On the sum of the two largest eigenvalues of the signless Laplacian matrix

Paula Carvalho¹, Leonardo Lima², Carla Oliveira³ and Paula Rama¹,

¹Departamento de Matemática - CIDMA, Universidade de Aveiro, Portugal
paula.carvalho@ua.pt, prama@ua.pt

²Departamento de Engenharia de Produção - CEFET-RJ, Brasil
llima@cefet-rj.br

³Departamento de Matemática - ENCE-IBGE, Brasil
carla.oliveira@ibge.gov.br

Let G be a simple graph on n vertices and m edges. Consider $L(G) = D - A$ and $Q(G) = D + A$ as the Laplacian and the signless Laplacian of G, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Brouwer conjectured that the sum of the k largest Laplacian eigenvalues of G is at most $m + \binom{k+1}{2}$. Haemers et. al. [1] proved that this result is valid for $k = 2$. In this paper, we investigate this problem for the signless Laplacian matrix when $k = 1$ and $k = 2$.

Keywords: largest eigenvalues, sum of eigenvalues, signless Laplacian matrix.

References