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ABSTRACT

An interval graph is the intersection graph of a finite set of intervals on a line and a circular-arc
graph is the intersection graph of a finite set of arcs on a circle. While a forbidden induced subgraph
characterization of interval graphs was found fifty years ago, finding an analogous characterization
for circular-arc graphs is a long-standing open problem. In this work, we study the intersection
graphs of finite sets of arcs on a circle no three of which cover the circle, known as normal Helly
circular-arc graphs. Those circular-arc graphs which are minimal forbidden induced subgraphs for
the class of normal Helly circular-arc graphs were identified by Lin, Soulignac, and Szwarcfiter,
who also posed the problem of determining the remaining minimal forbidden induced subgraphs.
In this work, we solve their problem, obtaining the complete list of minimal forbidden induced
subgraphs for the class of normal Helly circular-arc graphs.
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1. Introduction
The intersection graph of a finite family of sets has one vertex representing each member of

the family, two vertices being adjacent if and only if the members of the family they represent have
nonempty intersection. An interval graph is the intersection graph of a finite set of intervals on a
line. Fifty years ago, Lekkerkerker and Boland (1962) found their celebrated characterization of
interval graphs by minimal forbidden induced subgraphs. An interesting special case of interval
graphs are the unit interval graphs, which are the intersection graphs of finite sets of all closed (or
all open) intervals having the same length, and for which there is a forbidden induced subgraph
characterization due to Roberts (1969) (see also Frankl and Maehara, 1987).

A circular-arc graph is the intersection graph of a finite set of arcs on a circle. Despite their
similarity in definition to interval graphs, characterizing circular-arc graphs by forbidden induced
subgraphs is a long-standing open problem (see Hadwiger and Debrunner, 1964, p. 54; Klee, 1969).
Tucker (1971) pioneered the study of circular-arc graphs and some important subclasses, like unit
circular-arc graphs (defined analogously to unit interval graphs) and proper circular-arc graphs,
which are those intersection graphs of finite sets of arcs on a circle such that none of the arcs is
contained in another of the arcs. Moreover, Tucker (1974) found the minimal forbidden induced
subgraph characterizations of both unit circular-arc graphs and proper circular-arc graphs. Since
then, the problem of characterizing circular-arc graphs and some of its subclasses by forbidden
induced subgraphs or some other kinds of obstructions has attracted considerable attention (Bang-
Jensen and Hell, 1994; Bonomo et al., 2009; Feder et al., 1999; Hell and Huang, 2004; Joeris et al.,
2011; Lin et al., 2007, 2011; Trotter and Moore, 1976).

We say that a set of arcs on a circle covers the circle if the arcs of the set collectively cover
every point of the circle. It is easy to see that every circular-arc graph is the intersection graph
of a finite set of arcs no single arc of which covers the circle. Intersection graphs of finite sets of
arcs on a circle no two arcs of which cover the circle are known as normal circular-arc graphs.
The class of normal circular-arc graphs properly contains the class of proper circular-arc graphs as
shown by Tucker (1974) and was studied in the context of co-bipartite graphs by Hell and Huang
(2004). Some partial characterizations by minimal forbidden induced subgraphs for the class of
normal circular-arc graphs are known (see Bonomo et al., 2009, especially Section 5).

In this work, we study the intersection graphs of finite sets of arcs on a circle no three arcs
of which cover the circle, known as normal Helly circular-arc graphs (Lin et al., 2007). Notice
that, for any set of arcs on a circle having at least three arcs, the property of not having three arcs
covering the circle precludes also the existence of fewer than three arcs covering the circle. If A is
a set of arcs on a circle, then: (i) A is said normal if it has no two arcs covering the circle, (ii) A
is said Helly if every nonempty subset of A consisting of pairwise intersecting arcs has nonempty
total intersection, and (iii) A is said normal Helly if A is both normal and Helly. In turns out that
normal Helly circular-arc graphs can be defined as the intersection graphs of finite normal Helly
sets of arcs on a circle. Indeed, it follows from Theorem 1 of Lin and Szwarcfiter (2006) that this
definition of normal Helly circular-arc graphs is equivalent to the one we use along this work (i.e.,
the intersection graphs of finite sets of arcs on a circle no three arcs of which cover the circle).

Some previous works related to normal Helly circular-arc graphs are the following. Tucker
(1975) gave an algorithm that outputs a proper coloring of any given normal Helly circular-arc
graph using at most 3ω/2 colors, where ω denotes the maximum size of a set of pairwise adja-
cent vertices. In Lin et al. (2010), normal Helly circular-arc graphs arose naturally when studying
convergence of circular-arc graphs under the clique operator. The boxicity of a graph G is the min-
imum k such that G is the intersection graph of a family of k-dimensional boxes (i.e., of Cartesian
products of k closed intervals); it was shown by Bhowmick and Sunil Chandran (2011) that normal
Helly circular-arc graphs have boxicity at most 3.

Recently, Lin, Soulignac, and Szwarcfiter (2011) undertook a thorough study of normal Helly
circular-arc graphs, drawing many parallels between these graphs and interval graphs. In that
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work, they determined all those circular-arc graphs which are minimal forbidden induced subgraphs
for the class of normal Helly circular-arc graphs and posed the problem of finding the remaining
minimal forbidden subgraphs for the class of normal Helly circular-arc graphs (i.e., those which
are not circular-arc graphs). In this work, we solve their problem, providing the complete list of
minimal forbidden induced subgraphs for the class of normal Helly circular-arc graphs.

2. Preliminaries
All graphs in this work are finite, undirected, and have no loops and no parallel edges. The

vertex and edge sets of a graph G will be denoted by V (G) and E(G), respectively. We denote by
G the complement of G, by NG(v) the neighborhood of a vertex v in G, and by NG[v] its closed
neighborhood NG(v)∪{v}. Vertex v is isolated if NG(v) = /0 and universal if NG[v] = V (G). The
subgraph induced by a set of vertices S is denoted by G[S]. If H is an induced subgraph of G, we
say that G contains an induced H. Paths in this work are meant to have at least one vertex. An
a,b-path is a path whose endpoints are a and b; the remaining vertices of the path are the interior
vertices. A chord of a path or cycle Z is any edge not in Z joining two vertices of Z. A chordless
path is a path having no chords and a chordless cycle is a cycle on four or more vertices having
no chords. We denote by Pn (resp. Cn) the chordless path (resp. cycle) on n vertices. A graph is
chordal if it has no chordless cycle. A clique is a set of pairwise adjacent vertices. Two vertices are
in the same component of a graph G if there is a path joining them in G. If S is a set, we denote its
cardinality by |S|. For standard notation and terminology not defined here, we refer to West (2001).

Let G be a graph class. A graph H is a forbidden induced subgraph of G if no member of
G contains an induced H. A class G of graphs is hereditary if every induced subgraph of every
member of G is also a member of G . If H is a forbidden induced subgraph of a hereditary graph
class G , then H is a minimal forbidden induced subgraph of G if every induced subgraph of H
different from H is a member of G . Clearly, a hereditary graph class is completely determined
by the its minimal forbidden induced subgraphs: the graph class consists exactly of those graphs
containing no induced minimal forbidden induced subgraph. The following celebrated result gives
the complete list of minimal forbidden induced subgraphs for the class of interval graphs.

Theorem 1 (Lekkerkerker and Boland, 1962). The minimal forbidden induced subgraphs for
the class of interval graphs are: bipartite claw, umbrella, k-net for every k ≥ 2, k-tent for every
k ≥ 3, and Ck for every k ≥ 4 (see Figure 1).

bipartite claw umbrella
1 2· · · k

k-net, k ≥ 2
1 2 3 · · · k
k-tent, k ≥ 3

1

k2

3 · · ·
Ck, k ≥ 4

Fig. 1: All minimal forbidden induced subgraphs for the class of interval graphs

In contrast with the situation for interval graphs, the problem of characterizing circular-arc
graphs by forbidden induced subgraphs is still open. Some minimal forbidden induced subgraphs
for the class of circular-arc graphs are G1, G2, G3, G4, domino, G6, and C∗k for every k ≥ 4, where
C∗k denotes the graph that arises from Ck by adding an isolated vertex (see Figure 2); it follows, for
instance, from our main result (Theorem 6) that these graphs are also minimal forbidden induced
subgraphs for the class of normal Helly circular-arc graphs. For each k≥ 4, the graph k-wheel, that
arises from Ck by adding a universal vertex (see Figure 2), is a circular-arc graph but also a minimal
forbidden induced subgraph for the class of normal Helly circular-arc graphs. In what follows, we
use net and tent as shorthands for 2-net and 3-tent, respectively.

If a graph G is the intersection graph of a finite family F , then F is called an intersection
model of F . Moreover, if F consists of intervals on a line, then F is called an interval model of
G, whereas if F consists of arcs on a circle, then F is called a circular-arc model of G. Let G
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G1 = K2,3 G2 G3 G4 domino C6

1

k2

3 · · ·
C∗

k , k ≥ 4

1

k2

3 · · ·
k-wheel, k ≥ 4

Fig. 2: Some minimal forbidden induced subgraphs for the class of normal Helly circular-arc graphs

be an interval graph containing sets of vertices A and B. The pair A,B is said left-right if G has an
interval model where all intervals corresponding to vertices of A have the same left endpoint and
no other endpoints are further to the left and all vertices of B have the same right endpoint and no
other endpoints are further to the right (de Figueiredo et al., 1997). A vertex v of G is an end of G
if the pair {v}, /0 is left-right. Gimbel (1988) gave the following characterization of end vertices.

Theorem 2 (Gimbel, 1988). Let G be an interval graph. If v is a vertex of G, then v is an end
vertex of G if and only if G contains none of the graphs in Figure 3 as an induced subgraph where
the filled vertex represents v.

F0 F1

1 2 · · · s

Fs, s ≥ 2

Fig. 3: Forbidden induced subgraphs characterizing end vertices. Filled vertices are not end vertices

Left-right pairs were characterized by de Figueiredo et al. (1997), as follows.
Theorem 3 (de Figueiredo et al., 1997). Let G be an interval graph and A,B ⊆ V (G). Then,

A,B is left-right if and only if each of the following assertions holds:
(i) A and B both are cliques.

(ii) Each vertex of A∪B is an end vertex.
(iii) Given any pair of vertices u and v, both in A or both in B, there is no any chordless path on

four vertices in G, with u and v as internal vertices of the path;
(iv) For each a ∈ A and b ∈ B, there is no chordless a,b-path in G, together with a vertex v which

is adjacent in G with no vertex on the path.
In the next section, we will make use of the theorem below, whose proof is an easy adaptation

of the proof of Theorem 6 in Bonomo et al. (2009). We give the adapted proof for completeness.
Theorem 4 (adapted from Theorem 6 of Bonomo et al., 2009). Let G be a graph containing

no induced G1, G2, G3, G4, domino, k-wheel for any k ≥ 4, or C∗k for any k ≥ 4. If C is a chordless
cycle of G and v ∈V (G)\V (C), then the neighbors of v in V (C) induce a chordless path in G.

Proof. First, notice that NG(v)∩V (C) 6= /0 and NG(v)∩V (C) 6= V (C) because G contains no
induced k-wheel and no induced C∗k for any k ≥ 4. Suppose, by the way of contradiction, that the
neighbors of v in V (C) do not induce a chordless path in G. Then, the nonneighbors of v in V (C) do
not induce a connected subgraph in G and let P1 and P2 be two components of the subgraph of G
induced by the nonneighbors of v in V (C). By construction, P1 and P2 are chordless paths and, by
symmetry, assume that |V (P1)| ≥ |V (P2)|. Let x1 and x2 (resp. y1 and y2) be the neighbors of the
endpoints of P1 (resp. P2) in V (C). Without loss of generality, assume that x1,y1,x2,y2 are labeled
in such a way that, in the subgraph of G induced by V (C) \ (V (P1)∪V (P2)), x1 and y2 are in the
same component and also x2 and y1 are in the same component. Let k = |V (P2)|+3; clearly, k≥ 4.

Suppose first that x1 = y2 and x2 6= y1. On the one hand, if |V (P1)|= 1, then also |V (P2)|= 1
and V (P1)∪V (P2)∪{x1,x2,y1,v} would induce domino or G3, depending on whether |V (C)| ≥ 6
or not, respectively, a contradiction. On the other hand, if |V (P1)| ≥ 2, then V (P2)∪{y1,y2,v,x}
would induce C∗k for any vertex x of P1 nonadjacent to x1, a contradiction. These contradictions
show, by symmetry, that either x1 = y2 and x2 = y1, or x1 6= y2 and x2 6= y1. Notice that we can
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assume that |V (P1)| ≤ 2 because otherwise V (P2)∪ {y1,y2,v,x} would induce C∗k in G for any
vertex x in P1 nonadjacent to both x1 and x2. Therefore, if x1 = y2 and x2 = y1, then V (C)∪{v}
would induce G1, or G2, or G4 in G, a contradiction. Finally, if x1 6= y2 and x2 6= y1, then V (P2)∪
{y1,y2,v,x} would induce C∗k for any vertex x in P1, a contradiction. These contradictions arose
from assuming that the neighbors of v in V (C) do not induce a chordless path in V (C). �

3. Forbidden induced subgraph characterization of normal Helly circular-arc graphs
The main result of this section is Theorem 6 which characterizes normal Helly circular-arc

graphs by minimal forbidden induced subgraphs. Lin, Soulignac, and Szwarcfiter (2011) solved
this problem partially, by restricting themselves to circular-arc graphs; i.e., they found the list of all
those circular-arc graphs which are minimal forbidden induced subgraphs for the class of normal
Helly circular-arc graphs, as follows.

Theorem 5 (Lin et al., 2011). Let H be a circular-arc graph. If H is a minimal forbidden
induced subgraph for the class of normal Helly circular-arc graphs, then H is isomorphic to one of
the following graphs: bipartite claw, umbrella, net, k-tent for some k ≥ 3, or k-wheel some k ≥ 4.

The remaining of this section is devoted the state and prove our main result below.
Theorem 6. A graph G is a normal Helly circular-arc graph if and only if G contains no

induced bipartite claw, umbrella, k-net for any k ≥ 2, k-tent for any k ≥ 3, k-wheel for any k ≥ 4,
G1, G2, G3, G4, domino, C6, or C∗k for any k ≥ 4 (see Figures 1 and 2).

Proof. The necessity is clear. So, assume that G contains no induced bipartite claw, umbrella,
k-net for any k ≥ 2, k-tent for any k ≥ 3, k-wheel for any k ≥ 4, G1, G2, G3, G4, domino, C6, or
C∗k for any k ≥ 4. Because of Theorem 5, in order to prove that G is a normal Helly circular-arc
graph, it suffices to show that G is a circular-arc graph. If G is chordal, then G is an interval graph
by Theorem 1 and, in particular, a circular-arc graph. Thus, we assume, without loss of generality,
that G has some chordless cycle C = v1v2 . . .vnv1 for some n ≥ 4. In what follows, vertex and set
subindices should be understood modulo n.

For each i ∈ {1, . . . ,n}, we define the sets Ai, Bi, Oi, and Ti as follows:
• A vertex v ∈V (G) belongs to Ai if and only if v is adjacent to vi−1 and vi and also adjacent to

some vertex w which is adjacent to vi and nonadjacent to vi−1. (For instance, w may be vi+1.)
• A vertex v ∈V (G) belongs to Bi if and only if v is adjacent to vi and vi+1 an also adjacent to

some vertex w which is adjacent to vi and nonadjacent to vi+1. (For instance, w may be vi−1.)
• A vertex v ∈V (G) belongs to Oi if and only if NG(v)∩V (C) = {vi}.
• A vertex v ∈V (G) belongs to Ti if and only if NG(v)∩V (C) = {vi,vi+1} and v /∈ Bi∪Ai+1.
Claims 1 to 17 below will be used to build a circular-arc model for G; see paragraph ‘Con-

structing a circular-arc model for G’ immediately after the proof of Claim 17.

Claim 1. V (G)\V (C) =
⋃n

i=1(Ai∪Bi∪Oi∪Ti).
Proof. Since C is a chordless cycle, it is clear by definition that no vertex in

⋃n
i=1(Ai∪Bi∪Oi∪Ti)

can belong to V (C). Conversely, let v∈V (G)\V (C). Since G contains no induced C∗n , v has at least
one neighbor in V (C). If |NG(v)∩V (C)|= 1, then NG(v)∩V (C) = {vi} for some i ∈ {1,2, . . . ,n}
and, by definition, v∈Oi. If |NG(v)∩V (C)|= 2, then, by Theorem 4, NG(v)∩V (C) = {vi,vi+1} for
some i ∈ {1,2, . . . ,n} and, by definition, v ∈ Ti∪Bi∪Ai+1. Finally, if |NG(v)∩V (C)| ≥ 3, then, by
Theorem 4, v is adjacent to vi−1, vi, and vi+1 for some i∈ {1,2, . . . ,n} and, by definition, v∈Ai.

In each of the claims below, i is any integer belonging to {1,2, . . . ,n}.
Claim 2. Every vertex v of G which is adjacent simultaneously to vi−1, vi, and vi+1, is also adjacent
to every vertex o in Oi.
Proof. As v is adjacent to vi−1, vi, and vi+1, Theorem 4 implies that NG(v)∩V (C) induces a chord-
less path P = vpvp+1 . . .vp+m for some p ∈ {1, . . . ,n} and some m≤ n−2 such that vi is an interior
vertex of P. Thus, if v were nonadjacent to some o ∈ Oi, then {v,vp+m,vp+m+1, . . . ,vp,o} would
induce C∗n−m+2 in G, where n−m+2≥ 4, a contradiction. This contradiction proves the claim.
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Claim 3. G[Ai∪Oi∪Bi] and G[Bi∪Ti∪Ai+1] are interval graphs.
Proof. By Theorem 1, it suffices to prove that G[Ai ∪Oi ∪Bi] and G[Bi ∪ Ti ∪Ai+1] contain no
induced Ck for any k≥ 4. If there were any chordless cycle C′ in G[Ai∪Oi∪Bi] or G[Bi∪Ti∪Ai+1],
then, since every vertex in Ai ∪Oi ∪Bi ∪Ti ∪Ai+1 is adjacent to vi, V (C′)∪{vi} would induce k-
wheel in G where k = |V (C′)| ≥ 4, a contradiction. This contradiction proves the claim.

Claims 4 to 7 below, together with Theorem 3 and Claim 3, will prove that Ai,Bi is a left-right
pair of G[Ai∪Oi∪Bi] (Claim 8).
Claim 4. Ai and Bi are cliques of G.
Proof. Let a1,a2 ∈ Ai such that a1 6= a2 and assume, by the way of contradiction, that a1 and a2
are nonadjacent. By definition, for each j ∈ {1,2}, there is some neighbor w j of a j such that
w j is adjacent to vi and nonadjacent to vi−1. Notice that a2 is nonadjacent to w1, since otherwise
{vi,vi−1,a1,w1,a2}would induce 4-wheel in G. Symmetrically, a1 is nonadjacent to w2 and, neces-
sarily, w1 6= w2. Moreover, w1 is nonadjacent to w2, since otherwise {vi,vi−1,a1,w1,w2,a2} would
induce 5-wheel in G. We notice that a1 and a2 cannot be simultaneously adjacent to vi−2, since
otherwise {vi−1,vi,a1,vi−2,a2} would induce 4-wheel in G. Without loss of generality, assume
that a2 is nonadjacent to vi−2. If a1 were adjacent to vi−2, then either {vi,vi−1,vi−2,w1,a1} would
induce 4-wheel in G or {vi,vi−1,a1,a2,vi−2,w1} would induce tent in G, depending on whether w1
is adjacent to vi−1 or not, respectively. Therefore, also a1 is nonadjacent to vi−2. Notice that at least
one of w1 and w2 is adjacent to vi−2, since otherwise {vi−2,w1,a1,vi−1,a2,w2,vi} would induce
umbrella in G. If both w1 and w2 are adjacent to vi−2, then {vi,vi−1,vi−2,w1,w2} induces G1 in G,
whereas if only w1 is adjacent to vi−2, then {w1,vi−2,vi−1,a1,w2} induces C∗4 in G. These contra-
dictions arose from assuming that a1 and a2 were nonadjacent. We conclude that Ai is a clique of
G and, by symmetry, that also Bi is a clique of G.
Claim 5. There are no two vertices u and v, both in Ai or both in Bi, such that u and v are the
internal vertices of a chordless path on four vertices in G[Ai∪Oi∪Bi].
Proof. Suppose, by the way of contradiction, that the claim is false; i.e., there are two vertices u
and v, both in Ai or both in Bi, such that u and v are the internal vertices of a chordless path P on
four vertices in G[Ai∪Oi∪Bi]. By symmetry, we assume, without loss of generality, that u and v
both belong to Ai and let a1 = u and a2 = v. As we proved in Claim 4 that Ai and Bi are cliques, the
endpoints of P either both belong to Oi or one belongs to Oi and the other one to Bi. Let us assume,
without loss of generality, that P = xa1a2o where o ∈ Oi and either x ∈ Oi or x ∈ Bi.

We assert that x is adjacent to vi and nonadjacent to both vi−1 and vi−2. The assertion is clearly
true if x ∈ Oi; so, in what remains of this paragraph, we assume, without loss of generality, that
x ∈ Bi. By definition, x is adjacent to vi and vi+1 and, by construction, nonadjacent to o. Hence,
Claim 2 implies x is nonadjacent to vi−1. Moreover, x is nonadjacent to vi−2, since otherwise
either {a1,vi−2,vi−1,vi,x} would induce 4-wheel in G or {vi−2,vi−1,a1,x,o} would induce C∗4 in
G, depending on whether a1 is adjacent to vi−2 or not, respectively. This proves the assertion.

If none of a1 and a2 were adjacent to vi−2, then {vi−2,vi−1,x,a1,a2,o} would induce net in G.
If both a1 and a2 were adjacent to vi−2, then {vi−2,vi,x,a1,a2,o} would induce tent in G. Finally, if
exactly one of a1 and a2 were adjacent to vi−2, then {vi,a1,vi−1,a2,x,o,vi−2} would induce 4-tent
in G. These contradictions prove the claim.
Claim 6. For each a∈ Ai and each b∈ Bi, there is no chordless a,b-path in G[Ai∪Oi∪Bi] together
with a vertex v ∈ Ai∪Oi∪Bi such that v is adjacent to no vertex of the path.
Proof. Suppose, by the way of contradiction, that the claim is false and let P = x0x1 . . .xp be a
chordless path in G[Ai ∪Oi ∪ Bi] with minimum number of vertices such that x0 ∈ Ai, xp ∈ Bi,
and there is a vertex v ∈ Ai ∪Oi ∪ Bi such that v is adjacent to no vertex of P. As Ai and Bi
are cliques (by Claim 4), V (P)∩Ai ⊆ {x0,x1} and V (P)∩Bi ⊆ {xp−1,xp}. Moreover, if x1 ∈ Ai,
then P′ = x1x2 . . .xp would be a chordless path in G[Ai ∪Oi ∪Bi] having less vertices than P and
such that x1 ∈ Ai, xp ∈ Bi, and v would be adjacent to no vertex of P′, which would contradict
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the choice of P. Hence, x0 is the only vertex of Ai in P and, symmetrically, xp is the only vertex
of Bi in P; i.e., x1,x2, . . . ,xp−1 ∈ Oi. Since Ai and Bi are cliques and since v is nonadjacent to
x0 ∈ Ai and xp ∈ Bi, v ∈ Oi holds. Let a = x1, b = xp, and o = v. Since a ∈ Ai and b ∈ Bi are
nonadjacent to o, Claim 2 implies that a is nonadjacent to vi+1 and b is nonadjacent to vi−1. In
particular, a 6= b and p ≥ 1. Theorem 4 guarantees that there are some q,r ∈ {1, . . . ,n} such that
NG(a)∩V (C) = {vi,vi−1, . . . ,vq} and NG(b)∩V (C) = {vi,vi+1, . . . ,vr}. If a and b had no common
neighbor in V (C) apart from vi, then V (P)∪{vr,vr+1, . . . ,vq,o} would induce C∗k in G for some
k ≥ 4, a contradiction. Hence, a and b have some common neighbor in V (C) different from vi and
necessarily vr ∈NG(a). Notice that vr 6= vi because b is adjacent to vi+1 and that vr 6= vi+1 because a
is adjacent to vr and nonadjacent to vi+1. Therefore, if p = 1, then V (P)∪{vi,vi−1, . . . ,vr} induces
a k-wheel in G for some k ≥ 4, a contradiction. On the contrary, if p ≥ 2, then V (P)∪ {vr,o}
induces C∗p+2 in G where p+2≥ 4, a contradiction. These contradictions prove the claim.
Claim 7. Each vertex of Ai∪Bi is an end vertex in G[Ai∪Oi∪Bi].
Proof. By symmetry, it suffices to prove that each vertex of Ai is an end vertex of G[Ai∪Oi∪Bi].
Suppose, by the way of contradiction, that not every vertex of Ai is an end vertex of G[Ai∪Oi∪Bi].
By Theorem 2, there is some minimum nonnegative integer s such that G[Ai∪Oi∪Bi] contains an
induced Fs (see Figure 3) where the filled vertex is some vertex a ∈ Ai.

Assume first that s = 0; i.e., there is a chordless path P = x1x2x3x4x5 in G[Ai∪Oi∪Bi] where
x3 = a. Since Claim 4 ensures that Ai and Bi are cliques, either x1 or x5 belongs to Oi. By symmetry,
assume that x1 ∈ Oi. As x4 and x5 belong to the same component of G[Ai∪Oi∪Bi] \NG[x1] than
a ∈ Ai, Claim 6 implies that none of x4 and x5 belongs to Bi, Necessarily, x5 ∈ Oi because x5 is
nonadjacent to a ∈ Ai and Ai is a clique (by Claim 4). Symmetrically, from x5 ∈ Oi we deduce that
x2 /∈ Bi. By Claim 5 applied to the chordless paths x1x2ax4 and x2ax4x5, it follows that none of x2
and x4 belongs to Ai. We conclude that x1,x2,x4,x5 ∈Oi and, consequently, either {vi−2,vi}∪V (P)
induces umbrella or {vi−2,vi−1}∪V (P) induces bipartite claw, depending on whether a is adjacent
to vi−1 or not, respectively. These contradictions prove that s 6= 0.

Assume now that s = 1; i.e., there is a chordless path P = x1x2x3x4x5 in G[Ai∪Oi∪Bi] such that
the only neighbor of a in P is x3. Since Ai and Bi are cliques, either x1 or x5 belongs to Oi. Without
loss of generality, assume that x1 ∈ Oi. Since x3, x4, and x5 belong to the same component of
G[Ai∪Oi∪Bi]\NG[x1] than a∈ Ai, Claim 6 implies that none of x3, x4, and x5 belongs to Bi. Notice
that x3 /∈Ai (since otherwise s would be 0) and none of x4 and x5 belongs to Ai because both vertices
are nonadjacent to a and Ai is a clique (by Claim 4). Necessarily, x3,x4,x5 ∈ Oi. Symmetrically,
from x5 ∈ Oi, it follows that x1,x2 ∈ Oi. Thus, V (P) ⊆ Oi, which means that {vi−1,a} ∪V (P)
induces a bipartite claw in G, a contradiction. This contradiction proves that s 6= 1.

It only remains to consider the case s ≥ 2; i.e., there is a chordless path P = ax2 . . .xsxs+1
in G[Ai ∪Oi ∪Bi] and two vertices y1,y2 ∈ Ai ∪Oi ∪Bi whose neighborhoods in Ai ∪Oi ∪Bi are
{y2} and {a,x2, . . . ,xs}, respectively. As Ai and Bi are cliques, it holds that y1,xs+1 ∈ Oi ∪ Bi
and at least one of y1 and xs+1 belongs to Oi. Since y1,y2,x2,x3, . . . ,xs−1 belong to the same
component of G[Ai∪Oi∪Bi] \NG[xs+1] than a and x2,x3, . . . ,xs+1 belong to the same component
of G[Ai∪Oi∪Bi]\NG[y1] than a, Claim 6 implies that the fact that at least one of y1 and xs+1 belongs
to Oi means that none of x2, x3, . . . , xs, xs+1, y1, and y2 belongs to Bi. Hence, x2,y2 ∈ Ai∪Oi and,
as Ai is a clique, x3,x4, . . . ,xs+1,y1 ∈ Oi. Notice that at least one of x2 and y2 belongs to Ai, since
otherwise {vi−1,a,x2,x3, . . . ,xs,y1,y2} would induce s-net in G.

Assume first that x2 ∈Ai but y2 /∈Ai. On the one hand, if s≥ 3, then {vi−1,x2,x3, . . . ,xs+1,y1,y2}
would induce (s− 1)-net in G. On the other hand, if s = 2, then the following assertions hold: if
a and x2 were adjacent to vi−2, then {vi−2,vi,a,x2,x3,y1,y2} would induce 4-tent in G; if a and
x2 were nonadjacent to vi−2, then {vi−2,vi−1,a,x2,x3,y1,y2} would induce 3-net in G; if a were
adjacent to vi−2 and x2 were nonadjacent to vi−2, then {vi−2,a,x2,x3,y1,y2} would induce net in G;
if a were nonadjacent to vi−2 but x2 were adjacent to vi−2, then {vi−2,vi−1,vi,a,x2,x3,y1,y2} would
induce 5-tent in G. These contradictions arose from assuming that x2 ∈ Ai but y2 /∈ Ai.
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Suppose now that y2 ∈ Ai but x2 /∈ Ai. If both vertices a and y2 were nonadjacent to vi−2, then
{vi−2,vi−1,a,x2,x3, . . . ,xs+1,y1,y2}would induce (s+1)-net in G. If a and y2 were adjacent to vi−2,
then {vi−2,vi,a,x2,x3, . . . ,xs+1,y1,y2} would induce (s+ 2)-tent in G. If a were adjacent to vi−2
but y2 were nonadjacent to vi−2, then {vi−2,a,x2,x3, . . . ,xs+1,y1,y2} would induce s-net in G. If a
were nonadjacent to vi−2 and y2 were adjacent to vi−2, then {vi−2,vi−1,vi,a,x2,x3, . . . ,xs+1,y1,y2}
would induce (s+3)-tent in G. These contradictions arose from assuming that y2 ∈ Ai but x2 /∈ Ai

Necessarily, both x2 and y2 belong to Ai. Notice that s≥ 3, since otherwise the chordless path
y1y2x2x3 in G[Ai∪Oi∪Bi] would have both interior vertices in Ai, contradicting Claim 5. If none of
x2 and y2 is adjacent to vi−2, then {vi−2,vi−1,x2,x3, . . . ,xs+1,y1,y2} induces s-net in G. If both x2
and y2 are adjacent to vi−2, then {vi−2,vi,x2,x3, . . . ,xs+1,y1,y2} induces (s+1)-tent in G. If, from
x2 and y2, only y2 is adjacent to vi−2, then {vi−2,vi−1,vi,x2,x3, . . . ,xs+1,y1,y2} induces (s+ 2)-
tent in G. Finally, if from x2 and y2, only x2 is adjacent to vi−2, then {vi−2,x2,x3, . . . ,xs+1,y1,y2}
induces (s−1)-net in G. These contradictions arose from assuming that there was some vertex of
Ai which was not an end vertex of G[Ai ∪Oi ∪Bi]. Thus, every vertex of Ai is an end vertex of
G[Ai∪Oi∪Bi] and, symmetrically, every vertex of Bi is also an end vertex of G[Ai∪Oi∪Bi].
Claim 8. Ai,Bi is a left-right pair of G[Ai∪Oi∪Bi].
Proof. It follows from Theorem 3 and Claims 3 to 7.
Claim 9. If some vertex b ∈ Bi is nonadjacent to some vertex x ∈ Ti∪Ai+1, then b is nonadjacent
to vi+2 and, for every neighbor w of b such that w is adjacent to vi and nonadjacent to vi+1, w is
also nonadjacent to x.
Proof. Let b be any vertex in Bi being nonadjacent to some vertex x ∈ Ti∪Ai+1. As b ∈ Bi, there
is some neighbor w of b such that w is adjacent to vi and nonadjacent to vi+1. Necessarily, w is
nonadjacent to x, since otherwise {vi,vi+1,b,w,x} would induce 4-wheel in G. Suppose, by the
way of contradiction, that b were adjacent to vi+2. Therefore, by definition, b ∈ Ai+1. As Ai+1 is a
clique (by Claim 4) but x is nonadjacent to b, it holds that x /∈ Ai+1. Consequently, x is nonadjacent
to vi+2. Besides, w is nonadjacent to vi+2, since otherwise {b,vi,vi+1,vi+2,w} would induce a 4-
wheel in G. We conclude that, if b were adjacent to vi+2, then {w,vi,vi+1,vi+2,b,x} would induce
tent in G, a contradiction. This contradiction proves that b is nonadjacent to vi+2. As we already
proved that w is nonadjacent to x, the proof of the claim is complete.

Claims 10 to 12 below, together with Theorem 3 and Claims 3 and 4, will prove that Bi,Ai+1
are left-right sets in G[Bi∪Ti∪Ai+1] (Claim 13).
Claim 10. There are no two vertices u and v, both in Bi or both in Ai+1, such that u and v are the
internal vertices of a chordless path on four vertices in G[Bi∪Ti∪Ai+1].
Proof. Suppose, by the way of contradiction, that there are two vertices u and v, both in Bi or
both in Ai+1, such that u and v are the internal vertices of a chordless path P on four vertices in
G[Bi ∪Oi ∪Ai+1]. By symmetry, we assume, without loss of generality, that u and v both belong
to Bi. As Claim 4 ensures that that Bi and Ai+1 are cliques, the endpoints of P either both be-
long to Ti or one belongs to Ti and the other one to Ai+1. Assume, without loss of generality,
that P = xb1b2t where b1,b2 ∈ Bi, t ∈ Ti, and either x ∈ Ai or x ∈ Ti. For each j ∈ {1,2}, let w j
be a neighbor of b j such that w j is adjacent to vi and nonadjacent to vi+1. As b1 ∈ Bi is nonad-
jacent to t ∈ Ti and b2 ∈ Bi is nonadjacent to x ∈ Ti ∪Ai+1, Claim 9 implies that b1 and b2 are
nonadjacent to vi+2, w1 is nonadjacent to t, and w2 is nonadjacent to x. If w1 were adjacent to x,
then, by definition of Bi, x ∈ Bi, contradicting the facts that x is nonadjacent to b2 ∈ Bi and Bi is
a clique. If w2 were adjacent to t, then, by definition of Bi, t ∈ Bi, contradicting t ∈ Ti. There-
fore, w1 is nonadjacent to x and w2 is nonadjacent to t. Notice that w1 is nonadjacent to b2, since
otherwise {w1,b1,b2,x,vi+1, t} would induce tent in G. Also w2 is nonadjacent to b1, since oth-
erwise {w2,b1,b2,x,vi+1, t} would induce tent in G. Consequently, w1 6= w2. Moreover, w1 and
w2 are nonadjacent, since otherwise {vi,b1,b2,w2,w1} would induce 4-wheel in G. Recall that, by
Claim 9, b1 and b2 are nonadjacent to vi+2. Notice that at least one of w1 and w2 is adjacent to
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vi+2, since otherwise {b1,b2,vi+1,w1,w2,vi+2} would induce net in G. If both w1 and w2 were ad-
jacent to vi+2, then {vi,vi+1,vi+2,w1,w2} would induce G1 in G. If w1 were adjacent to vi+2 but w2
were nonadjacent to vi+2, then {b1,w1,vi+2,vi+1,w2} would induce C∗4 in G. If w2 were adjacent
to vi+2 but w1 were nonadjacent to vi+2, then {b2,w2,vi+2,vi+1,w1} would induce C∗4 . As these
contradictions arose from assuming the existence of P, the proof of the claim is complete.
Claim 11. For each b ∈ Bi and each a ∈ Ai+1, there is no chordless a,b-path in G[Bi∪Ti∪Ai+1]
together with a vertex v ∈ Ai+1∪Ti∪Bi such that v is adjacent to no vertex of the path.
Proof. Suppose, by the way of contradiction, that the claim is false and let P = x0x1 . . .xp be a
chordless path in G[Bi∪Oi∪Ai+1] with minimum number of vertices such that x0 ∈ Bi, xp ∈ Ai+1,
and there is a vertex v ∈ Bi ∪Oi ∪Ai+1 which is adjacent to no vertex of P. Reasoning in a way
entirely analogous to that employed in the beginning of the proof of Claim 6, it follows that x0 is
the only vertex of P in Bi, xp is the only vertex of P in Ai+1, and v,x1,x2, . . . ,xp−1 ∈ Ti. Let b = x0,
a = xp, and t = v. As b ∈ Bi and a ∈ Ai+1, vertex b has some neighbor w1 adjacent to vi and non-
adjacent to vi−1 and a has some neighbor adjacent to vi+1 and nonadjacent to vi. By Claim 9, w1 is
nonadjacent to t and, symmetrically, w2 is nonadjacent to t. Moreover, b is nonadjacent to w2, since
otherwise either {b,vi,vi+1,w2,w1} would induce 4-wheel in G or {w1,b,w2,vi,vi+1, t} would in-
duce tent in G, depending on whether w1 is adjacent to w2 or not, respectively. Symmetrically, a is
nonadjacent to w1. In particular, a 6= b and p≥ 1. Notice that, as x1,x2, . . . ,xp−1 ∈ Ti, both w1 and
w2 are nonadjacent to each interior vertex P. We conclude that either V (P)∪{t,w1,w2} induces
C∗p+3 in G or V (P)∪{t,vi,vi+1,w1,w2} induces (p+ 3)-tent in G, depending on whether w1 and
w2 are adjacent or not, respectively. These contradictions show that the claim must be true.
Claim 12. Each vertex of Bi∪Ai+1 is an end vertex in G[Bi∪Ti∪Ai+1].
Proof. By symmetry, it suffices to prove that each vertex of Bi is an end vertex of G[Bi∪Ti∪Ai+1].
Suppose, by the way of contradiction, that not every vertex of Bi is an end vertex of G[Bi∪Ti∪Ai+1].
By Theorem 2, there is some minimum nonnegative integer s such that G[Bi ∪Ti ∪Ai+1] contains
an induced Fs (see Figure 3) where the filled vertex is some b ∈ Bi. Since b ∈ Bi, there is some
neighbor w of b such that w is adjacent to vi and nonadjacent to vi+1.

Assume first that s = 0; i.e., there is a chordless path P = x1x2x3x4x5 in G[Bi∪Ti∪Ai+1] where
x3 = b. Reasoning in a way entirely analogous to that of case s = 0 of Claim 7 (replacing Claims 5
and 6 with Claims 10 and 11), x1,x2,x4,x5 ∈ Ti and, by definition of Ti, none of x1, x2, x4, and x5 is
adjacent to w. Hence, {x1,x2,b,x4,x5,vi+1,w} induces umbrella in G, a contradiction. Thus, s 6= 0.

Assume now that s = 1; i.e., there is a chordless path P = x1x2x3x4x5 in G[Bi∪Ti∪Ai+1] such
that the only neighbor of b in P is x3. Since Bi and Ai+1 are cliques, either x1 or x5 belongs to Ti.
Without loss of generality, assume that x1 ∈ Ti. Since x3, x4, and x5 belong to the same component
of G[Bi ∪Ti ∪Ai+1] \NG[x1] than b ∈ Bi, Claim 11 implies that none of x3, x4, and x5 belongs to
Ai+1. Notice that x3 /∈ Bi (since otherwise s would be 0) and none of x4 and x5 belongs to Bi
because both vertices are nonadjacent to b and Bi is a clique (Claim 4). Necessarily, x3,x4,x5 ∈ Ti.
Symmetrically, x5 ∈ Ti implies that x1,x2 ∈ Ti. Hence, V (P)⊆ Ti and, by definition of Ti, no vertex
of P is adjacent to w. Consequently, V (P)∪{b,w} induces bipartite claw in G, a contradiction.
This contradiction proves that s 6= 1.

Since s ≥ 2, there are a chordless path P = ax2 . . .xsxs+1 in G[Bi ∪Ti ∪Ai+1] and two vertices
y1,y2 ∈ Bi ∪Ti ∪Ai+1 whose neighborhoods in Bi ∪Ti ∪Ai+1 are {y2} and {a,x2, . . . ,xs}, respec-
tively. As Bi and Ai+1 are cliques, at least one of y1 and xs+1 belongs to Ti. Reasoning in a way
entirely analogous to that of case s ≥ 2 of Claim 7 (replacing Claim 6 with Claim 11), we can
prove that x3,x4, . . . ,xs+1,y1 ∈ Ti and x2,y2 ∈ Bi∪Ti. Notice that at least one of x2 and y2 is adja-
cent to w, since otherwise {w,b,x2,x3, . . . ,xs+1,y1,y2} would induce s-net in G. If x2 is adjacent
to w but y2 is nonadjacent to w, then either {w,x2,x3, . . . ,xs+1,y1,y2} induces (s− 1)-net in G or
{w,b,x2,x3,y1,y2,vi+1} induces 4-tent in G, depending on whether s≥ 3 or not, respectively. If y2
is adjacent to w but x2 is nonadjacent to w, then {w,b,x2,x3, . . . ,xs+1,y1,y2,vi+1} induces (s+2)-
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tent in G. Finally, if both x2 and y2 are adjacent to w, then {w,x2,x3, . . . ,xs+1,y1,y2,vi+1} induces
(s+1)-tent in G. These contradictions arose from assuming that there was some vertex in Bi that
was not an end vertex of G[Bi∪Ti∪Ai+1]. This completes the proof of the claim.
Claim 13. Bi,Ai+1 is a left-right pair of G[Bi∪Ti∪Ai+1].
Proof. If follows from Theorem 3 and Claims 3, 4, and 10 to 12.
Claim 14. If u and v are two adjacent vertices in V (G) \V (C), then u and v have at least one
common neighbor in V (C).
Proof. Suppose, by the way of contradiction, that there are two adjacent vertices u,v ∈ V (G) \
V (C) having no common neighbor in V (C). By Theorem 4, NG(u)∩V (C) = {vi,vi+1, . . . ,v j}
and NG(v)∩V (C) = {vk,vk+1, . . . ,v`}, for some i, j,k, ` ∈ {1, . . . ,n}. If |NG(u)∩V (C)| ≥ 3, then
C′= viuv jv j+1 . . .vi−1vi would be a chordless cycle and the neighbors of v in V (C′) would contradict
Theorem 4. Hence, v j = vi or v j = vi+1. Symmetrically, v` = vk or v` = vk+1. Let P1 = v jv j+1 . . .vk,
P2 = v`v`+1 . . .vi. Without loss of generality, |V (P1)| ≤ |V (P2)|. Let m= |V (P1)|+2; hence, m≥ 4.

Suppose first that v j = vi and v` = vk. Then, |V (P2)| ≤ 4, since otherwise V (P1)∪{u,v,vk+2}
would induce C∗m in G. If |V (P1)| = |V (P2)| = 4, then (V (C) \ {vk})∪ {u,v} would induce bi-
partite claw in G. Therefore, V (C)∪ {u,v} induces domino, G2, or G4, depending on whether
(|V (P1)|, |V (P2)|) = (2,4), (3,3), or (3,4), respectively, a contradiction. Thus, v j 6= vi or v` 6= vk.

Suppose now that v j = vi+1 and v` = vk. Then, |V (P2)| ≤ 3, since otherwise V (P1)∪{u,v,vk+2}
would induce C∗m in G. If |V (P1)| = |V (P2)| = 3, then (V (C) \ {vk})∪{u,v} would induce net in
G. Necessarily, (|V (P1)|, |V (P2)|) = (1,2) and V (C)∪{u,v} induces G3 in G, a contradiction.

Up to symmetry, it only remains to consider the case v j = vi+1 and v` = vk+1. On the one hand,
if |V (P2)| ≥ 3, then V (P1)∪{u,v,vk+2} induces C∗m in G. On the other hand, if |V (P1)|= |V (P2)|=
2, then V (C)∪{u,v} induces C6 in G. These contradictions complete the proof of the claim.
Claim 15. If o ∈ Oi, then NG(o) = {vi}∪NG[Ai∪Oi∪Bi](o).
Proof. Let o ∈ Oi. That {vi} ∪NG[Ai∪Oi∪Bi](o) ⊆ NG(o) follows easily by definition of Oi and
by definition of induced subgraphs. In order to prove the reverse inclusion, let v ∈ NG(o). If
v ∈ V (C), then v = vi by definition of Oi; so, assume that v /∈ V (C). Since v /∈ V (C), we deduce
from ov∈E(G) and Claim 14 that vi ∈NG(v). Hence, Theorem 4 ensures that NG(v)∩V (C) = {vi},
{vi−1,vi} ⊆ NG(v), or {vi,vi+1} ⊆ NG(v) and, consequently, v ∈ Oi, v ∈ Ai, or v ∈ Bi, respectively
(where o plays the role of w in proving v ∈ Ai or v ∈ Bi). Thus, NG(o)⊆ {vi}∪Ai∪Oi∪Bi. Since
o ∈Oi, this is equivalent to NG(o)⊆ {vi}∪NG[Ai∪Oi∪Bi](o), concluding the proof of the claim.
Claim 16. If t ∈ Ti, then NG(t) = {vi,vi+1}∪NG[Bi∪Ti∪Ai+1](t).
Proof. Let t ∈ Ti. That {vi,vi+1} ∪NG[Bi∪Ti∪Ai+1] ⊆ NG(t) follows immediately by definition of
Ti and of induced subgraphs; so, we only need to prove the reverse inclusion. Let v ∈ NG(t). If
v ∈ V (C), then v = vi or v = vi+1 by definition of Ti; so, assume that v /∈ V (C). From Claim 14,
Theorem 4, and the definition of Ti, it follows that NG(v)∩V (C) contains at least one of the follow-
ing subsets {vi,vi+1}, {vi−1,vi}, or {vi+1,vi+2}. If NG(v)∩V (C) does not contain {vi,vi+1} but one
of {vi−1,vi} and {vi+1,vi+2}, then v ∈ Bi or v ∈ Ai+1, respectively (where the role of w in proving
v ∈ Bi or v ∈ Ai+1 is played by t), contradicting t ∈ Ti. This contradiction shows that necessarily
{vi,vi−1}⊆NG(v) and, consequently, v∈ Ai∪Ti∪Bi (as shown in the proof of Claim 1); thus, since
t ∈ Ti, NG(t)⊆ {vi,vi+1}∪NG[Bi∪Ti∪Ai+1], which completes the proof of the claim.
Claim 17. NG(vi)\V (C) = Bi−1∪Ti−1∪Ai∪Oi∪Bi∪Ti∪Ai+1.
Proof. That Bi−1 ∪ Ti−1 ∪ Ai ∪Oi ∪ Bi ∪ Ti ∪ Ai+1 ⊆ NG(vi) \V (C) follows by definition of the
respective sets. In order to prove the reverse inclusion, let v ∈ NG(vi) \V (C). Since vi ∈ NG(v),
Theorem 4 implies that either NG(v)∩V (C) = {vi} or NG(v)∩V (C) contains {vi−1,vi} or {vi,vi+1}
as subsets. On the one hand, if NG(v)∩V (C) = {vi}, then vi ∈ Oi by definition. On the other
hand, if NG(v)∩V (C) contains {vi−1,vi} or {vi,vi+1} as subsets, then v ∈ Bi−1 ∪Ti−1 ∪Ai or v ∈
Bi ∪Ti ∪Ai+1, respectively (as shown in the proof of Claim 1). We conclude that also the reverse
inclusion NG(vi)\V (C)⊆ Bi−1∪Ti−1∪Ai∪Oi∪Bi∪Ti∪Ai+1 holds and the claim is proved.
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Constructing a circular-arc model for G. Consider a circular-arc model M of the chordless
cycle C where M consists of a set of closed arcs on a circle C such that no two arcs of M share a
common endpoint. For each arc X on C , we call left and right endpoints to the starting and ending
endpoints of X , respectively, when traversing C in clockwise direction. For each j ∈ {1, . . . ,n},
let X(v j) be the arc of M corresponding to v j and let ` j and r j be the left and right endpoints of
X(v j), respectively. For each i ∈ {1. . . . ,n}, we use Claim 8 to build an intersection model M 1

i of
G[Ai∪Oi∪Bi+1] consisting of open arcs within the clockwise open arc (ri−1, `i+1) on C such that
the left endpoint of each arc corresponding to a vertex in Ai is ri−1 and the right endpoint of each arc
corresponding to a vertex in Bi is `i+1. For each v ∈ Ai∪Oi∪Bi, let X1

i (v) be the arc representing v
in M 1

i . Analogously, for each i∈ {1, . . . ,n}, we use Claim 13 to build an intersection model M 2
i of

G[Bi∪Ti∪Ai+1] consisting of closed arcs within the clockwise closed arc [`i+1,ri] on C such that
the left endpoint of each arc corresponding to a vertex in Bi is `i+1 and the right endpoint of each arc
corresponding to a vertex in Ai+1 is ri. For each v ∈ Bi∪Ti∪Ai+1, let X2

i (v) be the arc representing
v in M 2

i . For each v ∈V (G)\V (C), we define X(v) as the union of all the arcs corresponding to v
among the models M 1

1 , . . . ,M
1
n ,M

2
1 , . . . ,M

2
n ; i.e., X(v) =

⋃
i:v∈Ai∪Oi∪Bi

X1
i ∪

⋃
i:v∈Bi∪Ti∪Ai+1

X2
i (v).

Claims 18 and 19 prove that the sets X(v) (as defined in the preceding paragraph) are arcs on
C and that the family consisting of all the arcs X(v) is a circular-arc model for G, respectively.
Claim 18. For each v ∈V (G), X(v) is an arc on C .
Proof. If v ∈ V (C), the claim is true by definition. Suppose first that v ∈ Oi. Then, since for
every j ∈ {1, . . . ,n} each vertex of A j ∪O j ∪B j is adjacent to v j and each vertex of B j ∪Tj ∪A j+1
is adjacent to v j and v j+1, then v ∈ A j ∪O j ∪ B j only when j = i, and v /∈ B j ∪ Tj ∪ A j+1 for
each j ∈ {1, . . . ,n}; therefore, by definition, X(v) = X1

i (v). Suppose now that v ∈ Ti. Then, since
v ∈ B j ∪ Tj ∪ A j+1 only when j = i and v /∈ B j ∪O j ∪ A j for each j ∈ {1, . . . ,n}, the equality
X(v) = X2

i (v) holds. So, assume that v ∈
⋃n

i=1(Ai ∪Bi) and it only remains to show that X(v) is
an arc. By Theorem 4, the neighbors of v in V (C) induce a chordless path P = v jv j+1 . . .vk for
some j,k ∈ {1, . . . ,n} and j 6= k. By definition, v /∈ Ai ∪Oi ∪Bi for each i /∈ { j, j+ 1, . . . ,k} and
v /∈ Bi∪Ti∪Ai+1 for each i /∈ { j, j+1, . . . ,k−1}. As v ∈ A j+1,B j+1, . . . ,Ak−1,Bk−1 by definition,
the sets X1

j+1(v), X2
j+1(v), . . . , X2

k−2(v), X1
k−1(v) are the clockwise arcs (r j, ` j+2), [` j+2,r j+1], . . . ,

[`k−1,rk−2], (rk−2, `k) on C , respectively, whose union is the clockwise open arc (r j, `k) on C . If
there is a neighbor wL of v adjacent to v j and nonadjacent to v j+1, then v ∈ B j and let XL(v) =
X1

j (v); otherwise, v /∈ A j ∪O j ∪B j and let XL(v) = /0. If there is a neighbor wR of v adjacent to
vk and nonadjacent to vk−1, then v ∈ Ak and let XR(v) = X1

k (v); otherwise, v /∈ Ak ∪Ok ∪Bk and
let XR(v) = /0. Finally, X(v) = XL(v)∪X2

j (v)∪ (r j, `k)∪X2
k−1(v)∪XR(v), which is an arc on C

because, whenever XL(v) 6= /0, the right endpoint of XL(v) and the left endpoint of X2
j (v) are ` j+1

and, whenever XR(v) 6= /0, the right endpoint of X2
k−1(v) and the left endpoint of XR(v) are rk−1.

The proof of the claim is complete.
Claim 19. The family consisting of all the arcs X(v) for each v∈V (G) is circular-arc model for G.
Proof. Let G̃ be the graph having the same set of vertices than G and such that two vertices u and
v of G̃ are adjacent if and only if X(u) and X(v) have nonempty intersection. The claim is proved
as soon as we verify that G̃ = G. Let o ∈ O j for some j ∈ {1, . . . ,n}. In the proof of Claim 18 we
showed that X(o) = X1

j (o) which, by construction, intersects precisely the arc X(v j) and the arcs
X(v) for each each neighbor v of o in A j ∪O j ∪B j. As a result and by Claim 15, NG̃(o) = NG(o).
Let t ∈ Tj for some j ∈ {1, . . . ,n}. In the proof of Claim 18 we showed that X(t) = X2

j (t) which, by
construction, intersects precisely the arcs X(v j) and X(v j+1) and the arcs X(v) for each neighbor of
t in B j ∪Tj ∪A j+1. Consequently, by Claim 16, NG̃(t) = NG(t). Notice that, also by construction,
for each j ∈ {1, . . . ,n}, the arc X(v j) intersects precisely the arcs X(v j−1), X(v j+1), and the arcs
X(v) for every v ∈ B j−1∪Tj−1∪Ai∪Oi∪Bi∪Ti∪A j+1, which, by Claim 17, means that NG̃(v j) =
NG(v j). In order to complete the proof of the claim, let u,v ∈

⋃n
i=1(Ai∪Bi) and it only remains to

prove that uv ∈ E(G̃) if and only if uv ∈ E(G). Since u,v /∈ V (C), the construction ensures that if
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uv∈ E(G̃) then uv∈ E(G). For the converse, assume that uv∈ E(G). By Claim 14 and Theorem 4,
u and v have at least one common neighbor in V (C) and the common neighbors of u and v in V (C)
induce a chordless path P. If |V (P)| ≥ 2, then {v j,v j+1} ⊆ V (P) for some j ∈ {1, . . . ,n} and,
consequently, u,v ∈ B j ∪Tj ∪A j+1 (as shown in the proof of Claim 1); thus, uv ∈ E(G[B j ∪Tj ∪
A j+1]) and, by construction, uv ∈ E(G̃). Finally, let us consider the case V (P) = {v j} for some j ∈
{1, . . . ,n}. As u /∈ O j and v /∈ O j, then, up to symmetry, NG(u)∩{v j−1,v j,v j+1}= {v j−1,v j} and
NG(v)∩{v j−1,v j,v j+1}= {v j,v j+1}. Hence, u ∈ A j (with v playing the role of w in the definition)
and v ∈ B j (with u playing the role of w in the definition); thus, uv ∈ E(G[A j ∪O j ∪ B j]) and
construction implies that uv ∈ E(G̃). This completes the proof of the claim.

By Claim 19, G is a circular-arc graph and, as a result, Theorem 5 implies that G is a normal
Helly circular-arc graph. This completes the proof of Theorem 6. �
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