loose

10 | Tight

20 Loose

Setup Time 10.4 0 | 0.000 10.00 0 | 0.000

20 Tight Slack Capacity 9.1 | 14.34 | 0.000 0| 4.00 | 0.005
Inventory 631.3 | 655.0 | 0.008 672.5 | 702.0 | 0.317

Backlogs 33.7 | 20.6 | 0.000 15.0 0 | 0.000

CPU time 1.942 51 | 0.000 1,325 39 | 0.000

Table 1: Comparison of models AM1L and ML

Table 1 compares the performance of both models on 6 criteria, using a balanced analysis of
variance test, and also the non-parametric Friedman test (Corder and Foreman; 2009) which is less
likely to mistakenly indicate significance caused by outliers. Both tests used the data instance (i.e.
the run) as a random blocking factor. Note the highly significant increase in numbers of setups
spare and capacity, and decrease in total setup time and backlogs in the ML results compared to
those for AM1L, particularly when capacity is tight.

For P = 10 products, model ML uses the shortcut product P5 to economise on setups times,
albeit with a larger number of actual setups, most or all of which take zero time making good
use of P5. Table 1 shows that this is particulary pronounced under tight capacity where model
ML reduces the total setup time by 85%, thus keeping backlogs to a minimum. This reduction in
backlogs illustrates well the economic added value of mode ML over model AMI1L. Note the fast
solution times for P = 10 products using the default settings of the Gurobi 4.0.1 solver.

Table 1 also shows the results with twice as many products (P = 20), two extreme shortcut
products (P5 and P15), double the capacity per period, but T=4 still. The demand and setup times
for products P11 to P20 simply replicate those for P1 to P10. The models were allowed to run for
a maximum of one hour. Note the predictably longer solution times and that under tight capacity
model M1 solves much faster than AM1L. This is an counter-intuitive result given that model M1
has more binary and integer variables than AM1L and so might be assumed to be more combinato-
rial complex.
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6 Modelling period-overlapping setup operations

The model can be generalized to allow setup operations to overlap periods, i.e., to permit a setup
to begin in a period and end in the next period. Intuition suggests a priori that it is unlikely to alter
lot sequences, but may be advantageous when capacity is tight and lot sizing decisions need more
flexibility to reduce backlogs.

Consider the following additional decision variables:

OLSpq: = 1if an overlapping last setup at the end of period ¢ is from product p to product g, but
= 0 otherwise.

S¢ is the amount of setup time that overlaps into period ¢ + 1, having begun at the end of
period t. Sy is known and fixed, being the amount of setup time still required in period
1 of any setup operation that started at the end of the previous period 0 but has not yet
finished.

The value of S; must be zero if there is no overlapping last setup at the end of period ¢:

St <) styg OLSpq Vit (20)

pq

At most one setup p — ¢ can overlap from period ¢ to ¢ + 1:

> OLSp <1 Vit (1)

Pq

The value of OLS,,; must be zero if p — ¢ is not a setup initiated in period ¢:
OLSpqt < Ypgt Vp, gt (22)

The capacity constraints (3) now become:

Zupxpt + Zstpq Ypqt + Si—1 — S¢ + slack, = Capy V1 (23)

p p.q

If OLS,p: = 1, then product p cannot be produced as the last lot in period ¢ and the value of z,; must
be reduced by 1 to reflect this. Thus constraints (9) now become:

> Upgt + a1 = 2 + Y OLSg Vp, t (24)
q q

Thus the model for lot sizing and sequencing with non-triangular setup times, setup-state carryover
between periods, and period-overlapping setup operations, is specified by expressions (1-2, 5-12,
14,16, 18-24).

The model was applied to the 25 instances of data set with 10 products and tight capacity. The
results did not show any significant benefit. The 25 AM1L solutions did not change at all and the
supposedly longer solution time is due to sampling variability (p-value = 0.90). Only 2 of the 25 ML
solution instances decreased the number of setups (by about 5%), but the solutions did not change
at all on the other 5 criteria and the seemingly10% faster solution time can be ascribed to sampling
variability (p-value = 0.26).

7 Conclusions and Future Research

This paper has developed a new model for lot sizing and sequencing with a polynomial number
of constraints that can handle the multiple lot per product per period that arise in the presence of
non-triangular sequence-dependent setup times. The computational tests validated and confirmed
that the multiple-lots feature of the model enables more efficient production than when the formu-
lation is restricted to single lots per product per period. The model can also be faster to solve than
in the latter case, despite being more complex computationally, maybe because for some problem
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instances (such as our tests above) there is an outstanding optimal ML solution that is quickly iden-
tified whereas an optimal AM1L solution may not be so clearly superior and hence more difficult
to find.

The computational tests also show that future research must also include the development
of faster solution methods for large instances, possibly via exact methods such as (1) Lagrangian
Relaxation coupled with decomposition into single periods where the submodels can be solved
very rapidly, or via heuristic methods such as (2) Relax-&-Fix methods of various types (Ferreira
et al.; 2009), (3) depth-first heuristics (Zhang; 2000), or (4) local branching (Fischetti and Lodi; 2003).
Future work will also computationally compare the model against a functionally-equivalent GLSP
model and Menezes et al. (2010)’s iterative method with Miller-Tucker-Zemlin subtour elimination
constraints.

Given that the demand forecasts usually change as time advances from one period to the next,
the question arises as to whether it is worthwhile to schedule over even a medium term horizon, let
alone a long-term one. Frequent rescheduling (Haase and Kimms; 1999) implies that firm schedules
should really only be specified for the immediate to short term over which demand forecasts will
not change (much), while approximate or aggregate planning (rather than scheduling should be
carried out for medium to long term. This poses interesting (and not trivial) research challenges
about how to perform planning that result in effective and efficient short term schedules (Clark;
2003).
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