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Abstract

A k-fold x-coloring of a graph is an assignment of k distinct colors from the set {1,2, . . . ,x}
to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The small-
est number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted
by χk(G). We determine the exact value of this parameter for webs and antiwebs. As a con-
sequence, we obtain the fractional chromatic number for these graphs. Our results generalize
the known corresponding results for odd cycles and imply necessary and sufficient conditions
under which χk(G) attains its lower and upper bounds based on the clique and the chromatic
numbers. Addionally, we extend the concept of χ-critical graphs to χk-critical graphs, and we
identify webs and antiwebs having this property.
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1 Introduction

A k-fold x-coloring of a graph is an assignment of k distinct colors to each vertex from the set
{1,2, . . . ,x} such that any two adjacent vertices are assigned disjoint sets of colors [Ren and Bu
(2010); Stahl (1976)]. We say that a graph G is k-fold x-colorable if G admits a k-fold x-coloring.
For any k ≥ 1, the smallest number x such that a graph G is k-fold x-colorable is called k-th chro-
matic number of G and is denoted by χk(G) [Stahl (1976)]. Obviously, χ1(G) = χ(G) is the con-
ventional chromatic number of G.

This variant of the conventional graph coloring was introduced in the context of radio frequency
assignment problem [Narayanan (2002); Opsut and Roberts (1981); Roberts (1979)]. Other appli-
cations include scheduling problems, fleet maintenance and traffic phasing problems [Halldórsson
and Kortsarz (2002); Opsut and Roberts (1981)].

In this paper, we derive a closed formula for the k-th chromatic number of webs and anti-
webs. Our result generalizes that one obtained by Stahl for specific webs, namely odd cycles [Stahl
(1976)]. Web and antiwebs form a class of graphs that play an important role in the context of
stable sets and vertex coloring [Cheng and Vries (2002a, 2002b); Holm, Torres, and Wagler (2010);
Palubeckis (2010); Pêcher and Wagler (2006); Wagler (2004)].

Based on the obtained expression for the k-th chromatic number of web and antiwebs, we
derive other results. First, we find necessary and sufficient conditions under which χk(G) attains
its lower and upper bounds given by the clique and the chromatic numbers, respectively. Second,
we determine the fractional chromatic number, which is defined as the minimum ratio x

k among
the k-fold x-colorings [Scheinerman and Ullman (1997)]. Addionally, we extend the concept of
χ-critical graphs to χk-critical graphs, and we identify webs and antiwebs having this property.

Throughout this paper, we mostly use notation and definitions consistent with what is generally
accepted in graph theory. Even though, let us set the grounds for all the notation used from here on.
Given a graph G, V (G) and E(G) stand for its set of vertices and edges, respectively. The simplified
notation V and E is prefered when the graph G is clear by the context. The complement of G is
written as G = (V,E). The edge defined by vertices u and v is denoted by uv.

A set S⊆V is said to be a stable set if the vertices in it are pairwise non-adjacent in G, i.e. uv 6∈E
∀u,v ∈ S. The stability number α(G) of G is the size of the largest stable set of G. Conversely, a
clique of G is a subset K ⊆ V of pairwise adjacent vertices. The clique number of G is the size of
the largest clique and is denoted by ω(G). A graph G is perfect if ω(H) = χ(H), for all induced
subgraph H of G. The fractional chromatic number of G is denoted χ̄(G). It is well-known that
ω(G)≤ χ̄(G)≤ χ(G).

A chordless cycle of length n is a graph G such that V = {v1,v2, . . . ,vn} and E = {vivi+1 : i =
1,2, . . . ,n− 1} ∪ {v1vn}. A hole is a chordless cycle of length at least four. An antihole is the
complement of a hole. Holes and antiholes are odd or even according to the parity of their number
of vertices. Odd holes and odd antiholes are the minimal imperfect graphs [Chudnovsky, Robertson,
Seymour, and Thomas (2006)].

In the next section, we present general lower and upper bounds for the k-th chromatic number of
an arbitrary simple graph. The exact value of this parameter is calculated for webs (Subsection 3.1)
and antiwebs (Subsection 3.2). Some consequences of this result are also presented. The fractional
chromatic number of these graphs are determined in Subsection 3.3. In Subsection 3.4, we identify
which webs and antiwebs achieve the bounds given in Section 2. The definitions of χk-critical and
χ∗-critical graphs are introduced in Section 4, as a natural extension of the concept of χ-critical

3449



graphs. Then, we identify some webs as well as all antiwebs that have these two properties.

2 Lower and upper bounds for the k-th chromatic number

Two simple observations lead to lower and upper bounds for the k-th chromatic number of
a graph G. On the one hand, every vertex of a clique of G must receive k colors different from
any color assigned to the other vertices of the clique. On the other hand, a k-fold coloring can be
obtained by just replicating an 1-fold coloring k times. Therefore, we get the following bounds
which are tight, for instance, for perfect graphs.

Lemma 1 For every k ∈ N, ω(G)≤ χ̄(G)≤ χk(G)
k ≤ χ(G).

Another lower bound is related to the stability number, as follows. The lexicographic product
of a graph G by a graph H is the graph that we obtain by replacing each vertex of G by a copy of
H and adding all edges between two copies of H if and only if the two replaced vertices of G were
adjacent. More formally, the lexicographic product G•H is a graph such that:

1. the vertex set of G•H is the cartesian product V (G)×V (H); and

2. any two vertices (u, û) and (v, v̂) are adjacent in G•H if and only if either u is adjacent to v,
or u = v and û is adjacent to v̂

As noted by Stahl, another way to interpret the k-th chromatic number of a graph G is in terms of
χ(G•Kk), where Kk is a clique with k vertices [Stahl (1976)]. It is easy to see that a k-fold x-coloring
of G is equivalent to a 1-fold coloring of G•Kk with x colors. Therefore, χk(G) = χ(G•Kk). Using
this equation we can trivially derive the following lower bound for the k-th chromatic number of
any graph.

Lemma 2 For every graph G and every k ∈ N, χk(G)≥
⌈

kn
α(G)

⌉
.

Proof: If H1 and H2 are two graphs, then α(H1 •H2) = α(H1)α(H2) [Geller and Stahl (1975)].
Therefore, α(G•Kk) = α(G)α(Kk) = α(G). We get χk(G) = χ(G•Kk)≥

⌈
kn

α(G•Kk)

⌉
=
⌈

kn
α(G)

⌉
. �

Next we will show that the lower bound given by Lemma 2 is tight for two classes of graphs,
namely webs and antiwebs. Moreover, some graphs in these classes also achieve the lower and
upper bounds stated by Lemma 1.

3 The k-th chromatic number of webs e antiwebs

Let n and p be integers such that p ≥ 1 e n ≥ 2p. The web W n
p is the graph whose vertices can

be labelled as V (W n
p ) = {v0,v1, . . . ,vn−1} in such a way that E(W n

p ) = {(vi,v j) | vi,v j ∈ V e p ≤
|i− j| ≤ n− p}. The antiweb W n

p is defined as the complement of W n
p . Examples are depicted in

Figure 1. Observe that the webs W n
1 are the cliques whereas W 2l+1

l and W 2l+1
2 , for any integer l ≥ 2,

are the odd holes and odd anti-holes, respectively.
In the remaining, let ⊕ stand for addition modulus n, i.e. i⊕ j = (i+ j) mod n for i, j ∈ Z.

Lemma 3 (Trotter (1975)) α(W n
p) = ω(W n

p ) =
⌊

n
p

⌋
and α(W n

p ) = ω(W n
p) = p.
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(a) W 8
3 (b) W 8

3

Figure 1: Example of a web and an antiweb.

3.1 Web

We start by defining some stable sets of W n
p . For each integer i ≥ 0, define the following

sequence of integers:
Si = 〈i⊕0, i⊕1, . . . , i⊕ (p−1)〉 (1)

Lemma 4 For every integer i≥ 0, Si indexes a maximum stable set of W n
p .

Proof: By the symmetry of W n
p , it suffices to consider the sequence S0. Let i and j be in S0.

Notice that |i− j| ≤ p−1 < p. Then, viv j /∈ E(W n
p ), which proves that S0 indexes a stable set with

cardinality p = α(W n
p ). �

Using the above lemma and sets Si’s, we can now calculate the k-th chromatic number of W n
p .

Our main ideia is to build a cover of the graph by stable sets, and show that each vertex of W n
p is

covered at least k times.

Theorem 1 For every k ∈ N, χk(W n
p ) =

⌈
kn
p

⌉
=
⌈

kn
α(W n

p )

⌉
.

Proof: By Lemma 2, we only have to show that χk(W n
p ) ≤

⌈
kn
p

⌉
, for an arbitrary k ∈ N. For this

purpose, we show that Ξ(k) = 〈S0,Sp, . . . ,S(x−1)p〉 gives a k-fold x-coloring of W n
p , with x =

⌈
kn
p

⌉
.

We have that

Ξ(k)=

〈
0⊕0,0⊕1, . . . ,0⊕ p−1︸ ︷︷ ︸

S0

, p⊕0, . . . , p⊕ (p−1)︸ ︷︷ ︸
Sp

, . . . ,(x−1)p⊕0, . . . ,(x−1)p⊕ (p−1)︸ ︷︷ ︸
S(x−1)p

〉
.

Since the first element of S(`+1)p, 0 ≤ ` < x− 1, is the last element of S`p plus 1 (modulus n), we

have that Ξ(k) is a sequence (modulus n) of integer numbers starting at 0. Also, it has
⌈

kn
p

⌉
p≥ kn

elements. Therefore, each element between 0 and n− 1 appears at least k times in Ξ(k). By
Lemma 4, this means that Ξ(k) gives a k-fold coloring of W n

p with
⌈

kn
p

⌉
colors, as desired. �
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3.2 Antiweb

As before, we proceed by determining stables sets of the graph that cover each vertex of W n
p

at least k times. In order to index independent sets of W n
p, we define the sequences:

S0 =

〈⌈
t n

α(W n
p)

⌉
: t = 0,1, . . . ,α(W n

p)−1
〉

Si = 〈 j⊕1 : j ∈ Si−1〉, i = 1,2,3, . . .

= 〈 j⊕ i : j ∈ S0〉, i = 1,2,3, . . . .

The claimed property of each Si will be shown with the help of the following lemmas.

Lemma 5 If x,y ∈ R and x≥ y, then bx− yc ≤ dxe−dye ≤ dx− ye.

Proof: It is clear that x−dxe ≤ 0 and dye− y < 1. By summing up these inequalities, we get
bx− y+ dye−dxec ≤ 0. Therefore, bx− yc ≤ dxe− dye. To get the second inequality, recall that
dx− ye+ dye ≥ dx− y+ ye= dxe. �

Lemma 6 For every antiweb W n
p and every integer k ≥ 0,

⌊
nk

α(W n
p)

⌋
≥ pk.

Proof: Since α(W n
p) =

⌊
n
p

⌋
, we have that n

p ≥ α(W n
p), which implies nk

α(W n
p)
≥ pk. Since pk is

integer, the result follows. �

Lemma 7 For W n
p and every integer l ≥ 1,

⌈
ln

α(W n
p)

⌉
−
⌈
(l−1)n
α(W n

p)

⌉
≥ p.

Proof: By Lemma 5, we get
⌈

ln
α(W n

p)

⌉
−
⌈
(l−1)n
α(W n

p)

⌉
≥
⌊

ln
α(W n

p)
− (l−1)n

α(W n
p)

⌋
=

⌊
n

α(W n
p)

⌋
. The statement

then follows from Lemma 6. �

Lemma 8 For every integer i ≥ 0, the vertices indexed by Si form a maximum independent set of
W n

p.

Proof: By the simmetry of an antiweb and the definition of the Si’s, it suffices to show the claimed
result for S0. Let i and j belong to S0. We have to show that p≤ |i− j| ≤ n− p. For the upper bound,

note that |i− j| ≤
⌈
(α(W n

p)−1)n
α(W n

p)

⌉
=

⌈
n− n

α(W n
p)

⌉
. Lemma 6 implies that this last term is no more than

dn− pe, that is, n− p. On the other hand, |i− j| ≥ min
l≥1

(⌈
ln

α(W n
p)

⌉
−
⌈
(l−1)n
α(W n

p)

⌉)
. By Lemma 7, it

follows that |i− j| ≥ p. Therefore, S0 indexes an independent set of cardinality α(W n
p). �

The above lemma is the basis to give the expression of χk(W
n
p).

Lemma 9 Let be given an antiweb W n
p and a positive integer k ≤ α(W n

p). The index of each vertex

of W n
p belongs to at least k of the sequences S0,S1, . . . ,S f (k), where f (k) =

⌈
kn

α(W n
p)

⌉
−1.
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(a) W 10
3 .

S0 S1 S2 S3 S4 S5 S6 S7

A(`,0) 0 1 2 3 4 5 6 · · ·
A(`,1) 4 5 6 7 8 9 0 · · ·
A(`,2) 7 8 9 0 1 2 3 · · ·

`= 1

`= 2

(b) C(1) in blue, C(2) in red.

Figure 2: Example of a 2-fold 7-coloring of W 10
3 . Recall that α(W 10

3 ) = 3.

Proof: Let `∈{1,2, . . . ,k} and t ∈{0,1, . . . ,α(W n
p)−1}. Define A(`, t) as the sequence comprising

the (t +1)-th elements of S0,S1, . . . ,S f (`), that is,

A(`, t) =
〈⌈

t n
α(W n

p)

⌉
⊕ i : i = 0,1, . . . ,

⌈
`n

α(W n
p)

⌉
−1
〉
.

Since `≤ α(W n
p), A(`, t) has

⌈
`n

α(W n
p)

⌉
distinct elements. Figure 2 illustrates these sets for W 10

3 .

Let B(`, t) be the subsequence of A(`, t) formed by its first
⌈
(`+t)n
α(W n

p)

⌉
−
⌈

tn
α(W n

p)

⌉
≤
⌈

`n
α(W n

p)

⌉
elements (the inequality comes from Lemma 5). In Figure 2(b), B(1, t) relates to the numbers
in blue whereas B(2, t) comprises the numbers in blue and red. Notice that B(`, t) comprises

consecutive integers (modulus n), starting at
⌈

tn
α(W n

p)

⌉
⊕ 0 and ending at

⌈
(`+t)n
α(W n

p)

⌉
⊕ (−1). Let

C(1, t) = B(1, t) and C(`+ 1, t) = B(`+ 1, t) \B(`, t), for ` < k. Similarly to B(`, t), C(`, t) com-

prises consecutive integers (modulus n), starting at
⌈
(`+t−1)n

α(W n
p)

⌉
⊕0 and ending at

⌈
(`+t)n
α(W n

p)

⌉
⊕ (−1).

Observe that the first element of C(`, t + 1) is the last element of C(`, t) plus 1 (modulus n).
Then, C(`) = 〈C(`,0),C(`,1), . . . ,C(`,α(W n

p)− 1)〉 is a sequence of consecutive integers (mod-

ulus n) starting at the first element of C(`,0), that is
⌈
(`−1)n
α(W n

p)

⌉
⊕ 0, and ending at the last el-

ement of C(`,α(W n
p)− 1), that is

⌈
(α(W n

p)+`−1)n
α(W n

p)

⌉
⊕ (−1) =

⌈
(`−1)n
α(W n

p)

⌉
⊕ (−1). This means that

C(`) ≡ 〈0,1, . . . ,n−1〉. Therefore, for each ` = 1,2, . . . ,k, C(`) covers every vertex once. Conse-
quently, every vertex is covered k times by C(1),C(2), . . . ,C(k), and so is covered at least k times
by S0,S1, . . . ,S f (k). �

Now we are ready to prove our main result for antiwebs.

Theorem 2 For every k ∈ N, χk(W
n
p) =

⌈
kn

α(W n
p)

⌉
.
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Proof: By Lemma 2, we only need to show the inequality χk(W
n
p) ≤

⌈
kn

α(W n
p)

⌉
, for an arbitrary

k ∈ N. First, assume that k ≤ α(W n
p). By lemmas 8 and 9, it is straightforward that the stable sets

S0,S1, . . . ,Sx−1, where x =

⌈
kn

α(W n
p)

⌉
, induce a k-fold x-coloring of W n

p. If k > α(W n
p) then we can

write k as k = lα(W n
p)+ i, for some integers l ≥ 1 and 0≤ i < α(W n

p). Sets S0, . . . ,Sn−1 used l times

together with sets S0, ...Sy−1, where y =

⌈
in

α(W n
p)

⌉
, induce a coloring of W n

p with ln+
⌈

in
α(W n

p)

⌉
=⌈

kn
α(W n

p)

⌉
colors. In this coloring, each vertex is colored lα(W n

p)+ i = k times. Therefore, it is a

k-fold x-coloring of W n
p. �

3.3 Fractional chromatic number

By their definitions, the fractional chromatic number and the k-th chromatic number of a graph G
are related as follows:

χ̄(G) = min
{

χk(G)

k
: k ∈ N

}
. (2)

This observation and Lemma 2 lead to the following already known inequality χ̄(G)≥ n
α(G) . Using

theorems 1 and 2, we can show that this lower bound is tight for webs and antiwebs.

Proposition 1 If G is the graph W n
p or W n

p then χ̄(G) = n
α(G) .

Proof: By theorems 1 and 2, χk(G)
k ≥ n

α(G) for every k ∈N and this bound is attained with k = α(G).
Then, by equation (2), the claimed result follows. �

3.4 Tight bounds

In the two previous subsections, we have shown that the k-th chromatic number of web and
antiwebs achieve the lower bound given in Lemma 2. Here, we show that some of these graphs also
yield the bounds presented in Lemma 1.

Proposition 2 Let G be the graph W n
p or W n

p, r = n mod α(G) and k ∈ N. Then, χk(G) = kχ(G)

if, and only if, r = 0 or k < α(G)
α(G)−r .

Proof: By theorems 1 and 2, χk(G) = kχ(G) if, and only if,
⌈

kn
α(G)

⌉
= k

⌈
n

α(G)

⌉
, which is also

equivalent to
⌈

kr
α(G)

⌉
= k
⌈

r
α(G)

⌉
. If r = 0, this equality trivially holds. Otherwise,

⌈
r

α(G)

⌉
= 1 and

so the equality is equivalent to rk
α(G) > k−1 or still k < α(G)

α(G)−r . �

Proposition 3 Let G be the graph W n
p or W n

p and k ∈ N. Then, χk(G) = kω(G) if, and only if, p
divides n.
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Proof: Let s = n mod p. Note that n = bn/pc p+ s = ω(G)α(G)+ s. By theorems 1 and 2, we get

χk(G) =

⌈
kn

α(G)

⌉
= kω(G)+

⌈
ks

α(G)

⌉
.

Therefore, the result follows. �
If p divides n, so does α(W n

p ) and α(W n
p). In this case, which holds for all perfect and some non-

perfect webs and antiwebs, the above lemmas guarantee an equality of the bounds from Lemma 1.

Corollary 1 Let G be the graph W n
p or W n

p and k ∈ N. Then, kω(G) = χk(G) = kχ(G) if, and only
if, p divides n.

On the other hand, the same bounds are allways strict for the minimal imperfect graphs.

Corollary 2 If G is an odd hole or odd antihole then kω(G) < χk(G) < kχ(G), for every integer
k > 1.

Proof: Let us first show that χk(G) < kχ(G). By Proposition 2, we have to show that r := n
mod α(G) 6= 0 and s := α(G)

α(G)−r ≤ 2. First, let G be an odd antihole. Then, G = W 2`+1
2 for some

`≥ 2, which implies that r = 1 and s = 2
2−1 = 2. Now, let G be an odd hole. Then, G =W 2p+1

p for
some p≥ 2. We have that r = 1 and s = p

p−1 ≤ 2.
To show the other inequality, it suffices to use Proposition 3 and observe that n mod p 6= 0 for

odd holes and odd anti-holes. �

4 χk-critical web and antiwebs

A graph is said to be χ-critical if χ(G− v) < χ(G), for all v ∈ V (G). Note that, for every vertex
v of a critical graph, there is always an optimal coloring such that the color of v is not assigned
to any other vertex. Not surprisingly, critical subgraphs play an important role in the context of
vertex coloring. They are the core of reduction procedures [Herrmann and Hertz (2002)] as well
as they provide facet-inducing inequalities of the vertex coloring polytope [Campêlo, Corrêa, and
Frota (2004)]. Odd holes and odd anti-holes are examples of critical graphs.

In this vein, we define a χk-critical graph as a graph G such that χk(G− v) < χk(G), for all
v ∈ V (G). If this relation holds for every k ∈ N, G is said to be χ∗-critical. Now we investigate
these properties for webs and antiwebs.

For the trivial case where p = 1, it is clear that W n
1 is χ∗-critical and W n

1 is not χk-critical, for all
k ∈ N. Then, it remains to analyse the case where p > 1.

Lemma 10 If G is W n
p or W n

p and p > 1 then α(G− v) = α(G) and ω(G− v) = ω(G), for all
v ∈V (G).

Proof: Lemmas 4 and 8 imply that every vertex belongs to a maximum stable set of G. Since p > 1,
V (G) is not a stable set. Therefore, there is always a maximum stable set of G that does not contain
a specific vertex v. It follows that α(G− v) = α(G). Then, the other equality is a consequence of
α(G) = ω(Ḡ). �

Lemma 11 If G is W n
p or W n

p, p > 1 and p divides n then χk(G− v) = χk(G), for all v ∈V (G).
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Proof: Using Lemma 1, Corollary 1 and Lemma 10, we get

kω(G− v)≤ χk(G− v)≤ χk(G) = kω(G) = kω(G− v).

Therefore, equality holds everywhere in the above expression. �

Corollary 3 Let k ∈ N. If p > 1 and p divides n then W n
p and W n

p are not χk-critical.

For the case where n
p /∈ Z, we separately analyse W n

p and W n
p.

Lemma 12 Let k ∈ N and v ∈ V (W n
p). If p does not divide n then χk(W

n
p− v) =

⌈
k(n−1)
α(W n

p)

⌉
and,

consequently,
⌊

k
α(W n

p)

⌋
≤ χk(W

n
p)−χk(W

n
p− v)≤

⌈
k

α(W n
p)

⌉
.

Proof: By lemmas 2 and 10, we have that χk(W
n
p− v)≥

⌈
k(n−1)
α(W n

p)

⌉
. Now, we claim that W n

p− v is a

subgraph of W n−1
p . First, notice that this antiweb is well-defined. Indeed, n−1≥ 2p because p does

not divide n. Now, let viv j ∈ E(W n
p−v)⊂ E(W n

p). Then |i− j|> p or |i− j|> n− p > (n−1)− p.

Therefore, viv j ∈ E(W n−1
p ). This proves the claim. Then, Theorem 1 implies that χk(W

n
p− v) ≤

χk(W
n−1
p ) =

⌈
k(n−1)

α(W n−1
p )

⌉
. Moreover, since p does not divide n, it follows that α(W n−1

p ) =
⌊

n−1
p

⌋
=⌊

n
p

⌋
= α(W n

p). This shows the converse inequality χk(W
n
p− v)≤

⌈
k(n−1)
α(W n

p)

⌉
.

To get the second part of the statement, it suffices to use Lemma 5 and the expressions of
χk(W

n
p) and χk(W

n
p− v). �

Corollary 4 Suppose that p does not divide n. Then, W n
p is χk-critical if, and only if,

⌈
k(n−1)
α(W n

p)

⌉
<⌈

kn
α(W n

p)

⌉
. In particular, W n

p is χk-critical for all integer k ≥
⌊

n
p

⌋
.

To conclude this section, we consider the case where p > 1 and n−1
p ∈ Z, which includes holes

and antiholes.

Lemma 13 Let k ∈N and v ∈V (W n
p ) =V (W n

p). If p > 1 and p divides n−1 then χk(W
n
p−v) = kp

and χk(W n
p − v) = k(n−1)

p .

Proof: Assume that p > 1 and n−1
p ∈ Z. Then, n

p 6∈ Z and α(W n
p) =

n−1
p . By Lemma 12, χk(W

n
p−

v) = kp. For a web, we can use lemmas 2 and 10 to get that χk(W n
p − v) ≥

⌈
k(n−1)
α(W n

p )

⌉
= k(n−1)

p . By
the symmetry of W n

p , we only need to prove the converse inequality for v = vn−1. Let us use (1) to
define Ξ′ = 〈S0,Sp, . . . ,S( n−1

p −1)p〉. We can see that Ξ′ is the sequence 〈0,1, . . . ,n− 1〉. Therefore,

Ξ′ gives an 1-fold
(

n−1
p

)
-coloring of W n

p − vn−1. It follows that χk(W n
p − v)≤ k(n−1)

p . �

Corollary 5 If p > 1 and p divides n− 1 then W n
p and W n

p are χ∗-critical. In particular, the odd
holes and odd antiholes are χ∗-critical.
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Proof: Let k ∈ N. For a web, it is clear that χk(W n
p ) =

⌈
kn
p

⌉
≥ kn

p > k(n−1)
p = χk(W n

p − v). For an

antiweb, since α(W n
p) =

n−1
p under the hypothesis, it follows that χk(W

n
p) =

⌈
kpn
n−1

⌉
≥ kpn

n−1 > kp =

χk(W
n
p− v). In both cases, we get the condition for being χ∗-critical. �

5 Conclusion and Future Work

Vertex coloring is a covering of vertices by stable sets. One measure associated with vertex coloring
is the k-th chromatic number. For k = 1, this is exactly the classical chromatic number.

An important class of graphs in the context of stable sets and, consequently, in the context of
coloring is the webs and antiwebs. For instance, it is known that these structures induce facets of
the stable set and the vertex coloring polytopes [Trotter (1975); Cheng and Vries (2002a, 2002b);
Palubeckis (2010)]. The expression of these facets depends on the stability and the chromatic
numbers, which are known for webs and antiwebs.

A natural question then arises concerning the role of webs and antiwebs play in the problem
of finding the k-th chromatic number of a graph. In this context, determining the exact value of
k-th chromatic number of webs and antiwebs is a primary ingredient. We successfully tackled this
problem. Some basic consequences of this result are also investigated. Particularly, we identified
all the antiwebs and some webs that are χk-critical.

We intend to expand this work by characterizing all χk-critical webs as well as investigating
the importance of χk-critical webs and antiwebs to charactering the facial structure of the polytope
associated with the k-th chromatic number problem.
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Campêlo, M., Corrêa, R., & Frota, Y. (2004). Cliques, holes and the vertex coloring polytope.
Information Processing Letters, 89(4), 159–164.

Cheng, E., & Vries, S. de. (2002a). Antiweb-wheel inequalities and their separation problems over
the stable set polytopes. Mathematical Programming, 92, 153-175.

Cheng, E., & Vries, S. de. (2002b). On the facet-inducing antiweb-wheel inequalities for stable set
polytopes. SIAM Journal on Discrete Mathematics, 15(4), 470-487.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph
theorem. Annals of Mathematics, 164, 51–229.

Geller, D., & Stahl, S. (1975). The chromatic number and other functions of the lexicographic
product. Journal of Combinatorial Theory, 19, 87–95.
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