
THE DISCRETE ONE-ROUND VORONOI GAME: OPTIMIZING THE FIRST PLAYER

STRATEGY BY INTEGER PROGRAMMING

Marcos Costa Roboredo
Production Engineering Department - Fluminense Federal University

Rua Passo da Pátria 156, 24210-240, Niterói, RJ, Brazil
mcr.marcos@yahoo.com.br

Artur Alves Pessoa
Production Engineering Department - Fluminense Federal University

Rua Passo da Pátria 156, 24210-240, Niterói, RJ, Brazil
artur@producao.uff.br

RESUMO

O jogo do Voronoi discreto é um modelo matemático para o problema de localização de
facildades competitiva com dois jogadores. Cada jogador deve localizar um total de p facilidades
sobre um grafo alternadamente. Cada vértice do grafo é um cliente ou um candidato a facilidade
de um ou dos dois jogadores. Cada cliente é dominado pelo jogador que localizar a facilidade
mais próxima a este gerando um lucro para o jogador que o domina. O objetivo de cada jogador
é obter o maior lucro possı́vel. Neste artigo, consideramos o problema de otimizar a estratégia do
primeiro jogador numa versão do jogo com uma única rodada, onde o cada jogador, alternadamente,
escolhe onde instalar suas p facilidades de uma vez. Apesar desse problema ser

∑
2 P -difı́cil,

apresentamos uma formulação por programação inteira com um número exponencial de restrições.
Nós reportamos experimentos com 100 clientes e diferentes valores para p. Resultados mostram
que o nosso método consome menos tempo computacional do que o consumido pelo melhor método
exato encontrado na literatura, sendo capaz de resolver 10 instâncias que estavam em aberto.

PALAVRAS CHAVE. Voronoi Game, Localização de Facilidades Competitiva, Teoria dos
Jogos.
Área Principal: Otimização

ABSTRACT

The discrete Voronoi game is a mathematical model for the competitive facility location
problem with two players where each one must place a total of p facilities on a graph. Each node on
the graph is an applicant facility of either player or a customer. Each customer is dominated by the
player who owns the nearest placed facility generating a profit for the player who dominates it. Each
player aims to obtain the maximum profit. In this paper, we consider the problem of optimizing the
first player strategy in the one-round version of the game, where each player places its p facilities
at once. Although that problem is

∑
2 P -hard, we present an integer programming formulation

with exponentially many constraints. Moreover, we report experiments using 30 instances with 100
customers and different values of p. Results show that our method requires less computational time
than the best exact algorithm found in the literature, being able to optimally solve 10 previously
open instances.

KEY WORDS. Voronoi game, Competitive Facility Location, Game Theory.
Main area: Optimization

2137



1 Introduction

The Voronoi game is a geometric model for the competitive facility location problem.
That game is composed of two players (white and black) and a region U called playing arena. Each
point on the playing arena is an applicant facility of either player or a customer. For each customer
and each applicant (white’s or black’s) facility, it is defined the distance between them. Each player
has to choose p among its applicant facilities to place on the playing arena one at a time alternately.
Like in chess, white plays first. Each customer is dominated by the closest placed facility generating
a profit for the player who dominates it. Each player aims to obtain the maximum possible profit.
The player who obtains the largest profit wins. When the black starts playing after all white’s p
facilities are placed, the game is called the one-round Voronoi game. Otherwise, we refer to it
as the classical version of the game. Two types of arena can be considered in the Voronoi game:
discrete or continuous.

Many researchers have already addressed the continuous version of the Voronoi game.
Ahn et al. (2004) presented a winning strategy (strategy where the winner dominates more
customers than its opponent) for the black considering the classical version of the game and two
types of arena: a circle or a line segment, but the white can keep the winning margin arbitrarily
small. Cheong et al. (2004) also presented a winning strategy for the black in the one-round case,
where the arena is a square. Fekete e Meijer (2005) solved some open questions proposed by
Cheong et al. (2004), showing the winner for different values of p and θ (θ is a aspect ratio of the
square).

Teramoto et al. (2006) described the discrete Voronoi game for the first time. In this
game version, distances are defined either on a graph or by a distance matrix (which corresponds
to a complete graph). Important results were showed by that paper: the version of the game
where the players place their p facilities alternately until the moment it is not possible anymore
is PSPACE-complete; for the one-round case, the decision problem of determining whether the
black has a winning strategy (after the white has finished its turn) is NP -Complete; there is an
optimal strategy where the white either wins or ties the game when the graph is a k-ary tree. The
existence or not of a Nash equilibrium on the discrete Voronoi game has been an important research
topic. Durr e Thang (2007) showed that the existence of a Nash equilibrium for general graphs is
NP -hard while Mavronicolas et al. (2008) proposed necessary and sufficient existence criteria and
exact prices of anarchy and stability on cycle graphs.

Recently, Noltemeier et al. (2007) proved that the general problem of finding an optimal
strategy for the white (a strategy where the white dominates the maximum possible number of
customers assuming that the black uses an optimal strategy) is

∑
2 P -hard for the discrete one-round

Voronoi game. In this paper, we focus on this problem, which turns out to be harder than any
optimization problem whose decision version is in NP . Let us refer to it and the White’s Strategy
on the Discrete One-round Voronoi Game (WSD1VG). The hardness of the WSD1VG comes from
the fact that one should solve an NP -hard optimization problem to optimize the black’s strategy
only to evaluate a single white’s solution. Fortunately, optimizing the black’s strategy often spends
less than one second for instances with 100 customers by solving an IP model.

From the practical point of view, we found only a few heuristics for the WSD1VG problem
in the literature, the best of which being proposed by Alekseeva et al. (2010). The authors also
propose an exact method that solved instances with up to 100 customers for p = 5. Although
most instances were solved in a few hours, the most difficult one required more than two days of
computation. Moreover, the authors could not solve instances for p = 10.

In this paper, we propose an integer programming (IP) formulation for the WSD1VG
problem with polynomially many variables and exponentially many constraints. One should note
that, since the problem is

∑
2 P -hard, neither a polynomial formulation nor a formulation where all

constraints can be separated in polynomial time is possible unless P = NP . Hence, the constraints

2138



are separated during the optimization either using a greedy heuristic or solving an IP model for an
NP -hard problem. We test our method on the same 30 instances with 100 customers as Alekseeva
et al. (2010). Our method is faster than the previous one for 18 out of 20 instances with p = 5, and
allows for optimally solving the 10 open instances with p = 10.

This paper is divided as follows. In Section 2, we define the discrete one-round Voronoi
Game problem and present some examples. In Section 3, we describe an IP model for the WSD1VG
problem and prove that the strengthened inequalities used are valid. In section 4, we define the
separation problem for the only exponential family of constraints used in our formulation, and
present an IP model and a greedy heuristic for it. In section 5, we report our experiments and
compare our method with the previous exact one.

2 The discrete one-round Voronoi game

The discrete one-round Voronoi game is formally defined as follows: Consider two
players (White and Black). Each one of them has to place p facilities on an arena once. The second
player starts playing after all p facilities of the first player are placed. As in chess, the white plays
first. The game arena is a complete bipartite graph G = (V,E) and each vertex v ∈ V is either a
customer or an applicant facility of the white or the black. As a result, V can be partitioned into
two disjoint subsets I and J , where I is the set of applicant facilities, and J is the set of customers.
The edge set E of G has an edge e = (i, j) for each i ∈ I and j ∈ J , with an associated distance
dij . We say that a facility placed in a location i ∈ I dominates a customer j ∈ J when dkj ≥ dij
for all locations k ∈ I that contain facilities. Each customer generates a profit wj for the player
who placed the nearest facility. Ties are broken in favor of the white’s facilities, and ties between
facilities of the same player are broken arbitrarily. Each player aims to obtain the maximum profit.

To illustrate the game, we propose three examples where the profit wj for each j ∈ J is
one. The first one has |I| = 6, |J | = 5 and p = 2. Based on distances between customers and
facilities, we order the facilities for each customer j in a non-decreasing order by distance. As a
result, each row of the following matrix P gives a sorted list of all facilities for a given customer,
that is, the cell Pji indicates the i-th facility closest to the customer j.

P =


2 4 5 1 3 6
6 1 5 2 4 3
3 4 2 5 1 6
1 4 3 2 6 5
1 6 3 2 4 5


For this example, the nearest facility to the customer 2 is 6, followed by 1, and then by 5,

and so on. The facility 3 is the farthest one. Suppose that the white uses the facilities 2 and 3 while
the black uses the facilities 4 and 5. In this case, the customers 2 and 4 are dominated by the black
and the white is the game winner, which dominates the customers 1, 3 and 5.

The second and third examples have interesting properties. For the second example, the
black has a winning strategy regardless of the white’s play, while in the third one, the white can
always win. Both these examples have |I| = 6, |J | = 6 and p = 2.

The matrix P for the example 2 is the next one.

P =



1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5



2139



Note that, any white’s strategy is a loosing one. Suppose, for example, that the white uses
the facilities 2 and 4. Using the facilities 1 and 3, the black wins by dominating the customers 1,3,5
and 6. The winning strategy for the black is the following. If the white uses the facility l > 1 then
the black should use the facility l − 1. Otherwise, if the white uses the facility 1, the black should
use the facility 6.

The matrix P for the example 3 is the next one.

P =



1 2 3 4 5 6
2 1 3 5 6 4
3 1 2 6 5 4
4 5 6 1 2 3
5 4 3 6 2 1
6 4 2 3 1 5


For this example, the white wins by using the facilities 1 and 4. Suppose that it occurs

and the black uses the facilities 2 and 6, for example. Note that, in this case, the white dominates
the customers 1,4,3 and 5. In general, the white has a winning strategy because the first two nearest
facilities nearer to all customers include either the facility 1 or the facility 4.

3 The model

In this section, we show that, besides its complexity, the WSD1VG problem admits an IP
formulation with polynomially many variables and exponentially many constraints. Let the binary
variables xi indicate whether the white places a facility at the location i and the binary variables yij
indicate whether the white’s facility nearest to the customer j is placed at the location i. Finally, let
the integer variable z give the total black’s profit. Let S be the set of strategies for any of the two
players. It means that each S0 ∈ S is a set of p facilities placed by black or white. The complete
model (I) is below.

min z (1)

subject to
∑
i∈I
xi = p (2)

yij ≤ xi ,∀j ∈ J, ∀i ∈ I. (3)∑
i∈I
yij = 1 ,∀j ∈ J. (4)

z ≥
∑
j∈J

wj −
∑
j∈J

∑
i∈I|dij≤min{dkj |k∈S0}

wjyij ,∀S0 ∈ S. (5)

yij ∈ {0, 1} ,∀i ∈ I, ∀j ∈ J. (6)

xi ∈ {0, 1} ,∀i ∈ I. (7)

The objective function (1) minimizes the number of customers dominated by the black.
The first set of constraints (2) indicates that the white has to place exactly p facilities. Constraints
(3) ensure the consistency between the variables xi and the yij . The set of constraints (4) indicates
that for each customer j, exactly one facility i is the white’s facility nearest to j. Finally, (5) ensure,
for each possible strategy S0 ∈ S for the black, the total black’s profit z is not smaller than total
sum of profits

∑
j∈J

wj minus the number of customers that are nearest to a white’s facility than to

any location k ∈ S0. Note that (5) is composed of an exponential number of constraints since S is
composed of

(
|I|
p

)
strategies. Hence, it is necessary to solve the separation problem associated to

(5) in order to include in the formulation only the necessary constraints.

2140



Now, in order to improve the formulation (I), we propose a family of strengthened valid
inequalities by lifting (5). The main weakness of the previous family of inequalities is the fact that
the lower bound on z becomes zero if the white uses the same strategy S0 that defines the inequality
because of the tie breaking criterion. As a result, fractional solutions for the linear relaxation of
(I) tend to weaken the obtained lower bound on z by using convex combinations several good
strategies of S. The proposed family of inequalities try to overcome this difficulty by considering
other strategies for the black, in addition to S0, when computing the lower bound on z, for the
cases where the white places at least one facility that belongs to S0. For that, we define a function
H : S0 → I that gives an alternative place for each facility placed by the black to be used if the
original place has already been used by the white. Then, in addition to the black’s strategy S0, the
lower bound on z also considers the strategies that replace some facilities i ∈ S0 by H(i). The new
family of inequalities is the following:

z ≥
∑
j∈J

wj −
∑
j∈J

∑
i∈I|((dij≤min{dkj |k∈S0}∧ i/∈S0)

∨
(dij≤min{min{dkj |k∈S0},dH(i)j}∧ i∈S0))

wjyij . ∀S0 ∈ S,∀H : S0 → I (8)

Theorem 1 proves the lifted inequalities (8) are valid.

Theorem 1 The lifted cuts (8) are valid.

Proof: To prove this theorem, we show that, for any white’s strategy Sw, there exists a black’s
strategy Sb such that the associated black’s profit is at least the right-hand side of (8). For that, let
ȳ be the 0-1 incidence vector for the y variables that correspondes to Sw, that is, ȳij is equal to one
if i = arg mink∈Sw{dkj}, and equal to zero otherwise. Also, let us define the black’s strategy Sb in
this way:

Sb = S0\Sw ∪ {H(k)|k ∈ Sw ∩ S0}.

We must show that

∑
j∈J

wj −
∑
j∈J

∑
i∈I|dij≤min{dkj |k∈Sb}

wj ȳij ≥

≥
∑
j∈J

wj −
∑
j∈J

∑
i∈I|((dij≤min{dkj |k∈S0}∧ i/∈S0)

∨
(dij≤min{min{dkj |k∈S0},dH(i)j}∧ i∈S0))

wj ȳij , (9)

or equivalently,

∑
j∈J

∑
i∈I|dij≤min{dkj |k∈Sb}

wj ȳij ≤
∑
j∈J

∑
i∈I|((dij≤min{dkj |k∈S0}∧ i/∈S0)

∨
(dij≤min{min{dkj |k∈S0},dH(i)j}∧ i∈S0))

wj ȳij , (10)

Now, let us define the following two sets respectively related to the left and the right-hand side of
(10):

L = {(i, j) ∈ I × J |dij ≤ min{dkj |k ∈ Sb}.

2141



R = {(i, j) ∈ I × J |(dij ≤ min{dkj |k ∈ S0} ∧ i /∈ S0)∨
(dij ≤ min{min{dkj |k ∈ S0}, dH(i)j} ∧ i ∈ S0)}.

It is sufficient to show that, for any (i, j) ∈ L such that ȳij = 1, we also have (i, j) ∈ R. For that,
let (i∗, j∗) ∈ L with ȳi∗j∗ = 1, and k∗ = arg mink∈S0{dkj∗}. First, we prove that di∗j∗ ≤ dk∗j∗ .
We divide this proof into two cases:

Case 1: k∗ ∈ Sb.
For this case, we have di∗j∗ ≤ min{dkj∗ |k ∈ Sb} since (i∗, j∗) ∈ L, and
min{dkj∗ |k ∈ Sb} ≤ dk∗j∗ since k∗ ∈ Sb. Therefore, di∗j∗ ≤ dk∗j∗ .

Case 2: k∗ /∈ Sb.
For this case, k∗ ∈ Sw by the definition of Sb. Hence, di∗j∗ = min{dkj∗ |k ∈ Sw} ≤ dk∗j∗ .

In order to prove that (i∗, j∗) ∈ R, it remains to show that di∗j∗ ≤ dH(i∗),j∗ for the case where
i∗ ∈ S0. For this case, H(i∗) ∈ Sb by the definition of Sb, since i∗ ∈ Sw. Hence,
di∗j∗ ≤ min{dkj∗ |k ∈ Sb} ≤ dH(i∗)j∗ since (i∗, j∗) ∈ L. Therefore, (i∗, j∗) ∈ R. �

4 Separation Problem

In this section, we define the separation problem and two separation procedures for the
family of constraints given by (5). We also describe a heuristic procedure that, for each generated
value of S0 (not necessarily associated to a violated constraint (5)), gives a corresponding function
H : S0 → I that maximizes violation of the associated strengthened inequality (8).

The separation problem of (5) is defined as follows. Given a fractional solution (z, x, y) ∈
IR × [0, 1]|I| × [0, 1]|I|×|J | that satisfies (2), (3), (4) and some of the constraints (5), the separation
problem consists of finding the strategy S0 ∈ S that maximizes the violation of (5). For that, S0
should to minimize the sum

∑
j∈J

wj

∑
i∈I|dij≤min{dkj |k∈S0}

yij . (11)

Let us define for each i ∈ I and j ∈ J , the gain gjk in this way:

gjk = wj

∑
i∈I|dij≤dkj

yij (12)

For each customer j and each facility k ∈ S0, gjk indicates a portion of the sum (11)
associated to the customer j if k is the facility of S0 that is closest to j. Then, the separation
problem consists of finding the black’s strategy S0 ∈ S that minimizes

∑
j∈J

min{gjk|k ∈ S0}. (13)

Next, we show an IP formulation for this problem. Let the binary variable sk indicate that
k ∈ S0. Let also the binary variable tjk indicate that the gain gjk is used for the customer j. The
complete formulation is the following:

2142



min gjk × tjk (14)

subject to
∑
k∈I

sk = p (15)

tjk ≤ sk , ∀j ∈ J,∀k ∈ I. (16)∑
k∈I

tjk = 1 , ∀j ∈ J. (17)

tjk ∈ {0, 1} , ∀k ∈ I, ∀j ∈ J. (18)

sk ∈ {0, 1} ,∀k ∈ I. (19)

The value of the objetive function (14) is equivalent to the sum (13). Constraint (15)
ensures that S0 has exactly p facilities. Constraints (16) ensure the consistency between the
variables tjk and sk. Finally, constraints (17) ensure that, for each customer j, there is only one
facility k such that the gain gjk is considered in (14).

We also propose a greedy heuristic for the separation problem. This heuristic is used to
efficiently find some violated cuts avoiding some the IP optimizations. To describe this heuristic,
we recall that the separation problem is to find the strategy S0 ∈ S which minimizes (13). The
heuristic greedily chooses p facilities one at a time as follows. At each iteration, it chooses the
facility that causes the minimum increase in the value of (13).

Our exact algorithm is a branch-and-cut, where we apply the separation procedures de-
scribed before but, instead of adding the constraints (5) to the formulation, we add a corresponding
strengthened cut (8) by choosing the functionH that maximizes the constraint violation. The choice
of H is computed efficiently because the selection of H(i) is done independently for each i ∈ S0.
For each i, we simply choose the value ofH(i) that maximizes the sum of all productswjyij having
dH(i)j < dij .

In order to speed up our method, the cuts are separated in two ways: while the gap is
greater than 5%, we separate cuts associated to the strengthened constraints 8 for any solution.
Otherwise, when the gap is smaller or equal 5%, the cuts are separeted only for integer solutions
(for that, we use only the IP based separation). Besides, the branch is preferably performed over
the x variables, since the number of such variables is smaller than the number of y variables.

5 Computational Experiments

We tested our method on 10 instances from the benchmark library Discrete Location
Problems. For all those instances, customers and applicant facilities are in the same sites (I = J).
Besides, all the distances between applicant facilities and customers are assumed to be euclidean.
All the tests are carried out in a 2.13 GHz PC Pentium Intel Core 2 duo with 2 Gb of RAM.

For all the instances considered in this paper, we apply our method using the best value
found by the heuristic proposed in Alekseeva et al. (2010) as an upper bound. Besides, all the
instances have 100 customers. We tested each one of the 10 instances in three different ways: i)
p = 5 andwj = 1, ii) p = 5 andwj ∈ (0, 200) and iii) p = 10 andwj = 1. The results obtained by
our method for the three previous cases are respectively in tables 1, 2 and 3. The following headers
are used for the columns: |J | and p indicate the instance characteristics, Sum of profits indicates
the sum

∑
j∈J

wj , Root LB and Best UB indicate respectively the lower bound at the root node and

the best known upper bound obtained by Alekseeva et al. (2010), Root gap(%) indicates the gap
between the columns Root LB and Best UB, Opt indicates the black’s profit at the optimal solution,
#Sep IP and #Sep Greedy indicate respectively the number of cut separations by IP optimization
and the number of greedy cut separations, #Cuts greedy and #Cuts IP indicate the total number of

2143



Table 1: Summary of our results for p = 5 and wj = 1, j ∈ J .
Instance |J | p Best Root opt Root #SEP #SEP #Cuts #Cuts Greedy IP Total

UB LB gap(%) IP Greedy Greedy IP Time(s) Time(s) Time(s)

111 100 5 53 47 53 11.32 258 329 71 218 514.07 323.83 2144.96
211 100 5 52 46 52 11.54 209 283 74 191 439.14 225.10 1803.56
311 100 5 55 47 55 14.55 864 969 105 728 1519.96 1282.29 22219.41
411 100 5 53 47 53 11.32 328 391 63 274 610.07 477.52 3370.54
511 100 5 53 46 53 13.21 259 314 55 224 488.39 316.87 1710.72
611 100 5 53 47 53 11.32 261 336 75 215 525.22 310.40 2449.33
711 100 5 53 46 53 13.21 319 403 84 281 623.79 374.56 3702.43
811 100 5 52 47 52 9.62 120 196 76 100 307.82 152.62 1304.47
911 100 5 53 47 53 11.32 335 407 72 279 630.98 507.35 2693.97

1011 100 5 53 46 53 13.21 423 518 95 350 809.17 712.75 3904.90

Table 2: Summary of our results for p = 5 and wj ∈ (0, 200), j ∈ J .
Instance |J| p Sum of Best Root opt Root #SEP #SEP #Cuts #Cuts Greedy IP Total

profits UB LB gap(%) IP Greedy Greedy IP Time(s) Time(s) Time(s)

111 100 5 8689 4550 3933 4550 13.56 85 158 73 81 378.22 111.14 1638.45
211 100 5 10520 5698 4597 5698 19.32 105 228 123 103 530.69 127.59 10019.50
311 100 5 9351 5136 4069 5136 20.77 271 472 201 269 1094.48 322.39 34229.00
411 100 5 9927 5249 4478 5249 14.69 111 235 124 109 573.39 135.11 4597.20
511 100 5 10243 5649 4388 5649 22.25 251 445 194 249 1039.47 323.55 30542.70
611 100 5 9518 5035 4279 5035 15.01 87 163 76 85 376.86 100.42 2624.78
711 100 5 11199 6046 4916 6046 18.69 119 263 144 117 607.92 131.92 9048.45
811 100 5 9557 5153 4219 5153 18.13 168 282 114 166 665.59 201.13 9995.02
911 100 5 10396 5696 4669 5696 18.03 233 396 163 231 917.52 266.06 26964.30

1011 100 5 10226 5303 4663 5303 12.07 76 136 60 71 314.91 108.78 1879.41

cuts separated by the greedy algorithm and by solving and IP model, respectively. Greedy Time, IP
Time and Total Time indicate the total CPU time in seconds consumed by the greedy cut separation
algorithm, the IP optimizations and the complete branch-and-cut algorithm, respectively.

For the case where p = 5 and wj = 1, the method optimally solved all the 10 instances
in reasonable computational times. The total time consumed was smaller than 4000 seconds for
9 out of 10 instances and the most difficult instance was 311 where the total time consumed was
approximately 37 hours. For that instance, the root gap was the largest one (14.55%).

The instances become more difficult when the customer profits are not the same. For this
case, note in table 2 that only 4 out of 10 instances were solved in less than 1 hour (3600 seconds).
Besides, the total time required to optimally solve the instances 311, 511 and 911 exceeded 20000
seconds.

For the case where p = 10 and wj = 1, our method obtained root gaps similar to case
where p = 5 and wj = 1. However, the total computational time consumed is significantly larger
since the number of cuts generated increases. Some instances are hard to solve by our method when
p = 10. For example, the time required to solve the instances 311, 511 and 611 exceeded 100000
seconds. On the other hand, we remark that these instances were optimally solved for the first time.

Table 4 shows a comparison between the computational times consumed by our method

Table 3: Summary of our results for p = 10 and wj = 1, j ∈ J .
Instance |J| p Best Root opt Root #SEP #SEP #Cuts #Cuts Greedy IP Total

UB LB gap(%) Greedy IP Greedy IP Time(s) Time(s) Time(s)

111 100 10 50 45 50 10.00 761 412 349 364 1191.41 337.92 8734.40
211 100 10 51 44 51 13.73 1144 738 406 650 1754.36 665.20 15940.29
311 100 10 52 45 52 13.46 1830 1347 483 1176 2808.89 1212.54 106664.80
411 100 10 51 45 51 11.76 1542 1028 514 864 2388.73 981.56 35106.50
511 100 10 52 45 52 13.46 3284 2296 988 1881 5109.11 2075.55 380222.00
611 100 10 53 46 53 13.20 2908 2288 620 1995 4531.13 2344.09 242339.08
711 100 10 51 44 51 13.73 1636 1104 532 974 2546.04 1326.17 43979.20
811 100 10 49 45 49 8.16 775 472 303 418 1213.55 416.05 6105.02
911 100 10 51 45 51 11.76 1999 1506 493 1356 3214.82 1326.17 99207.92

1011 100 10 52 45 52 13.46 1670 1078 592 931 2588.40 1012.12 61839.27

2144



Table 4: Comparison between our method and exact one proposed by Alekseeva et al. (2010)
Instance |J | p Time (s)

wj = 1, j ∈ J wj ∈ (0, 200), j ∈ J
Our method Alekseeva et al. (2010) Our method Alekseeva et al. (2010)

111 100 5 2144.96 7200.00 1638.45 3900.00
211 100 5 1803.56 3600.00 10019.50 2220.00
311 100 5 22219.41 216000.00 34229.00 327600.00
411 100 5 3370.54 9000.00 4597.20 54000.00
511 100 5 1710.72 7200.00 30542.70 43200.00
611 100 5 2449.33 5400.00 2624.78 39600.00
711 100 5 3702.43 10800.00 9048.45 153000.00
811 100 5 1304.47 2520.00 9995.02 43200.00
911 100 5 2693.97 9600.00 26964.30 151200.00

1011 100 5 3904.90 9900.00 1879.41 1800.00

and by the best exact method found in the literature for each instance with p = 5 and the two classes
of profit. For each instance, we marked in bold the smallest required time. The runs performed by
Alekseeva et al. (2010) were carried out in a 1.87 GHz Pentium Intel Core with 2 processors, and 2
GB of RAM.

Note that, even considering the differences in the machine specifications, our method is
significantly faster for 17 out of the 20 tested instances. For the instances where and wj = 1, our
method was faster for 18 out of 20 instances. The hardest instance for the both methods was 311.

6 Conclusions

In this paper, we proposed an exact method for WSD1VG problem based on an IP
formulation with an exponential number of constraints. Moreover, a family of strengthened cuts
improved our formulation. These cuts were used in a branch-and-cut algorithm with both heuristic
and exact separation procedures.

The reported experiments show that our method was faster than the best exact method
found in the literature for almost all instances compared, being able to optimally solve 10 previously
open instances.

References

Ahn, H., Cheng, S., Cheong, O., Golin, M. e Van Oostrum, R. (2004), Competitive facility
location: the voronoi game. Theoretical Computer Science, v. 310, n. 1-3, p. 457–467.

Alekseeva, E., Kochetova, N., Kochetov, Y. e Plyasunov, A. (2010), Heuristic and Exact
Methods for the Discrete (r— p)-Centroid Problem. Evolutionary Computation in Combinatorial
Optimization, p. 11–22.

Cheong, O., Har-Peled, S., Linial, N. e Matousek, J. (2004), The one-round voronoi game.
Discrete and Computational Geometry, v. 31, n. 1, p. 125–138.

Durr, C. e Thang, N. (2007), Nash equilibria in Voronoi games on graphs. Algorithms–ESA 2007,
p. 17–28.

Fekete, S. e Meijer, H. (2005), The one-round voronoi game replayed. Algorithms and Data
Structures, p. 150–161.

2145



Mavronicolas, M., Monien, B., Papadopoulou, V. e Schoppmann, F. (2008), Voronoi games on
cycle graphs. Mathematical Foundations of Computer Science 2008, p. 503–514.

Noltemeier, H., Spoerhase, J. e Wirth, H. (2007), Multiple voting location and single voting
location on trees. European journal of operational research, v. 181, n. 2, p. 654–667.

Teramoto, S., Demaine, E. e Uehara, R. Voronoi game on graphs and its complexity. 2006 IEEE
Symposium on Computational Intelligence and Games, p. 265–271, 2006.

2146


