MODELING URBAN TRANSPORT DEMAND FORECASTING TO SUPPORT STRATEGIC CITY PLANNING

Maria Aparecida Cavalcanti Netto  
Federal University of Rio de Janeiro-COPPE  
Tecnologia, Division C-room 203,  
Ilha do Fundão, Rio de Janeiro  
aparecida@peno.coppe.ufrj.br

Ronaldo Rocha Bastos  
Federal University of Juiz de Fora-Statistics Department  
Cidade Universitária, Juiz de Fora  
ron574@terra.com.br

Antonio Edmundo Rezende  
Federal University of Rio de Janeiro-FACC  
Campus of Praia Vermelha, Rio de Janeiro  
aarezende@gmail.com

ABSTRACT

Strategic planning of logistics structures reviewing transport networks and service supply for access to work, education, leisure, purchasing and supply to trade organizations is one important component of the urban planning essential to redirecting flows and ways of life. Here aggregate models are useful to guide urban and public transport strategic planning action plans. An application in a medium-sized city planning changes in land use addressed low-income user travel to work, one of the bases for public planning. Developments for other purposes, and for medium/high-income users, are not reported here. A single approach was considered: urban authorities, on models simple to formulate and use, assess the consequences of land use changes on travel flows, to warrant changes in the transport system, based on the model calibrated with SPSS ver. 8. Data simulation assumed partial rezoning of a typical city with consequent estimation of model parameters considering changes in land use and travel. Explanatory variables were: population by zone of origin (P_i), parameter b_1; number of jobs per destination zone (E_j), parameter b_2; survival level by origin-destination, parameter \( \varphi \), in the form exp (\( \varphi \times (N_{Sij}) \)); and the variable T_i for travel volume between i and j. Dummy variables introduced into the original formulation included the exponent, \( \alpha_i \), estimating the log-linear formulation, with values 0 or 1, associated with respective \( \alpha_i \) parameters of the zones of origin. Zone 1 is the reference zone, so \( \alpha_1 \) does not enter into the regression analysis; the resulting functional specification has a null intercept and, according to the two-stage least squares (2SLS) method, the log-linear formulation associated with the original is applied with the parameter LN \( \alpha_i \) by origin. The original formula for the volume of travel to work is: 

\[ T_{ij} = \alpha_i \cdot P_i^{b_1} \cdot E_j^{b_2} \cdot \exp (\varphi \times (N_{Sij})), \text{ if } N_{Sij} > 0; \ T_{ij} = 0, \text{ if } N_{Sij} \leq 0, \] 

with \( N_{Sij} = \text{survival level}_{ij} = R_i - C_{ij} - A_i \), where \( A_i = \text{mean rent or installments in zone } i; R_i = \text{mean monthly family income after tax in zone } i; C_{ij} = \text{monthly monetary cost of travel between } i \text{ and } j. \) The estimated parameters were: \( b_1 = -0.526 (-1.656), b_2 = 0.963 (13.310), \varphi = 3, 193E-03 (1.503), \alpha_i = \text{parameter (variable) (in separate table), whose Student t-statistic values are in brackets, } R^2 = 99.6 \% \text{ and corrected } R^2 = 99.1\%, \) F test showing the calculated value F = 699.396 to be higher than F tabelado at 1% and 5% levels of significance = a good degree of explanation by the model and a good predictive model, barring evidence to the contrary. The level of significance of the parameters of the explanatory variables was 10%. Not all \( \alpha_i \) achieved individual statistical significance.

Keywords: urban logistics, demand forecasting, land use.