
September 24-28, 2012
Rio de Janeiro, Brazil

A NEW HEURISTIC METHOD FOR MINIMIZING THE MAKESPAN IN A NO-IDLE 
PERMUTATION FLOWSHOP 

 
Marcelo Seido Nagano 

EESC/USP 
Avenida Trabalhador São-Carlense, 400, São Carlos/SP 

drnagano@usp.br 
 

Fábio José Ceron Branco 
EESC/USP 

fbranco@hotmail.com 
 

ABSTRACT 
This paper deals with the no-idle permutation flowshop sequencing in order to minimize the total 
time of completing the schedule (makespan). A heuristic denoted by NB is introduced, which is 
compared with the best heuristics reported in the literature. An extensive computational 
experiment was carried out for the performance evaluation of the proposed heuristic. 
Experimental results clearly show that the presented heuristic provides better solutions than those 
from the three best existing ones. 
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1. Introduction 
The general flowshop scheduling problem is a production problem where a set of 𝑛 jobs 

has to be processed in 𝑚 different machines with identical machine routing. The traditional 
problem model considers that job processing times are known, fixed and include machine setup 
times. Moreover, job operations in the machines may not be preempted. The jobs usually have 
the same sequencing on all machines. This processing environment is known as permutation 
flowshop. If job passing is not allowed, and all jobs have equal release dates then the number of 
possible schedules is 𝑛!. Therefore, the scheduling problem consists of finding a job sequence 
that optimizes an appropriate schedule performance measure. In this paper, such a performance 
measure is the makespan, that is, the total time to complete the schedule. 

This paper is basically concerned with solving a variant of the permutation flowshop 
scheduling problem where no-idle times are allowed in machines. The no-idle constraint refers to 
an important practical situation in the production environment, where expensive machinery is 
used. There are wide applications of no-idle permutation flowshop scheduling (NIPFS) problems, 
especially in the fiberglass processing (Kalczynski and Kamburowski, 2005) and foundry 
operations (Saadani, Guinet and Moalla, 2003). Numerous practical examples of job scheduling 
in on-idle environments are shown in the article by Tasgetiren et al. (2011). 

In the no-idle permutation flowshop, there must be no idle intervals between the 
processing of any consecutive operations in each machine. That is, each machine must process 
jobs without any interruption from the start of processing the first job to the completion of 
processing the last job. Therefore, when needed, the start of processing the first job on a given 
machine must be delayed in order to meet the no-idle requirement. Here we denote it with the 
well-known three fold notation of 𝐹𝑚/𝑝𝑟𝑚𝑢,𝑛𝑜 − 𝑖𝑑𝑙𝑒/𝐶𝑚𝑎𝑥. The computational complexity of 
the 𝐹𝑚/𝑝𝑟𝑚𝑢,𝑛𝑜 − 𝑖𝑑𝑙𝑒/𝐶𝑚𝑎𝑥 problem is briefly commented on in Taneav et al. (1994). The 
𝑁𝑃 − 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 of the F3/prmu, no– idle/Cmax problem was proved by Baptiste and Hguny 
(1997) and Saadani et al. (2003). 

Cepek et al. (2000) reported some mistakes in the paper by Adiri and Pohoryles (1982). 
Narain and Bagga (2003) studied the F3/prmu, no– idle/Cmax problem. The same problem with 
three machines is studied by Saadani et al. (2003), where a lower bound and an efficient heuristic 
are presented. This new heuristic favours the earlier method of the authors (Saadani et al. 2001). 
They published this work later on in Saadani et al. (2005). Kamburowski (2004) further enhanced 
the idea in Saadani et al. (2003) by proposing a network representation. Saadani et al. (2005) 
proposed a heuristic for the F3/prmu, no– idle/Cmax problem based on the traveling salesman 
problem (TSP). Narain and Bagga (2005a, 2005b) studied the F2/prmu, no– idle/Cmax and 
Fm/prmu, no– idle/Cmax problems in two similar papers, respectively. Kalczynski and 
Kamburowski (2005) developed a heuristic, named KK heuristic, for the Fm/prmu, no– idle/
Cmax  problem with a time complexity of O(n2m). The authors also presented an adaptation of 
the NEH heuristic (Nawaz et al. 1983) for the NIPFS problem. In addition to the above, 
Kalczynski and Kamburowski (2007) studied the interactions between the no-idle and no-wait 
flowshops. Baraz and Mosheiov (2008) introduced an improved greedy algorithm consisting of a 
simple greedy heuristic and an improvement step. 

As well-known in recent years, meta-heuristics have attracted increasing attention to 
solve scheduling problems owing to the fact that they are able to provide high quality solutions 
with reasonable computational effort. In addition to the above literature, in two similar papers, 
Pan and Wang (2008a and 2008b) proposed a discrete differential evolution (DDE) and discrete 
particle swarm optimization (DPSO) algorithms for the same problem. In both papers, a speed-up 
scheme for the insertion neighbourhood is proposed, which reduces the computational 
complexity of a single insertion neighbourhood scan from O(n3m) to O(n2m) when the insertion 
is carried out in order. The speed-up they proposed is based on the very well-known accelerations 
presented by Taillard (1990) for the insertion neighbourhood for the PFSP. In fact, both in DDE 
and DPSO, an advanced local search form, which is an IG algorithm proposed by Ruiz and 
Stutzle (2007), is used as a local search. Both DDE and DPSO used the well known benchmark 
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suite of Taillard (1993) by treating them as the NIPFS instances in order to test the results. In 
both papers, the authors tested the proposed methods against the heuristics of Baraz and 
Mosheiov (2008) and Kalczynski and Kamburowski (2005). More recently, Ruiz et al. (2009) 
presented an IG algorithm for the NIPFS problem with the makespan criterion. They used their 
own benchmark standard and examined the performance of IG in detail compared to the existing 
heuristics and meta-heuristics from the literature. From the heuristics tested, the authors highlight 
two heuristics adapted for the NIPFS problem: the FRB3 from Rad et al. (2009) and GH_BM2 
with accelerations, based on the two phases of GH_BM from Baraz and Mosheiov (2008). 

Goncharov and Sevastyanov (2009) proposed several polynomial time heuristics based 
on a geometrical approach for the Fm/no– idle/Cmax, however, neither computational 
experiments nor comparisons were provided. 

Tasgetiren et al. (2011) presented the use of a continuous algorithm for the no-idle 
permutation flowshop scheduling (NIPFS) problem with tardiness criterion. A differential 
evolution algorithm with a variable parameter search (vpsDE) is developed to be compared to a 
well-known random key genetic algorithm (RKGA) from the literature. The research presented 
the following contributions. First of all, a continuous optimisation algorithm is used to solve a 
combinatorial optimisation problem, where some efficient methods of converting a continuous 
vector to a discrete job permutation and vice versa are presented. Secondly, a variable parameter 
search is introduced for the differential evolution algorithm which significantly accelerates the 
search process for global optimization and enhances the solution quality. Thirdly, some novel 
ways of calculating the total tardiness from makespan are introduced for the NIPFS problem. The 
computational results show its highly competitive performance when compared to RKGA. It is 
shown in this paper that the vpsDE performs better than the RKGA, thus providing an alternative 
solution approach to the literature in which the RKGA can be well suited. 

Deng and Gu (2011) proposed a hybrid discrete differential evolution (HDDE) 
algorithm for Fm/no– idle/Cmax and a novel speed-up method based on network representation 
is proposed to evaluate the whole insert neighborhood of a job permutation and employed in 
HDDE.  Moreover, an insert neighborhood local search is modified effectively in HDDE to 
balance global exploration and local exploitation. Experimental results show that HDDE is better 
than the existing state-of-art algorithms. 

The main objective of this paper is to introduce a new heuristic for minimizing 
makespan in a no-idle permutation flowshop production environment. In the following section, 
we present a property concerning this scheduling problem, which is used for the development of 
the new heuristic. A computational experiment was carried out in order to compare the proposed 
heuristic with best methods found in the literature. Finally, we end the paper with some 
conclusions. 

 
2. Useful property of the no-idle permutation flowshop sequencing problem 

For any 𝑛-job sequence 𝜎, the makespan 𝑀(𝜎) (Figure 1) can be expressed by: 
𝑀(𝜎) = ∑ 𝑝1𝑗 + ∑ 𝑝𝑘𝑛 + ∑ 𝑦𝑛𝑘𝑚−1

𝑘=1
𝑚
𝑘=2

𝑛
𝑗=1    (1) 

Where: 
𝑝𝑘𝑗: processing time on machine 𝑘 of the job in the 𝑗th position of 𝜎; 
𝑦𝑗𝑘: waiting time for the job in the 𝑗th position of 𝜎, between the end of the operation on 

machine 𝑘 and the beginning of the operation on machine (𝑘 + 1). 
Of course, we do not know the waiting times 𝑦𝑗𝑘 in advance unless we have considered 

a particular job sequence. However, given an arbitrary pair (𝐽𝑢, 𝐽𝑣) of adjacent jobs (𝐽𝑢 
immediately precedes 𝐽𝑣), we can calculate a lower bound on the waiting time for job 𝐽𝑣 between 
the end of its operation on machine 𝑘 and the beginning of machine (𝑘 + 1), regardless of the 
position of these two jobs. 
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Figure 1 – Total time to complete a general permutation no-idle flowshop scheduling (makespan 

𝑀(𝜎)). 

Based on an investigation made by Nagano and Moccellin (2002), the following can be 
stated: 

 
-Let 𝑢 and 𝑣 be any two jobs from the set of 𝑛 jobs. For an arbitrary sequence 𝜎 with 

jobs 𝑢 and 𝑣 respectively scheduled in positions 𝑗 and (𝑗 + 1), 𝑗 = 1, 2, … ,𝑛 − 1, one has that: 
 

𝐿𝐵𝑌𝑢𝑣𝑘 = 𝑚𝑎𝑥[0, (𝑝𝑘+1  𝑢 − 𝑝𝑘 𝑣) − 𝑈𝐵𝑋 𝑢 𝑣
𝑘 ]   (2) 

 
Where: 
𝐿𝐵𝑌𝑢𝑣𝑘 : a Lower Bound for 𝑌𝑢𝑣𝑘 ; 
𝑌𝑢𝑣𝑘 : waiting time for job 𝑣 between the end of its operation in machine 𝑘 and the beginning of 
the operation in machine (𝑘 + 1), when job 𝑢 immediately precedes job 𝑣; 
𝑝𝑘+1  𝑢: processing time of job 𝑢 on machine (𝑘 + 1); 
𝑝𝑘 𝑣: processing time of job 𝑣 on machine processing time of job 𝑢 on machine 𝑘; 
𝑈𝐵𝑋 𝑢 𝑣

𝑘 : an Upper Bound for 𝑋𝑢𝑣𝑘  (Moccellin, 1995) given by 𝑈𝐵𝑋 𝑢 𝑣
𝑘 = 𝑚𝑎𝑥[0,𝑈𝐵𝑋 𝑢 𝑣

𝑘−1 +
(𝑝𝑘−1 𝑣 − 𝑝𝑘 𝑢)], where 𝑈𝐵𝑋 𝑢 𝑣

1 = 0, and 𝑋𝑢𝑣𝑘 =idle time of machine 𝑘 between the end of job 𝑢 
and start of job 𝑣. 
 

-Let 𝑢 and 𝑣 be two arbitrary jobs from the set of 𝑛 jobs. For any sequence 𝜎 with jobs 𝑢 
and 𝑣 respectively scheduling in positions 𝑗 and (𝑗 + 1), 𝑗 = 1, 2, … ,𝑛 − 1. If we consider 
𝑈𝐵𝑋 𝑢 𝑣

𝑘 = 0, one has that: 
𝐿𝐵𝑌𝑢𝑣𝑘 = 𝑚𝑎𝑥[0, (𝑝𝑘+1  𝑢 − 𝑝𝑘 𝑣)]   (3) 

 
Expression 3 is a Lower Bound for 𝑌𝑢𝑣𝑘  for the no-idle permutation flowshop. 

 
3. The proposed heuristic 

The heuristic method we introduce has two stages. In the first one for each job 𝑢 
calculate 𝐼𝑢 and arrange the jobs in non-descending order of 𝐼𝑢. The second stage uses the same 
iterative job insertion method of the NEH heuristic (Nawaz et al., 1983) with improved by using 
local search procedures based on both the Shift and Interchange Neighbourhoods of partial 
sequences. 

The heuristic method is introduced in this paper, which is denoted NB. For the NB 
heuristic these steps are: 
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{Stage 1 – Initial arrangement for the jobs} 
Step 1: For each job 𝑢 calculate 𝐼𝑢 = ∑ �∑ 𝐿𝐵𝑌𝑢𝑣𝑘𝑚−1

𝑘=1 �𝑛
𝑣=1  

 where: 
  𝐿𝐵𝑌𝑢𝑣𝑘 : the lower bound for 𝑌𝑢𝑣𝑘 , given by expression (3). 
Step 2: Arrange the jobs in non-descending order of 𝐼𝑢. 
 
{Stage 2 – Construction & Improvement procedure} 
Step 3: Select the two jobs from the first and second position of the arrangement for the jobs of 

Step 2, and find the best sequence for these two jobs by calculating the makespan for the 
two possible partial sequences. 

Step 4: For 𝑗 = 3 to 𝑛 do 
Step 4.1: Select the job in the 𝑗-th position of the list generated in Step 2 and find the best 

sequence by placing it in all 𝑗 possible positions in the current best partial 
sequence. Denote this 𝑗-job sequence by 𝑆. 

Step 4.2: Apply the insertion neighbourhood in sequence 𝑆. For each neighbour that is 
obtained by removing a determined job 𝑢 and its insertion in a determined 
position of the sequence (𝑆[𝑘], 𝑘 = 1, 2, … , 𝑗), verify if the condition 
∑ 𝐿𝐵𝑌𝑢𝑣𝑘 ≤ ∑ 𝐿𝐵𝑌𝑣𝑢𝑘𝑚−1

𝑘=1
𝑚−1
𝑘=1  is true, where 𝑣 ← 𝑆[𝑘]. If the condition is true 

and the makespan of the neighbor sequence is better than that of 𝑆 assign it to 
𝑆. 

Step 4.3: Find the best sequence from the entire interchange neighbourhood of sequence 
𝑆. If the makespan of the best neighbor is better than that of 𝑆, assign it to 𝑆. 

The best 𝑛-job sequence 𝑆 obtained by Step 4 is the solution sequence. 
The complexity of the heuristic is clearly determined by Stage 2, which can be executed in 
𝑂(𝑛3𝑚). Therefore, the complexity of the heuristic is 𝑂(𝑛3𝑚). 
 
4. Computational experience 

The new heuristic developed in Section 3 has been compared with three of the best-
known existing algorithms, that is, KK heuristic (Kalczynski and Kamburowski, 2005), GH 
heuristic (Baraz and Mosheiov, 2008), and FRB3 heuristic (Ruiz et al., 2009). 

In the computational tests, the heuristics were coded in Delphi and have been run on a 
microcomputer Intel Core 2 Quad, 2.4 GHz, 2 Gb RAM. 

The heuristics are tested in the well-known testbed by Taillard (1993). This testbed 
contains ten instances for a given combination of jobs and machines, i.e. 𝑛 
{20, 50, 100, 200, 500} and  {5, 10, 20}. This testbed has been consistently used for the problem 
(see Kalczynski and Kamburowski, 2005; Pan and Wang, 2008a; 2008b), which provides 
accurate upper bounds in order to test the performance of different approximate methods. 

In the computational experiment, three traditional statistics are used in order to evaluate 
the heuristic performances: percentage of success (in finding the best solution), average relative 
percentage deviation (between the heuristics), and Average CPU time. 

The percentage of success 𝑃𝑆 is given by the number of times the heuristic obtains the 
best makespan (alone or in conjunction with other) divided by the number of solved instances. 

The average relative percentage deviation 𝐴𝑅𝑃𝐷 consists of averaging the 𝑅𝑃𝐷 over a 
number of instances with the same number of jobs. We have grouped the results for a given 
number of jobs and different machines, as the number of machines had almost no influence in the 
results. For a given objective function 𝑀, the 𝑅𝑃𝐷 obtained by a heuristic ℎ on a given instance 
is computed as follows: 

 
𝑅𝑃𝐷ℎ = (𝑀ℎ−𝑀∗)

𝑀∗
∙ 100   (4) 

Where 𝑀ℎ is the makespan of the best sequence obtained by heuristic ℎ, and 𝑀∗ the best 
makespan obtained by the heuristics, for a given test problem. 
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Table 2 – Comparison of results in Taillard testbed for the different heuristics in terms of PS, 
ARPD and Average CPU time (seconds) 

 Heuristic 
Number of jobs 𝑛 GH KK FRB3 NB 

20 a0.000 
b20.048 
c0.097 

3.333 

3.614 

0.004 

40.000 

1.101 

0.007 

63.333 

0.424 

0.004 

50 0.000 

20.949 

0.160 

6.667 

1.658 

0.066 

33.333 

0.698 

0.135 

66.667 

0.252 

0.130 

100 0.000 

21.242 

0.362 

10.000 

1.096 

0.932 

30.000 

0.292 

1.952 

70.000 

0.166 

2.020 

200 0.000 

20.879 

0.815 

0.000 

1.034 

29.771 

30.000 

0.389 

38.585 

70.000 

0.067 

39.762 

500 0.000 

21.962 

5.014 

10.000 

0.459 

2164.908 

10.000 

0.312 

1999.442 

80.000 

0.006 

2019.725 

Average 0.000 

20.870 

0.708 

5.833 

1.803 

185.621 

31.667 

0.614 

173.575 

68.333 

0.222 

175.476 
aPercentage of success 
bAverage relative percentage deviation 
cCPU times (seconds) 
 

Table 2 shows the comparative evaluation of the proposed heuristic NB, the GH 
heuristic, KK heuristic, and the FRB3 based on the PS, ARPD and Average CPU time. 

As can be seen from the results in Table 2, the heuristic NB obtains better results than 
the rest of the heuristics. 

It can be observed that GH gives rather poor results when compared to the other 
methods, but it is many times faster, on average. The performance of the NB heuristic with 
respect to the PS has been found to be better than the existing methods. 

KK gives good results, better than GH, but yields rather poor results when compared to 
o FRB3. 

The last three methods (KK, FRB3 and NB) in the comparison show good results. NB, 
for example, gives the lowest ARPD among all the tested heuristics. The CPU times needed, 
however, are the third highest after GH and FRB3, but lower than the KK. 

The average CPU times presented in Table 2 shows an obvious result. The NB 
computation time should be greater than the CPU time for FRB3 as a consequence of the 
arithmetic process required for obtaining the job indexes Step 1, and the solution process using 
local search procedures based on both the Shift and Interchange Neighborhoods of partial 
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sequences Step 4. However, the differences between average CPU times have not reached 2 
seconds. 

To observe the statistical significance of the differences between the heuristics, we 
plotted the means of each heuristic and the corresponding 95% confidence intervals in Figure 2, 
not considering the GH method. 
 

Figure 2 – Means and 95% confidence intervals for the KK, FRB3 and NB algorithms 

 

A Tukey honestly significant difference test was conducted to determine which means 
differ (see Table 3). The results indicate that the differences between the NB, KK and FBR3 are 
statistically significant, with the exception of GH which was not considered in the analysis. 
 

Table 3 – Results of Tukey honestly significant difference tests 
Heuristic 𝜑 Heuristic 𝜓 Mean difference (𝜑- 𝜓) Std. Error Significance 

KK FRB3 

NB 

1.18897* 

1.58038* 

0.15237 

0.15237 

0.000 

0.000 

FRB3 KK 

NB 

-1.18897* 

0.39141* 

0.15237 

0.15237 

0.000 

0.029 

NB KK 

FRB3 

-1.58038* 

-0.39141* 

0.15237 

0.15237 

0.000 

0.029 

*The mean difference is significant at the 0.05 level (95%) 
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The results in Table 3 also indicate that three types of heuristics may be identified. 
These three heuristics have no similarity. For all the methods which were evaluated except for the 
GH method, the CPU times were not significantly different. The results show that the NB 
heuristic takes less computational time than that of the KK heuristic and comparable CPU time 
than that of the FRB3 heuristic. Finally, our NB heuristic is statistically better than the rest of the 
heuristics, although it is more time consuming. 

 
5. Final remarks 
In this paper, we dealt with the problem of scheduling a no-idle permutation flowshop 

with a makespan objective by means of heuristics methods. However, the search for near optimal 
solutions by using efficient and simple heuristics still remains as future research, taking into 
account that the problem is NP-hard. We propose a new heuristic for the problem, which is much 
better (in terms of quality of the solutions) than the existing ones and whose performance is 
comparable to that of a successful local search method for the problem while requiring much less 
CPU time. Our results have shown to be statistically significantly better than those produced by 
the best deterministic methods known to date, while maintaining the competitive algorithmic 
complexity. Henceforth, it can be concluded that the proposed heuristic is more efficient than 
existing heuristics for the problem. 
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