
September 24-28, 2012
Rio de Janeiro, Brazil

A NEW HEURISTIC METHOD FOR MINIMIZING THE MAKESPAN IN A NO-IDLE
PERMUTATION FLOWSHOP

Marcelo Seido Nagano

EESC/USP
Avenida Trabalhador São-Carlense, 400, São Carlos/SP

drnagano@usp.br

Fábio José Ceron Branco
EESC/USP

fbranco@hotmail.com

ABSTRACT
This paper deals with the no-idle permutation flowshop sequencing in order to minimize the total
time of completing the schedule (makespan). A heuristic denoted by NB is introduced, which is
compared with the best heuristics reported in the literature. An extensive computational
experiment was carried out for the performance evaluation of the proposed heuristic.
Experimental results clearly show that the presented heuristic provides better solutions than those
from the three best existing ones.

KEYWORDS: Production scheduling. No-idle flowshop. Heuristics.

Main area: AD & GP - OR in Administration & Production Management.

10

September 24-28, 2012
Rio de Janeiro, Brazil

1. Introduction
The general flowshop scheduling problem is a production problem where a set of 𝑛 jobs

has to be processed in 𝑚 different machines with identical machine routing. The traditional
problem model considers that job processing times are known, fixed and include machine setup
times. Moreover, job operations in the machines may not be preempted. The jobs usually have
the same sequencing on all machines. This processing environment is known as permutation
flowshop. If job passing is not allowed, and all jobs have equal release dates then the number of
possible schedules is 𝑛!. Therefore, the scheduling problem consists of finding a job sequence
that optimizes an appropriate schedule performance measure. In this paper, such a performance
measure is the makespan, that is, the total time to complete the schedule.

This paper is basically concerned with solving a variant of the permutation flowshop
scheduling problem where no-idle times are allowed in machines. The no-idle constraint refers to
an important practical situation in the production environment, where expensive machinery is
used. There are wide applications of no-idle permutation flowshop scheduling (NIPFS) problems,
especially in the fiberglass processing (Kalczynski and Kamburowski, 2005) and foundry
operations (Saadani, Guinet and Moalla, 2003). Numerous practical examples of job scheduling
in on-idle environments are shown in the article by Tasgetiren et al. (2011).

In the no-idle permutation flowshop, there must be no idle intervals between the
processing of any consecutive operations in each machine. That is, each machine must process
jobs without any interruption from the start of processing the first job to the completion of
processing the last job. Therefore, when needed, the start of processing the first job on a given
machine must be delayed in order to meet the no-idle requirement. Here we denote it with the
well-known three fold notation of 𝐹𝑚/𝑝𝑟𝑚𝑢,𝑛𝑜 − 𝑖𝑑𝑙𝑒/𝐶𝑚𝑎𝑥. The computational complexity of
the 𝐹𝑚/𝑝𝑟𝑚𝑢,𝑛𝑜 − 𝑖𝑑𝑙𝑒/𝐶𝑚𝑎𝑥 problem is briefly commented on in Taneav et al. (1994). The
𝑁𝑃 − 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 of the F3/prmu, no– idle/Cmax problem was proved by Baptiste and Hguny
(1997) and Saadani et al. (2003).

Cepek et al. (2000) reported some mistakes in the paper by Adiri and Pohoryles (1982).
Narain and Bagga (2003) studied the F3/prmu, no– idle/Cmax problem. The same problem with
three machines is studied by Saadani et al. (2003), where a lower bound and an efficient heuristic
are presented. This new heuristic favours the earlier method of the authors (Saadani et al. 2001).
They published this work later on in Saadani et al. (2005). Kamburowski (2004) further enhanced
the idea in Saadani et al. (2003) by proposing a network representation. Saadani et al. (2005)
proposed a heuristic for the F3/prmu, no– idle/Cmax problem based on the traveling salesman
problem (TSP). Narain and Bagga (2005a, 2005b) studied the F2/prmu, no– idle/Cmax and
Fm/prmu, no– idle/Cmax problems in two similar papers, respectively. Kalczynski and
Kamburowski (2005) developed a heuristic, named KK heuristic, for the Fm/prmu, no– idle/
Cmax problem with a time complexity of O(n2m). The authors also presented an adaptation of
the NEH heuristic (Nawaz et al. 1983) for the NIPFS problem. In addition to the above,
Kalczynski and Kamburowski (2007) studied the interactions between the no-idle and no-wait
flowshops. Baraz and Mosheiov (2008) introduced an improved greedy algorithm consisting of a
simple greedy heuristic and an improvement step.

As well-known in recent years, meta-heuristics have attracted increasing attention to
solve scheduling problems owing to the fact that they are able to provide high quality solutions
with reasonable computational effort. In addition to the above literature, in two similar papers,
Pan and Wang (2008a and 2008b) proposed a discrete differential evolution (DDE) and discrete
particle swarm optimization (DPSO) algorithms for the same problem. In both papers, a speed-up
scheme for the insertion neighbourhood is proposed, which reduces the computational
complexity of a single insertion neighbourhood scan from O(n3m) to O(n2m) when the insertion
is carried out in order. The speed-up they proposed is based on the very well-known accelerations
presented by Taillard (1990) for the insertion neighbourhood for the PFSP. In fact, both in DDE
and DPSO, an advanced local search form, which is an IG algorithm proposed by Ruiz and
Stutzle (2007), is used as a local search. Both DDE and DPSO used the well known benchmark

11

September 24-28, 2012
Rio de Janeiro, Brazil

suite of Taillard (1993) by treating them as the NIPFS instances in order to test the results. In
both papers, the authors tested the proposed methods against the heuristics of Baraz and
Mosheiov (2008) and Kalczynski and Kamburowski (2005). More recently, Ruiz et al. (2009)
presented an IG algorithm for the NIPFS problem with the makespan criterion. They used their
own benchmark standard and examined the performance of IG in detail compared to the existing
heuristics and meta-heuristics from the literature. From the heuristics tested, the authors highlight
two heuristics adapted for the NIPFS problem: the FRB3 from Rad et al. (2009) and GH_BM2
with accelerations, based on the two phases of GH_BM from Baraz and Mosheiov (2008).

Goncharov and Sevastyanov (2009) proposed several polynomial time heuristics based
on a geometrical approach for the Fm/no– idle/Cmax, however, neither computational
experiments nor comparisons were provided.

Tasgetiren et al. (2011) presented the use of a continuous algorithm for the no-idle
permutation flowshop scheduling (NIPFS) problem with tardiness criterion. A differential
evolution algorithm with a variable parameter search (vpsDE) is developed to be compared to a
well-known random key genetic algorithm (RKGA) from the literature. The research presented
the following contributions. First of all, a continuous optimisation algorithm is used to solve a
combinatorial optimisation problem, where some efficient methods of converting a continuous
vector to a discrete job permutation and vice versa are presented. Secondly, a variable parameter
search is introduced for the differential evolution algorithm which significantly accelerates the
search process for global optimization and enhances the solution quality. Thirdly, some novel
ways of calculating the total tardiness from makespan are introduced for the NIPFS problem. The
computational results show its highly competitive performance when compared to RKGA. It is
shown in this paper that the vpsDE performs better than the RKGA, thus providing an alternative
solution approach to the literature in which the RKGA can be well suited.

Deng and Gu (2011) proposed a hybrid discrete differential evolution (HDDE)
algorithm for Fm/no– idle/Cmax and a novel speed-up method based on network representation
is proposed to evaluate the whole insert neighborhood of a job permutation and employed in
HDDE. Moreover, an insert neighborhood local search is modified effectively in HDDE to
balance global exploration and local exploitation. Experimental results show that HDDE is better
than the existing state-of-art algorithms.

The main objective of this paper is to introduce a new heuristic for minimizing
makespan in a no-idle permutation flowshop production environment. In the following section,
we present a property concerning this scheduling problem, which is used for the development of
the new heuristic. A computational experiment was carried out in order to compare the proposed
heuristic with best methods found in the literature. Finally, we end the paper with some
conclusions.

2. Useful property of the no-idle permutation flowshop sequencing problem

For any 𝑛-job sequence 𝜎, the makespan 𝑀(𝜎) (Figure 1) can be expressed by:
𝑀(𝜎) = ∑ 𝑝1𝑗 + ∑ 𝑝𝑘𝑛 + ∑ 𝑦𝑛𝑘𝑚−1

𝑘=1
𝑚
𝑘=2

𝑛
𝑗=1 (1)

Where:
𝑝𝑘𝑗: processing time on machine 𝑘 of the job in the 𝑗th position of 𝜎;
𝑦𝑗𝑘: waiting time for the job in the 𝑗th position of 𝜎, between the end of the operation on

machine 𝑘 and the beginning of the operation on machine (𝑘 + 1).
Of course, we do not know the waiting times 𝑦𝑗𝑘 in advance unless we have considered

a particular job sequence. However, given an arbitrary pair (𝐽𝑢, 𝐽𝑣) of adjacent jobs (𝐽𝑢
immediately precedes 𝐽𝑣), we can calculate a lower bound on the waiting time for job 𝐽𝑣 between
the end of its operation on machine 𝑘 and the beginning of machine (𝑘 + 1), regardless of the
position of these two jobs.

12

September 24-28, 2012
Rio de Janeiro, Brazil

Figure 1 – Total time to complete a general permutation no-idle flowshop scheduling (makespan

𝑀(𝜎)).

Based on an investigation made by Nagano and Moccellin (2002), the following can be
stated:

-Let 𝑢 and 𝑣 be any two jobs from the set of 𝑛 jobs. For an arbitrary sequence 𝜎 with

jobs 𝑢 and 𝑣 respectively scheduled in positions 𝑗 and (𝑗 + 1), 𝑗 = 1, 2, … ,𝑛 − 1, one has that:

𝐿𝐵𝑌𝑢𝑣𝑘 = 𝑚𝑎𝑥[0, (𝑝𝑘+1 𝑢 − 𝑝𝑘 𝑣) − 𝑈𝐵𝑋 𝑢 𝑣
𝑘] (2)

Where:
𝐿𝐵𝑌𝑢𝑣𝑘 : a Lower Bound for 𝑌𝑢𝑣𝑘 ;
𝑌𝑢𝑣𝑘 : waiting time for job 𝑣 between the end of its operation in machine 𝑘 and the beginning of
the operation in machine (𝑘 + 1), when job 𝑢 immediately precedes job 𝑣;
𝑝𝑘+1 𝑢: processing time of job 𝑢 on machine (𝑘 + 1);
𝑝𝑘 𝑣: processing time of job 𝑣 on machine processing time of job 𝑢 on machine 𝑘;
𝑈𝐵𝑋 𝑢 𝑣

𝑘 : an Upper Bound for 𝑋𝑢𝑣𝑘 (Moccellin, 1995) given by 𝑈𝐵𝑋 𝑢 𝑣
𝑘 = 𝑚𝑎𝑥[0,𝑈𝐵𝑋 𝑢 𝑣

𝑘−1 +
(𝑝𝑘−1 𝑣 − 𝑝𝑘 𝑢)], where 𝑈𝐵𝑋 𝑢 𝑣

1 = 0, and 𝑋𝑢𝑣𝑘 =idle time of machine 𝑘 between the end of job 𝑢
and start of job 𝑣.

-Let 𝑢 and 𝑣 be two arbitrary jobs from the set of 𝑛 jobs. For any sequence 𝜎 with jobs 𝑢
and 𝑣 respectively scheduling in positions 𝑗 and (𝑗 + 1), 𝑗 = 1, 2, … ,𝑛 − 1. If we consider
𝑈𝐵𝑋 𝑢 𝑣

𝑘 = 0, one has that:
𝐿𝐵𝑌𝑢𝑣𝑘 = 𝑚𝑎𝑥[0, (𝑝𝑘+1 𝑢 − 𝑝𝑘 𝑣)] (3)

Expression 3 is a Lower Bound for 𝑌𝑢𝑣𝑘 for the no-idle permutation flowshop.

3. The proposed heuristic

The heuristic method we introduce has two stages. In the first one for each job 𝑢
calculate 𝐼𝑢 and arrange the jobs in non-descending order of 𝐼𝑢. The second stage uses the same
iterative job insertion method of the NEH heuristic (Nawaz et al., 1983) with improved by using
local search procedures based on both the Shift and Interchange Neighbourhoods of partial
sequences.

The heuristic method is introduced in this paper, which is denoted NB. For the NB
heuristic these steps are:

13

September 24-28, 2012
Rio de Janeiro, Brazil

{Stage 1 – Initial arrangement for the jobs}
Step 1: For each job 𝑢 calculate 𝐼𝑢 = ∑ �∑ 𝐿𝐵𝑌𝑢𝑣𝑘𝑚−1

𝑘=1 �𝑛
𝑣=1

 where:
 𝐿𝐵𝑌𝑢𝑣𝑘 : the lower bound for 𝑌𝑢𝑣𝑘 , given by expression (3).
Step 2: Arrange the jobs in non-descending order of 𝐼𝑢.

{Stage 2 – Construction & Improvement procedure}
Step 3: Select the two jobs from the first and second position of the arrangement for the jobs of

Step 2, and find the best sequence for these two jobs by calculating the makespan for the
two possible partial sequences.

Step 4: For 𝑗 = 3 to 𝑛 do
Step 4.1: Select the job in the 𝑗-th position of the list generated in Step 2 and find the best

sequence by placing it in all 𝑗 possible positions in the current best partial
sequence. Denote this 𝑗-job sequence by 𝑆.

Step 4.2: Apply the insertion neighbourhood in sequence 𝑆. For each neighbour that is
obtained by removing a determined job 𝑢 and its insertion in a determined
position of the sequence (𝑆[𝑘], 𝑘 = 1, 2, … , 𝑗), verify if the condition
∑ 𝐿𝐵𝑌𝑢𝑣𝑘 ≤ ∑ 𝐿𝐵𝑌𝑣𝑢𝑘𝑚−1

𝑘=1
𝑚−1
𝑘=1 is true, where 𝑣 ← 𝑆[𝑘]. If the condition is true

and the makespan of the neighbor sequence is better than that of 𝑆 assign it to
𝑆.

Step 4.3: Find the best sequence from the entire interchange neighbourhood of sequence
𝑆. If the makespan of the best neighbor is better than that of 𝑆, assign it to 𝑆.

The best 𝑛-job sequence 𝑆 obtained by Step 4 is the solution sequence.
The complexity of the heuristic is clearly determined by Stage 2, which can be executed in
𝑂(𝑛3𝑚). Therefore, the complexity of the heuristic is 𝑂(𝑛3𝑚).

4. Computational experience

The new heuristic developed in Section 3 has been compared with three of the best-
known existing algorithms, that is, KK heuristic (Kalczynski and Kamburowski, 2005), GH
heuristic (Baraz and Mosheiov, 2008), and FRB3 heuristic (Ruiz et al., 2009).

In the computational tests, the heuristics were coded in Delphi and have been run on a
microcomputer Intel Core 2 Quad, 2.4 GHz, 2 Gb RAM.

The heuristics are tested in the well-known testbed by Taillard (1993). This testbed
contains ten instances for a given combination of jobs and machines, i.e. 𝑛
{20, 50, 100, 200, 500} and {5, 10, 20}. This testbed has been consistently used for the problem
(see Kalczynski and Kamburowski, 2005; Pan and Wang, 2008a; 2008b), which provides
accurate upper bounds in order to test the performance of different approximate methods.

In the computational experiment, three traditional statistics are used in order to evaluate
the heuristic performances: percentage of success (in finding the best solution), average relative
percentage deviation (between the heuristics), and Average CPU time.

The percentage of success 𝑃𝑆 is given by the number of times the heuristic obtains the
best makespan (alone or in conjunction with other) divided by the number of solved instances.

The average relative percentage deviation 𝐴𝑅𝑃𝐷 consists of averaging the 𝑅𝑃𝐷 over a
number of instances with the same number of jobs. We have grouped the results for a given
number of jobs and different machines, as the number of machines had almost no influence in the
results. For a given objective function 𝑀, the 𝑅𝑃𝐷 obtained by a heuristic ℎ on a given instance
is computed as follows:

𝑅𝑃𝐷ℎ = (𝑀ℎ−𝑀∗)

𝑀∗
∙ 100 (4)

Where 𝑀ℎ is the makespan of the best sequence obtained by heuristic ℎ, and 𝑀∗ the best
makespan obtained by the heuristics, for a given test problem.

14

September 24-28, 2012
Rio de Janeiro, Brazil

Table 2 – Comparison of results in Taillard testbed for the different heuristics in terms of PS,
ARPD and Average CPU time (seconds)

 Heuristic
Number of jobs 𝑛 GH KK FRB3 NB

20 a0.000
b20.048
c0.097

3.333

3.614

0.004

40.000

1.101

0.007

63.333

0.424

0.004

50 0.000

20.949

0.160

6.667

1.658

0.066

33.333

0.698

0.135

66.667

0.252

0.130

100 0.000

21.242

0.362

10.000

1.096

0.932

30.000

0.292

1.952

70.000

0.166

2.020

200 0.000

20.879

0.815

0.000

1.034

29.771

30.000

0.389

38.585

70.000

0.067

39.762

500 0.000

21.962

5.014

10.000

0.459

2164.908

10.000

0.312

1999.442

80.000

0.006

2019.725

Average 0.000

20.870

0.708

5.833

1.803

185.621

31.667

0.614

173.575

68.333

0.222

175.476
aPercentage of success
bAverage relative percentage deviation
cCPU times (seconds)

Table 2 shows the comparative evaluation of the proposed heuristic NB, the GH
heuristic, KK heuristic, and the FRB3 based on the PS, ARPD and Average CPU time.

As can be seen from the results in Table 2, the heuristic NB obtains better results than
the rest of the heuristics.

It can be observed that GH gives rather poor results when compared to the other
methods, but it is many times faster, on average. The performance of the NB heuristic with
respect to the PS has been found to be better than the existing methods.

KK gives good results, better than GH, but yields rather poor results when compared to
o FRB3.

The last three methods (KK, FRB3 and NB) in the comparison show good results. NB,
for example, gives the lowest ARPD among all the tested heuristics. The CPU times needed,
however, are the third highest after GH and FRB3, but lower than the KK.

The average CPU times presented in Table 2 shows an obvious result. The NB
computation time should be greater than the CPU time for FRB3 as a consequence of the
arithmetic process required for obtaining the job indexes Step 1, and the solution process using
local search procedures based on both the Shift and Interchange Neighborhoods of partial

15

September 24-28, 2012
Rio de Janeiro, Brazil

sequences Step 4. However, the differences between average CPU times have not reached 2
seconds.

To observe the statistical significance of the differences between the heuristics, we
plotted the means of each heuristic and the corresponding 95% confidence intervals in Figure 2,
not considering the GH method.

Figure 2 – Means and 95% confidence intervals for the KK, FRB3 and NB algorithms

A Tukey honestly significant difference test was conducted to determine which means
differ (see Table 3). The results indicate that the differences between the NB, KK and FBR3 are
statistically significant, with the exception of GH which was not considered in the analysis.

Table 3 – Results of Tukey honestly significant difference tests
Heuristic 𝜑 Heuristic 𝜓 Mean difference (𝜑- 𝜓) Std. Error Significance

KK FRB3

NB

1.18897*

1.58038*

0.15237

0.15237

0.000

0.000

FRB3 KK

NB

-1.18897*

0.39141*

0.15237

0.15237

0.000

0.029

NB KK

FRB3

-1.58038*

-0.39141*

0.15237

0.15237

0.000

0.029

*The mean difference is significant at the 0.05 level (95%)

16

September 24-28, 2012
Rio de Janeiro, Brazil

The results in Table 3 also indicate that three types of heuristics may be identified.
These three heuristics have no similarity. For all the methods which were evaluated except for the
GH method, the CPU times were not significantly different. The results show that the NB
heuristic takes less computational time than that of the KK heuristic and comparable CPU time
than that of the FRB3 heuristic. Finally, our NB heuristic is statistically better than the rest of the
heuristics, although it is more time consuming.

5. Final remarks
In this paper, we dealt with the problem of scheduling a no-idle permutation flowshop

with a makespan objective by means of heuristics methods. However, the search for near optimal
solutions by using efficient and simple heuristics still remains as future research, taking into
account that the problem is NP-hard. We propose a new heuristic for the problem, which is much
better (in terms of quality of the solutions) than the existing ones and whose performance is
comparable to that of a successful local search method for the problem while requiring much less
CPU time. Our results have shown to be statistically significantly better than those produced by
the best deterministic methods known to date, while maintaining the competitive algorithmic
complexity. Henceforth, it can be concluded that the proposed heuristic is more efficient than
existing heuristics for the problem.

References
Adiri I., Pohoryles D. (1982). Flowshop no-idle or no-wait scheduling to minimize the sum of
completion times. Naval Research Logistics 29, 495–504.
Baptiste P., Hguny, L. K. (1997). A branch and bound algorithm for the F/no − idle/Cmax.
Proceedings of the international conference on industrial engineering and production
management (IEPM97), Lyon, France, 429–438.
Baraz D., Mosheiov G. (2008). A note on a greedy heuristic for flow-shop makespan
minimization with no machine idle-time. European Journal of Operational Research, 184, 810–
813.
Cepek O., Okada M., Vlach M. (2000). Note: On the two-machine no-idle flowshop problem.
Naval Research Logistics 47, 353–358.
Deng G, Gu X. (2011). A hybrid discrete differential evolution algorithm for the no-idle
permutation flow shop scheduling problem with makespan criterion. Computers & Operations
Research. doi:10.1016/j.cor.2011.10.024.
Goncharov Y., Sevastyanov S. (2009). The flow shop problem with no-idle constraints: A
review and approximation. European Journal of Operational Research 196, 450-456.
Kalczynski P. J., Kamburowski J. (2005). A heuristic for minimizing the makespan in no-idle
permutation flowshop. Computers and Industrial Engineering 49, 146-154.
Kalczynski P. J., Kamburowski J. (2005). A heuristic for minimizing the makespan in no-idle
permutation flow shops. Computers & Industrial Engineering 49, 146–154.
Kalczynski P. J., Kamburowski J. (2007). On no-wait and no-idle flow shops with makespan
criterion. European Journal of Operational Research 178, 677–685.
Kamburowski J. (2004). More on three-machine no-idle flow shops. Computers & Industrial
Engineering 46, 461–466.
Moccellin J. V. (1995). A new heuristic method for the permutation flow shop scheduling
problem. Journal of the Operational Research Society 46, 883-886.
Nagano M. S., Moccellin J. V. (2002). A high quality solution constructive heuristic for flow
shop sequencing. Journal of the Operational Research Society 53, 1374-1379.
Narain L., Bagga P. C. (2003). Minimizing total elapsed time subject to zero total idle time of
machines in n × 3 flowshop problem. Indian Journal of Pure & Applied Mathematics 34, 219–
228.
Narain L., Bagga P. C. (2005a). Flowshop/no-idle scheduling to minimise the mean flowtime.
Anziam Journal 47, 265–275.

17

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
http://dx.doi.org/10.1016/j.cor.2011.10.024

September 24-28, 2012
Rio de Janeiro, Brazil

Narain L., Bagga P. C. (2005b). Flowshop/no-idle scheduling to minimize total elapsed time.
Journal of Global Optimization 3, 349–367.
Nawaz M., Enscore Jr E. E., Ham I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA, The International Journal of Management Science 11,
91–95.
Pan Q.-K., Wang L. (2008a). No-idle permutation flow shop scheduling based on a hybrid
discrete particle swarm optimization algorithm. International Journal of Advanced Manufacturing
Technology 39, 796-807.
Pan Q.-K., Wang L. (2008b). A novel differential evolution algorithm for noidle permutation
flow-shop scheduling problems. European Journal of Industrial Engineering 2, 279–297.
Rad S. F., Ruiz R., Boroojerdian N. (2009). New high performing heuristics for minimizing
makespan in permutation flowshops. OMEGA, the International Journal of Management Science
37, 331–345.
Ruiz R., Vallada E., Fernandez-Martinez C. (2009). Scheduling in flowshops with no-idle
machines. Computational intelligence in flowshop and job shop scheduling. Berlin, Heidelberg,
Springer-Verlag, 21-51.
Saadani H., Guinet A., Moalla M. (2003). Three stage no-idle flowshops. Computers and
Industrial Engineering 44, 425–434.
Saadani N. E. H., Guinet A., Moalla M. (2001). A travelling salesman approach to solve the
F/no−idle/Cmax problem. In Proceedings of the International Conference on Industrial
Engineering and Production Management, IEPM’01, volume 2, pages 880–888, Quebec, Canada.
Saadani N. E. H., Guinet A., Moalla M. (2005). A travelling salesman approach to solve the
F/no−idle/Cmax problem. European Journal of Operational Research 161, 11–20.
Saadani N. H., Guinet A., Moalla M. (2003). Three stage no-idle flow-shops, Computers and
Industrial Engineering 44, 425–434.
Taillard E. (1990). Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47, 67–74.
Taillard E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research 64, 278–285.
Tanaev V. S., Sotskov Y. N., Strusevich V. A. (1994). Scheduling theory. Multi-stage systems.
Dordrecht: Kluwer Academic Publishers.
Tasgetiren M. F., Pan Q-K., Suganthan P. N., Chua T. J. (2011). A differential evolution
algorithm for the no-idle flowshop scheduling problem with total tardiness criterion. International
Journal of Production Research 49, 5033-5050.

18

