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RESUMO
A solução ótima para o problema de Correlação de Clusters (Correlation Clustering ou

CC) pode ser utilizada como medida do nível de equilíbrio em redes sociais de sinais, onde in-

terações positivas (amizade) e negativas (antagonismo) estão presentes. Metaheurísticas têm sido

utilizadas com sucesso para resolver não apenas este, como também outros problemas difícies de

otimização combinatória, por serem capazes de fornecer soluções sub-ótimas em um tempo ra-

zoável. Este trabalho propõe uma implementação alternativa de busca local baseada em GPGPUs,

a qual pode ser utilizada em conjunto com as metaheurísticas GRASP e ILS existentes para o prob-

lema CC. Esta nova abordagem supera, em tempo de execução, o procedimento de busca local até

então aplicado, com qualidade de solução similar, apresentando speedups médios que vão de x1.8

a x28.

PALAVRAS CHAVE. CUDA, GPGPU, VND, GRASP, ILS, Correlação de Clusters.

Área Principal: MH - Metaheurísticas

ABSTRACT
The solution of the Correlation Clustering (CC) problem can be used as a criterion to

measure the amount of balance in signed social networks, where positive (friendly) and negative

(antagonistic) interactions take place. Metaheuristics have been used successfully for solving not

only this problem, as well as other hard combinatorial optimization problems, since they can pro-

vide sub-optimal solutions in a reasonable time. In this work, we present an alternative local search

implementation based on GPGPUs, which can be used with existing GRASP and ILS metaheuris-

tics for the CC problem. This new approach outperforms the existing local search procedure in

execution time, with similar solution quality, presenting average speedups from x1.8 to x28.

KEYWORDS. CUDA, GPGPU, VND, GRASP, ILS, Correlation Clustering.
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1. Introduction
Structural (or social) balance is considered a fundamental social process. It has been used

to explain how the feelings, attitudes and beliefs, which the social actors have towards each other,

can promote the formation of stable (but not necessarily conflict-free) social groups. The balance of

a social system tends to follow the human tendency to preserve a cognitive consistency of hostility

and friendship. The principle is simple: "my friend’s friend is my friend, my friend’s enemy is

my enemy, my enemy’s friend is my enemy, my enemy’s enemy is my friend" (Heider, 1946).

Absence of balance creates a kind of tension in the group members’ minds that can eventually lead

to changes in their opinions. Once balance is achieved, it tends to be stable, since no cognitive

dissonance could change the state (Hummon and Doreian, 2003).

Determining the structural balance of a signed social network has been a key aspect in

the study of the structure and origin of tensions and conflicts in a network of individuals whose

mutual relationships are characterizable in terms of friendship and hostility. Structural balance

theory was first formulated by Heider (1946) with the purpose of describing sentiment relations

between people pertaining to a same social group (like/dislike, love/hate, trust/distrust). Signed

graphs were then introduced by Cartwright and Harary (1956), who formalized Heider’s theory

stating that a balanced social group could be partitioned into two mutually hostile subgroups each

having internal solidarity. In the last decades, signed graphs have shown to be a very attractive

discrete structure for social network researchers (Doreian and Mrvar, 1996; Inohara, 1998; Yang

et al., 2007; Abell and Ludwig, 2009). Different criteria and solution approaches have been used in

the literature so as to quantify and evaluate balance in a signed social network (Doreian and Mrvar,

2009; Leskovec et al., 2010; Facchetti et al., 2011; Srinivasan, 2011).

Clustering is the action of partitioning individual elements into groups based on their sim-

ilarity. Clustering problems defined on signed graphs arise in many scientific areas (Bansal et al.,

2002; Gülpinar et al., 2004; DasGupta et al., 2007; Traag and Bruggeman, 2009; Huffner et al.,

2010; Macon et al., 2012; Figueiredo and Frota, 2014). The common element among these appli-

cations is the collaborative vs. conflicting environment in which they are defined. The solution of

clustering problems defined on signed graphs can be used as a criteria to measure the degree of

balance in social networks (Doreian and Mrvar, 1996, 2009; Figueiredo and Moura, 2013). By con-

sidering the original definition (Heider, 1946) of structural balance, the optimal solution of the very

known Correlation Clustering (CC) Problem (Bansal et al., 2002) arises as a measure for the degree

of balance in a social network. Other applications of the CC Problem include efficient document

classification (Bansal et al., 2002), detection of embedded matrix structures (Gülpinar et al., 2004),

biological systems (DasGupta et al., 2007), portfolio analysis in risk management (Huffner et al.,

2010) and image segmentation (Kim et al., 2014).

From a practical point of view, in solving the clustering problem treated in this paper,

heuristic approaches are primarily of interest, since large social networks may have to be ana-

lyzed (Kunegis et al., 2009; Leskovec et al., 2010; Facchetti et al., 2011). For example, online net-

works with two opposite kinds of relationships are nowadays very common. Slashdot, a technology-

related news website, includes a feature which allows users to tag each other as friends or foes, thus

allowing users to rate other users negatively. On online review websites such as Epinions users can

either like or dislike other people’s reviews. This behavior can be modeled as a signed network,

where edge weights can be either greater or less than 0, representing positive or negative relation-

ships respectively. The definition of a measure to represent the imbalance of a social network adds

itself a degree of approximation to the task of evaluating balance in a social network. Thus, it is

imperative that the clustering problem associated with this measure be solved efficiently.

To our knowledge, there are three metaheuristic approaches applied to the CC problem.

Zhang et al. (2008) proposes genetic algorithms to the CC problem, with an application to document

clustering. This strategy was impossible to reproduce though, for the absence of information about

how the genetic operators are applied. Drummond et al. (2013) presents a Greedy Randomized
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Adaptive Search Procedure (GRASP) (Feo and Resende, 1995) to evaluate structural balance in

signed social networks. Later, based on this work, Levorato et al. (2014) introduced an Iterated

Local Search (ILS) (Lourenço et al., 2003) metaheuristic for the CC problem, which outperformed,

in processing time, the GRASP metaheuristic proposed earlier, with similar or improved solution

quality. By observing the great amount of time spent on the processing of larger graphs, we saw an

opportunity to extend the aforementioned GRASP and ILS algorithms with a new implementation

of local search that can solve the problem faster.

In this work, we present a parallel local search procedure for the CC problem, accelerated

by General Purpose Graphics Processing Units (GPGPUs). Then, by applying the proposed local

seach in the GRASP and ILS metaheuristics, we show the improvements over the existing sequential

local search procedure. We believe that the lessons learned with this local search parallelization on

the GPU can be used in other related problems. The paper is organized as follows. Section 2

presents the Correlation Clustering problem, including a mathematical formulation and a literature

review of it. Section 3 describes the parallel local search algorithm for the CC problem that runs

on the GPU, while Section 4 lists the experimental results of it as well as a comparison with other

available solution approaches. Finally, Section 5 presents our concluding remarks.

2. The CC problem

2.1. Mathematical Formulation
Let G = (V,E) be an undirected graph where V is the set of n vertices and E is the

set of edges. In this text, a signed graph is allowed to have parallel edges but no loops. Also,

we assume that parallel edges always have opposite signs. For a vertex set S ⊆ V , let E[S] =
{(i,j) ∈ E | i,j ∈ S} denote the subset of edges induced by S. For two vertex sets S,W ⊆ V ,

let E[S : W ] = {(i,j) ∈ E | i ∈ S, j ∈ W}. One observes that, by definition, E[S : S] = E[S].
Consider a function s : E → {+,−} that assigns a sign to each edge in E. An undirected graph G
together with a function s is called a signed graph. An edge e ∈ E is called negative if s(e) = −
and positive if s(e) = +. Let E− and E+ denote, respectively, the set of negative and positive

edges in a signed graph.

A partition of V is a division of V into non-overlapping and non-empty subsets. Consider

a partition P = {S1,S2, . . . ,Sl} of V . The cut edges and the uncut edges related with this partition

are defined, respectively, as the edges in sets

∪1≤i<j≤lE[Si : Sj ] and ∪1≤i≤lE[Si]. Let we be a nonnegative edge weight associated with edge

e ∈ E. Also, for 1 ≤ i, j ≤ l, let

Ω+(Si,Sj) =
∑

e∈E+∩E[Si:Sj ]

we and Ω−(Si,Sj) =
∑

e∈E−∩E[Si:Sj ]

we.

The imbalance I(P ) of a partition P is defined as the total weight of negative uncut edges and

positive cut edges, i.e.,

I(P ) =
∑

1≤i≤l

Ω−(Si,Si) +
∑

1≤i<j≤l

Ω+(Si,Sj). (1)

Likewise, the balance B(P ) of a partition P can be defined as the total weight of positive uncut

edges and negative cut edges. Clearly, B(P ) + I(P ) =
∑

e∈E we. That being said, we are ready to

give a formal definition to the CC problem.

Problem 2.1 (CC problem) Let G = (V,E,s) be a signed graph and we be a nonnegative edge
weight associated with each edge e ∈ E. The correlation clustering problem is the problem of
finding a partition P of V such that the imbalance I(P ) is minimized or, equivalently, the balance
B(P ) is maximized.
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Observe that the given definition comprises a weighted version of the problem. To obtain a non-

weighted version, it suffices to make we = 1, for each e ∈ E.

The classical mathematical formulation for the CC problem is an integer linear program-

ming (ILP) model proposed to uncapacitated clustering problems (Mehrotra and Trick, 1998). In

this formulation a binary decision variable xij is assigned to each pair of vertices i,j ∈ V , i �= j,

and defined as follows: xij = 0 if i and j are in a common set; xij = 1 otherwise. The model

minimizes the total imbalance.

minimize
∑

(i,j)∈E−
wij(1− xij) +

∑

(i,j)∈E+

wijxij (2)

subject to xip + xpj ≥ xij , ∀ i,p,j ∈ V, (3)

xij = xji, ∀ i,j ∈ V, (4)

xij ∈ {0,1}, ∀ i,j ∈ V. (5)

The triangle inequalities (3) say that if i and p are in a same cluster as well as p and j, then vertices

i and j are also in a same cluster. Constraint (4) written to i,j ∈ V establishes that variables xij and

xji assume always the same value in this formulation. Constraints (5) impose binary restrictions to

the variables while the objective function (2) minimizes the total imbalance defined by equation (1).

Even though this formulation is polynomial-sized, having n(n−1) variables and n3+n2 constraints,

notice that, according to constraints (4), half of the variables can be eliminated, which reduces both

the number of variables and constraints of the formulation.

A set partitioning formulation (Mehrotra and Trick, 1998) is proposed in the literature to

uncapacitated clustering problems and could also be used in the solution of the CC problem. As

we can expect, these two formulations are not appropriate solution approaches when time limit is

a constraint in the solution process. The authors in Figueiredo and Moura (2013) report that the

classical formulation starts to fail (time limit set to 1h) with random instances of 40 vertices and

negative density equal to 0.5.

2.2. Literature Review
To the best of our knowledge, the CC problem, as defined in the previous section, was

addressed for the first time in Doreian and Mrvar (1996) (not under this name) where its heuristic

solution was used as a criteria for analyzing structural balance in social networks. The heuristic

approach proposed by the authors is a simple greedy neighborhood search procedure that assumes

a prior knowledge of the number of clusters in the solution. This heuristic is implemented in soft-

ware Pajek (Batagelj and Mrvar, 2008). Lately, motivated by the solution of a document clustering

problem, the unweighted version of the CC problem was formalized in Bansal et al. (2002). The

weighted version of the problem was addressed in Demaine et al. (2006). The CC problem has

been largely investigated from the point of view of constant factor approximation algorithms and

has been applied in the solution of many applications, including portfolio analysis in risk manage-

ment (Huffner et al., 2010), biological systems (DasGupta et al., 2007), efficient document classi-

fication (Bansal et al., 2002), detection of embedded matrix structures (Gülpinar et al., 2004) and

community structure (Traag and Bruggeman, 2009; Macon et al., 2012).

A comparison of several heuristic strategies (greedy and local search methods) for the

problem is presented in Elsner and Schudy (2009) and applied to document clustering and nat-

ural language processing (instances of n = 1000), to which ILP does not scale. In this con-

text, the authors’ recommended strategy for solving the CC Problem is a greedy algorithm called

V OTE/BOEM , which can quickly achieve good objective values with tight bounds.

In Yang et al. (2007), the CC problem is called community mining and an agent-based

heuristic is proposed to its solution. As far as we know, there are three metaheuristic approaches

applied to the CC problem. A solution based on genetic algorithms has been proposed in Zhang

et al. (2008) for the CC problem and applied to document clustering, but unfortunately there is no
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explanation about how the genetic operators are applied, making it difficult to understand and re-

produce the proposed algorithm. Recently, Drummond et al. (2013) presented a GRASP (Feo and

Resende, 1995) implementation that provides an efficient solution to the CC problem in networks of

up to 8000 vertices. Later on, Levorato et al. (2014) introduced an ILS (Lourenço et al., 2003) meta-

heuristic for the CC problem, which outperformed, in processing time, the GRASP metaheuristic

proposed earlier, with similar or improved solution quality.

3. Parallelizing local search for the CC problem in the GPU
Our work started with an analysis of two existing metaheuristics for the CC problem.

Drummond et al. (2013) report the results obtained with sequential and parallel GRASP procedures.

The algorithm was implemented in C++ with MPI for message passing. Then, based on this work,

Levorato et al. (2014) later introduced an ILS metaheuristic for the CC problem, which was an

improvement over the GRASP algorithm proposed earlier.

By observing the great amount of time spent on the local search phase of the aforemen-

tioned algorithms (Figure 1), we saw an opportunity to improve their performance by extending

both of them with a new implementation of local search, which is capable of solving the problem

faster, without altering the behavior of the metaheuristic. In this section we present a local search

procedure for the CC problem that uses the parallelism offered by GPGPUs.
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Figure 1: Time spent by GRASP and ILS on sequential 1-opt local search on Slashdot-based signed graphs.

3.1. Using General Purpose GPUs to solve optimization problems
The use of Graphics Processing Units (GPUs) has been extended to a wide range of ap-

plication domains (e.g. computational science) thanks to the publication of the CUDA (Compute

Unified Device Architecture) development toolkit (NVIDIA, 2015), which allows GPU program-

ming in C-like language. When used as general-purpose computing devices, GPUs can efficiently

accelerate many non-graphics programs, especially vector-and matrix-based codes that exhibit lots

of parallelism with low synchronization requirements. Because their hardware is primarily designed

to perform complex computations on blocks of pixels at high speed and with wide parallelism, GPU

architectures differ substantially from conventional CPU hardware. Therefore, writing efficient pro-

grams to solve combinatorial optimization problems on GPUs is not a straightforward task and re-

quires a huge effort not only at design but also at implementation level. Indeed, several challenges

mainly related to the hierarchical memory management have to be dealt with. The major issues

consist of efficient distribution of data processing between CPU and GPU, thread synchronization,

optimization of data transfer between the different memories, as well as the capacity constraints of

these memories (Van Luong et al., 2013).

Whenever parallel algorithms are applied to solve optimization problems, it is worth notic-

ing that, in general, for distributed architectures, the global performance in metaheuristics is limited

by high communication latencies. However, in GPU architectures, performance is bounded by

memory access latencies. This being said, several works have already demonstrated the potential

speedups when using GPUs to accelerate metaheuristics. For example, GRASP, ILS and evolution-

ary algorithms have already been adapted to use local search procedures implemented in GPGPU.

Table 1 lists some results available in the literature.

3.2. GPGPU architecture and the CUDA programming model
CUDA has made possible the development of algorithms to solve time-consuming prob-

lems using the large number of parallel multiprocessors as well as the high memory bandwidth
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Author Main contribution Speedup
Krüger et al. (2010) Generic local search

(memetic) algorithm

Between x70 and x120

Fujimoto and Tsutsui (2011) Highly-parallel TSP solver for

a GPU computing platform

Up to x24.2

Coelho et al. (2012) Single Vehicle Routing Prob-

lem with Deliveries and Se-

lective Pickups in CPU-GPU

From x2.73 to x16.23

Rocki and Suda (2012) Accelerating TSP 2 and 3-opt

local search using GPU

From x3 to x26 compared to

parallel CPU w/ 32 cores

Van Luong et al. (2013) GPU computing for parallel

local search algorithms

From x0.5 up to x73.3

Pena et al. (2014) Parallel algorithm for Siting

Observers on Terrain problem

More than x20

Table 1: Speedups obtained when using GPGPUs to accelerate metaheuristics.

provided by GPUs. To accomplish high-performance computing, it is necessary to develop parallel

algorithms that are partially or totally executed on the GPU. The CUDA-enabled graphics cards

are composed of multiple processors, more specifically, Single Instruction Multiple Data (SIMD)

processors called Stream Multiprocessors (SMs), which allow the execution of multiple parallel

threads. Thus, GPU processors can efficiently execute instructions involving operations with data

parallelism, when the same operation is applied to different data.

Depending on the algorithm, GPUs can provide greater processing power than CPUs be-

cause they are specialized in performing parallel tasks involving many calculations. On the other

hand, CPUs are optimized for execution flow control and data cache. The physical difference

between both architectures can be visualized in Figure 2: GPUs dedicate most of their area for

processing units (in green), while CPUs dedicate most of their area for execution control and data

cache (in yellow and orange, respectively).

A CUDA application consists in code that is executed on CPU and functions (called ker-

nels) that are executed on GPU. The GPU is able to do parallel processing by creating threads such

that each thread may execute the kernel operations on different data. This way, the GPU is used

as a coprocessor to perform certain tasks more efficiently than the CPU. The GPU processing units

(CUDA cores) are grouped to share a single instruction unit, so that threads mapped on these cores

execute the same instruction each cycle, but on different data. Each logical group of threads sharing

instructions is called a warp. Moreover, threads belonging to different warps can execute different

instructions on the same cores, but in a different time slot. In practice, CUDA cores are time-shared

between warps, and a group of threads in a warp performs as a SIMD unit.

Moreover, modern GPU architectures relax SIMD constraints by allowing threads in a

given warp to execute different instructions (i.e. if-then-else statements and loop-termination con-

ditions). However, these varying instructions cannot be executed concurrently, since each SIMD

unit must execute the same instruction on all cores. This way, the instructions are serialized in time,

which can severely degrade performance. This situation is called (thread) divergence.

Another major concern about CUDA implementation which greatly impacts performance

is memory access. Bottlenecks can appear not only during data transfer between host (CPU) and

device (GPU) memory, but also during memory access on the device; namely, data locality is very

important. Memory requests exhibiting spatial locality are maximally coalesced. For example, ac-

cesses to addresses i and i + 1 are served by a single memory fetch, as long as they are aligned.

Depending on the accessed addresses, concurrent memory requests from multiple threads from a

warp can exhibit undesired effects. Different threads writing to the same memory address will

exhibit non-deterministic behavior (it is not possible to determine which value will be actually

written). Non-coalesced memory requests (including atomic ones) will be serialized in a nondeter-

ministic order. This last behavior, often called the scattering access pattern, greatly reduces memory
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throughput, since each memory request utilizes only a few bytes from each memory fetch.

The CUDA programming model includes the notion of shared memory and thread blocks,

a reflection of the underlying hardware architecture as shown in Figure 3. All threads in a thread

block can access the same shared memory, which provides lower latency and higher bandwidth

access than global GPU memory but is limited in size. Threads in a thread block may also commu-

nicate with each other via this shared memory.

Figure 2: Basic structure of a typical CPU (left) and GPU (right).

Memory 
type

Access 
latency

Size

Global Medium Big

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

Highly parallel multi-
threaded many core

High memory bandwidth 
compared to CPU

Different levels of memory 
(different latencies)

Figure 3: GPU Memory Hierarchy (Melab et al., 2011).

3.2.1. Modifying the search algorithm to run in the GPU

Figure 4: CUDA local search parallelization scheme (Melab et al., 2011).

Our approach to parallelize the local search procedure followed the Iteration-level Parallel

Model (Van Luong et al., 2013). As can be seen on Figure 4, the evaluation of the neighborhood is

made in parallel. At the beginning of each iteration, the master thread, that runs on the CPU, makes

the current solution available to all threads of the GPU. Each of them evaluates a specific movement

in the neighborhood of candidates, and the results are returned back to the master.

At this point, it is important to list some optimizations in the Correlation Clustering local

search algorithm that have been applied for the code to run efficiently in the GPU. First of all, the

graph had to be stored in Compressed Sparse Row format (Figure 5), in order to save space and
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Figure 5: Using the Compressed Sparse Row (CSR) format to store graph’s adjacency matrix. This rep-

resentation consists of two arrays. The column indices array is a concatenation of each vertex’s adjacency

list into an array of m elements. The row offsets array is an n + 1 element array that points at where each

vertex’s adjacency list begins and ends within the column indices array.

avoid unnecessary data transfers between host (CPU) and device (GPU) memory. Also, since it

is impossible to store the graph in shared memory (shared memory size is limited to 48kB), the

graph is copied to the (slower) GPU global memory. It is then used to calculate matrices that

contain the sum of edge weights between vertex i and every cluster k in the current solution. As

we are processing a signed graph, there are 2 sum matrices: one for positive edges and the other

for negative edges (positiveSum and negativeSum, respectively). These matrices, also stored

in GPU global memory, contain all the information needed to evaluate the imbalance of a new

clustering configuration, without the need to traverse the graph, thus saving GPU memory accesses

and execution time.

3.3. CUDA local search kernel implementation
Algorithm 1: 1OptLocalSearchKernel

1 Input: positiveSum[], negativeSum[], cluster[], currentImbalance, number of clusters (c), vertices (n)

2 Output: destImbalance[]

3 i = idx mod n; → The number of vertex i is derived from each thread’s unique identifier (idx)

4 k2 = idx div n; → Vertex i is being moved to cluster k2
5 if (i ≤ n and k2 ≤ c+ 1)

6 k1 = cluster[ i ]; → obtains the cluster number of vertex i
7 /* calculates only the difference in positive and negative imbalance */

8 positiveSum = - positiveSum[ i+ k2× n ] + positiveSum[ i+ k1× n ];

9 negativeSum = - negativeSum[ i+ k1× n ] + negativeSum[ i+ k2× n ];

10 destImbalance[ idx ] = currentImbalance + positiveSum + negativeSum;

Algorithm 1 presents the kernel pseudocode for CUDA CC 1-opt local search kernel and

Figure 6 summarizes the work executed. Each thread running in the GPU (uniquely identified by

idx) is responsible for calculating the delta of imbalance caused by moving a specific vertex i to a

different cluster, for example, in the range k1 to kc. Afterwards, another kernel performs a reduction

of the results, also in parallel, returning the best move for this specific local search.

Finally, whenever a vertex move is applied due to an improvement in imbalance, a third

CUDA kernel is invoked to update the clustering configuration and the vertex-cluster edge-weight-

sum arrays (positiveSum and negativeSum) after a change in the clustering. This update is a

necessary step to allow the execution of the Variable Neighborhood Descent procedure, that is,

invoking the 1-opt local search procedure again (new local search iteration), as long as the obtained

clustering solution brings an improvement in imbalance.

4. Experimental results
The algorithms described in the previous section were implemented in ANSI C++ and

"C for CUDA V6.5" (NVIDIA, 2015) programming environment. All experiments were performed

(with exclusive access) on a workstation with an Intel Core i7 QuadCore processor @3.40GHz (only

one CPU core used), 32GB of RAM and NVIDIA Tesla K40 GPU (containing 12GB of memory

and 2880 CUDA cores), under Ubuntu Linux 12.04. All heuristic outcomes are average results of

5 independent executions. Speedups are computed by dividing the sequential CPU time with the

parallel time, which is obtained with the same CPU and the GPU acting as a co-processor.

Computational experiments were carried out on (i) a set of 24 random instances, and (ii)

a set of 4 social networks from the literature. Next, we briefly describe these instances1.

1all instances are available in http://www.ic.uff.br/∼ yuri/files/CCinst.zip.
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Figure 6: GPU thread work representation for 1-opt local search. Each thread idx is responsible for moving

vertex i to a different cluster, from k1 to kc, and to a new cluster (kc + 1).

(i) We generated random social networks with n ∈ {400, 600}, varying network density d =
2× |E|/(n2−n) and negative graph density defined here as d− = |E−|/|E|. For each value

of n, we considered a set of 12 random instances having d and d− ranging, respectively, in

sets {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}.

(ii) This set of instances is composed by 4 signed networks extracted from the large scale social

network representing the technology-related news website Slashdot (Leskovec et al., 2010;

Facchetti et al., 2011), containing the first n vertices, with n ∈ {2000, 4000, 8000, 10000}.

4.1. Sequential GRASP vs. Sequential GRASP with CUDA local search
In this section, we present the experiments performed with the sequential GRASP algo-

rithm (SeqGRASP) in its best configuration, available in Drummond et al. (2013), and the sequen-

tial GRASP with CUDA Parallel Variable Neighborhood Descent (SeqGRASP/CUDAVND), when

solving random instances (Table 2) and Slashdot instances (Table 3). Both experiments used the

following set of parameters:

Time limit Alpha Neighborhood Number of iterations without improvement

2 hours α = 1.0 r = 1 iter = 400

4.2. Sequential ILS vs. Sequential ILS with CUDA local search
Here we list the results of the experiments performed with the sequential ILS algorithm

(SeqILS) in its best configuration, available in Levorato et al. (2014), and the sequential ILS with

CUDA Parallel Variable Neighborhood Descent (SeqILS/CUDAVND), when solving random in-

stances (Table 2) and Slashdot instances (Table 3). The following configuration was used in the ILS

procedure.

Time limit Alpha Neighborhood Iterations ILS iterations Perturbation level

2 hours α = 1.0 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 30

5. Concluding remarks
The aim of this paper was to design an efficient parallelization strategy for the implemen-

tation of a parallel local search procedure for the Correlation Clustering problem on GPU. After

applying the procedure, known as CUDAVND, in existing GRASP and ILS metaheuristics for the

CC problem, our experimental results showed significant speedups, outperforming, in processing

time, the local search available in the literature.

The GRASP/CUDAVND algorithm presented an average speedup of x5.1 (up to x14.4)

on random instances and x1.71 (up to x2.01) on Slashdot instances, while the ILS/CUDAVND
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n |E| |E+| |E−| d d− SeqGRASP SeqGRASP/CUDAVND SeqILS SeqILS/CUDAVND
Avg I(P) Avg Time Avg I(P) Gap %I(P) Avg Time Speedup Avg I(P) Avg Time Avg I(P) Gap %I(P) Avg Time Speedup

400 15960 7980 7980 0.1 0.5 5794.8 81.22 5810.8 0.28% 16.43 4.94 5677.5 129.34 5781.2 1.83% 13.00 9.95

400 15960 3192 12768 0.1 0.8 2335.6 131.95 2362.8 1.16% 29.14 4.53 2178.4 371.80 2272.8 4.33% 11.98 31.04

400 31920 25536 6384 0.2 0.2 6384 3.39 6384.0 0.00% 4.06 0.84 6384 5.09 6384 0.00% 22.43 0.23

400 31920 15960 15960 0.2 0.5 12846.8 147.09 12841.6 -0.04% 45.29 3.25 12756.8 200.80 12844.8 0.69% 18.75 10.71

400 31920 6384 25536 0.2 0.8 5329.6 210.57 5356.8 0.51% 56.06 3.76 5145 727.50 5262 2.27% 17.78 40.92

400 79800 63840 15960 0.5 0.2 15960 5.41 15960.0 0.00% 6.36 0.85 15960 11.80 15960 0.00% 34.60 0.34

400 79800 39900 39900 0.5 0.5 34821.2 459.72 34834.8 0.04% 82.55 5.57 34672.8 535.40 34850.8 0.51% 34.95 15.32

400 79800 15960 63840 0.5 0.8 14618.8 853.29 14664.4 0.31% 115.12 7.41 14432.5 1501.91 14580 1.02% 35.78 41.98

400 127680 102144 25536 0.8 0.2 25536 7.84 25536.0 0.00% 9.10 0.86 25536 21.20 25536 0.00% 46.74 0.45

400 127680 63840 63840 0.8 0.5 57426 866.11 57432.8 0.01% 138.10 6.27 57266.8 897.89 57507.2 0.42% 51.00 17.60

400 127680 25536 102144 0.8 0.8 24072.8 1362.00 24123.6 0.21% 170.81 7.97 23888.5 2545.05 24055.2 0.70% 53.74 47.36

600 35940 28752 7188 0.1 0.2 7188 5.85 7188.0 0.00% 6.18 0.95 7188 5.81 7188 0.00% 25.81 0.23

600 35940 17970 17970 0.1 0.5 13922.8 253.88 13915.2 -0.05% 40.84 6.22 13752 329.79 13867.2 0.84% 18.09 18.23

600 35940 7188 28752 0.1 0.8 5734 645.78 5750.8 0.29% 83.92 7.70 5439.5 1322.67 5646 3.80% 16.61 79.63

600 71880 57504 14376 0.2 0.2 14376 7.09 14376.0 0.00% 7.69 0.92 14376 10.13 14376 0.00% 32.26 0.31

600 71880 35940 35940 0.2 0.5 30132 490.38 30152.4 0.07% 95.79 5.12 29964 546.51 30118.8 0.52% 27.20 20.09

600 71880 14376 57504 0.2 0.8 12609.6 1089.83 12651.2 0.33% 126.09 8.64 12316.8 2506.19 12540.8 1.82% 28.21 88.85

600 179700 143760 35940 0.5 0.2 35940 14.79 35940.0 0.00% 13.94 1.06 35940 31.44 35940 0.00% 51.31 0.61

600 179700 89850 89850 0.5 0.5 80697.2 1938.21 80670.0 -0.03% 246.26 7.87 80473 1527.27 80752.8 0.35% 53.49 28.55

600 179700 35940 143760 0.5 0.8 33763.2 3830.44 33848.8 0.25% 267.17 14.34 33478 5218.82 33743.6 0.79% 56.44 92.47

600 287520 230016 57504 0.8 0.2 57504 22.19 57504.0 0.00% 20.26 1.10 57504 63.82 57504 0.00% 70.07 0.91

600 287520 143760 143760 0.8 0.5 132066 3085.51 132176.8 0.08% 433.58 7.12 131810.4 2816.32 132238 0.32% 80.29 35.07

600 287520 57504 230016 0.8 0.8 55115.2 5777.12 55183.2 0.12% 402.15 14.37 54821.2 7134.75 55128.4 0.56% 86.39 82.59

Average - 887.19 - 0.15% 100.86 5.10 - 1186.02 - 0.87% 37.72 27.65

Table 2: SeqGRASP, SeqGRASP/CUDAVND, SeqILS and SeqILS/CUDAVND results for random instances in (i). Number of vertices: n; Avg I(P): average value of the best

solution found; AvgTime: average time spent (in seconds) on 5 executions of each algorithm. Gap %I(P) is the % gap between sequential and CUDA-based heuristics.

Instance SeqGRASP SeqGRASP/CUDAVND SeqILS SeqILS/CUDAVND

n |E−| |E+| w(E−) w(E+) AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup AvgI(P ) AvgT ime AvgI(P ) Gap%I(P ) AvgT ime Speedup

2000 3217 17598 3217 17598 2186.4 136.09 2187.2 0.04% 90.18 1.51 2189.0 27.53 2188.4 -0.03% 25.09 1.10

4000 8664 40868 8664 40868 6202.0 639.30 6204.2 0.04% 325.75 1.96 6206.2 166.21 6204.4 -0.03% 42.59 3.90

8000 22789 86916 22789 86916 16084.6 3039.21 16086.7 0.01% 1513.02 2.01 16072.0 593.51 16091.8 0.12% 118.22 5.02

10000 29805 109266 29805 109266 20586.8 5615.25 20588.4 0.01% 3486.75 1.61 20598.8 1095.63 20617.2 0.09% 160.02 6.85

Average 2357.46 0.02% 1353.93 1.77 470.72 0.04% 86.48 4.22
Table 3: SeqGRASP, SeqGRASP/CUDAVND, SeqILS and SeqILS/CUDAVND results for Slashdot instances in (ii).

1698



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

showed an average speedup of x28 (up to x93) on random instances and x4.2 (up to x6.9) on

Slashdot instances. In both algorithms, the solution quality was equal or close to their sequential

counterparts.

The next step of our work will focus on improving the analysis of larger signed social net-

works. The numerical experience indicates that, in order to handle instances like Epinions (131,828

vertices and 841,372 edges) or Slashdot (82,144 vertices and 549,202 edges) networks, we need to

develop better parallelization strategies. One possible approach is implementing a hybrid applica-

tion, using the parallelism available both in CPU (multicore) and GPU (CUDA).
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