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ABSTRACT
This paper proposes an analysis on the convergence rate of a proximal method called

Proximal Multiplier Algorithm with Proximal Distances (PMAPD), proposed by the authors, ap-

plied to solve convex problems with separable structure. This method unified the works of Chen and

Teboulle (PCPM method), Kyono and Fukushima (NPCPMM method) and Auslender and Teboulle

((EPDM) method, applied to convex problems with linear coupling constraints) and extended the

convergence properties for the class of ϕ−divergence distances. In this work, we present the glo-

bal convergence result of the (PMAPD) algorithm and we prove that, under mild assumptions, its

iterations generated converge linearly to the unique optimal solution of the problem.

KEYWORDS. Proximal multiplier method; Separable structure; Proximal distances.

Main Area: PM Mathematical Programming.

RESUMO
Este artigo propõe uma análise sobre a taxa de convergência de um método proximal

chamado Algoritmo Multiplicador Proximal com Distâncias Proximais (AMPDP), proposto pelos

autores, aplicado para resolver problemas convexos com estrutura separável. Este método unificou

os trabalhos de Chen e Teboulle (método PCPM), Kyono e Fukushima (Método NPCPMM), Aus-

lender e Teboulle (Método (EPDM) aplicado a problemas convexos com restrições de acoplamento

lineares) e estendeu as propriedades de convergência para a classe de distâncias ϕ−divergências.

Neste trabalho, apresentamos o resultado de convergência global do algoritmo (AMPDP) e pro-

vamos que, sob hipóteses adequadas, suas iterações geradas convergem linearmente para a única

solução ótima do problema.

PALAVRAS CHAVE. Método multiplicador proximal; Estrutura separável; Distâncias Pro-
ximais.

Área principal: PM Programação Matemática.
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1. Introduction
In this paper, we are interesting in solving the following separable convex optimization

problem:

(CP ) min{f(x) + g(z) : Ax+Bz = b, x ∈ C̄, z ∈ K̄},
where C ⊂ IRn and K ⊂ IRp are nonempty open convex sets, C̄ and K̄ denote the closure (in the

euclidean topology) of C and K respectively, f : IRn → (−∞,+∞] and g : IRp → (−∞,+∞]
are closed proper convex functions and A ∈ IRm×n, B ∈ IRm×p, b ∈ IRm.

The Lagrangian L(x, z, y) for (CP) is defined by L(x, z, y) : IRn × IRp × IRm → (−∞,+∞],

L(x, z, y) = (f + δC̄)(x) + (g + δK̄)(z) + 〈y,Ax+Bz − b〉.

where δX denotes the indicator function of a subset X, 〈·, ·〉 denotes the canonical inner product,

(f + δC̄)
∗, (g + δK̄)

∗ are the conjugate functions of f + δC̄ and g + δK̄, respectively, and y is the

Lagrangian multiplier associated with the constraint Ax+Bz = b.
In recent decades, a great interest has emerged in studying the separable structure of the problem

(CP). This model has been found in various optimization problems. For example, in Telecommu-

nications, see Mahey et al. (1997); in Management Electricity, see Lenoir (2008); and in computer

science (to solve matrix completion problems), see example 2 of Goldfarb et al. (2013).

In the paper Sarmiento et al. (2015), the authors we consider the problem (CP) and proposed an

algorithm that will be presented in Section 3. This method, called Proximal Multiplier Algorithm

with Proximal Distances (PMAPD), is an extension of the (PCPM) and (NPCPMM) methods (see

Chen and Teboulle (1994), Kyono and Fukushima (2000), respectively), and includes the class of

phi-divergence distances (see Subsection 3.3 of Auslender and Teboulle (2006)), which to our kno-

wledge has not yet been studied in this context. Moreover, the (EPDM) method (applied to convex

problems with linear coupling constraints) is a particular case of our method when in our algorithm

we consider exact iterations and we use the regularized log-quadratic distance (see Section 2 of

Auslender and Teboulle (2001)).

The main result of this paper is to show that the sequence generated by (PMAPD) algorithm con-

verges linearly to the unique optimal solution of the problem (CP). The outline of this paper is as

follows: In Section 2, we will give some results in convex analysis and we will present the class

of proximal distances that we will use along the paper. In Section 3, we will present the Proximal

Multiplier Algorithm with Proximal Distances (PMAPD), and we will show its property of global

convergence. In Section 4, we will analyze the convergence rate of the (PMAPD) algorithm. Fi-

nally, we state some final conclusions in Section 5.

2. Some results in convex analysis and proximal distance
Throughout the paper IRn is the Euclidean space endowed with the canonical inner pro-

duct 〈·, ·〉 and the norm of x given by ||x|| := 〈x, x〉1/2 . For a matrix M ∈ IRm×n we define

‖M‖ := max||x||≤1 ‖Mx‖ . Given an extended real valued function f : IRn → IR ∪ {±∞} we de-

note its domain by dom f := {x ∈ IRn : f(x) < +∞} and its epigraph epi f := {(x, β) ∈ IRn×IR :
f(x) ≤ β}. f is said to be proper, if dom f �= ∅ and for all x ∈ dom f, we have f(x) > −∞. Also

denote by ri(X) the relative interior set of X ⊂ IRn and ∂εf is the ε−subdifferential of f defined

by ∂εf(u) = {p ∈ IRn : f(v) ≥ f(u) + 〈p, v − u〉 − ε, ∀ v ∈ dom f }.
Finally, f is a lower semicontinuous function if for each x ∈ IRn we have that all {xl} such that

liml→+∞ xl = x implies that f(x) ≤ lim inf l→+∞ f(xl). It is easy to prove that the lower semicon-

tinuity of f is equivalent to the closedness of the lower level set Lf (α) = {x ∈ IRn : f(x) ≤ α},

for each α ∈ IR. Recall that if f is a proper convex function, then f is closed if and only if f is

lower semi-continuous.
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2.1. Proximal Distances
In this subsection, we present a variant of the definition of the proximal distance and

induced proximal distance, introduced by Auslender and Teboulle (2006).

Definition 1 A function d : IRn × IRn → IR+ ∪ {+∞} is called proximal distance with respect to
an open nonempty convex set C ⊂ IRn if for each y ∈ C it satisfies the following properties:

(i) d(·, y) is proper, closed, convex on IRn and continuously differentiable on C;

(ii) dom d(·, y) ⊂ C̄ and dom ∂1d(·, y) = C, where ∂1d(·, y) denotes the classical subgradient
map of the function d(·, y) with respect to the first variable;

(iii) d(·, y) is coercive on IRn (i.e., lim||u||→∞ d(u, y) = +∞).

(iv) d(y, y) = 0.

We denote by D(C) the family of functions satisfying this definition.

Definition 2 Given d ∈ D(C), a function H : IRn × IRn → IR+ ∪ {+∞} is called the induced
proximal distance to d if there exists γ ∈ (0, 1] with H a finite valued on C × C and such that for
each a, b ∈ C, we have

(Ii) H(a, a) = 0.

(Iii) 〈c− b,∇1d(b, a)〉 ≤ H(c, a)−H(c, b)− γH(b, a), ∀ c ∈ C.

We write (d,H) ∈ F(C) to the proximal and induced proximal distance that satisfies the premises

of Definition 2.

We denote (d,H) ∈ F(C̄) if there exists H such that:

(Iiii) H is finite valued on C̄× C satisfying (Ii) and (Iii), for each c ∈ C̄.

(Iiv) For each c ∈ C̄, H(c, ·) has level bounded sets on C.

Finally, we write (d,H) ∈ F+(C̄) if

(Iv) (d,H) ∈ F(C̄).

(Ivi) ∀ y ∈ C̄ and ∀ {yk} ⊂ C bounded with limk→+∞H(y, yk) = 0, we have limk→+∞ yk = y.

(Ivii) ∀ y ∈ C̄ and ∀ {yk} ⊂ C such that limk→+∞ yk = y, we obtain limk→+∞H(y, yk) = 0.

Several examples of proximal distances which satisfy the above definitions, for example Breg-

man distances, proximal distances based on ϕ−divergences, self-proximal distances, and distances

based on second order homogeneous proximal distances, were given by Auslender and Teboulle

(2006).

The following additional conditions on H will be useful to prove the convergence of (PMAPD)

algorithm.

Given (d,H) ∈ F+(C̄), H satisfies the following condition:

(Iviii) ∀ c ∈ C̄ and ∀ {yk} ⊂ C such that limk→+∞ yk = y, we have limk→+∞H(c, yk) = H(c, y).

Some examples of proximal distances which satisfy this condition, were showed by Sarmiento,

Quiroz and Oliveira (2015).
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3. The (PMAPD) algorithm
In the proposed algorithm we used the class of proximal distances (d0, H0) ∈ F+(C̄),

(d′0, H ′
0) ∈ F+(K̄), satisfying the condition (Iviii) and given μ > 0, μ′ > 0 we defined the following

functions:

d(x, y) = d0(x, y) + (μ/2) ‖x− y‖2 , H(x, y) = H0(x, y) + (μ/2) ‖x− y‖2 , (1)

d′(x, y) = d′0(x, y) + (μ′/2) ‖x− y‖2 , H ′(x, y) = H ′
0(x, y) + (μ′/2) ‖x− y‖2 . (2)

It is easy to check that (d,H) ∈ F+(C̄) and (d′, H ′) ∈ F+(K̄) (for the same value of γ and γ′

respectively) and both satisfy the condition (Iviii).

The algorithm, which will be called Proximal Multiplier Algorithm with Proximal Distances (PMAPD)

is as follows:

(PMAPD) Algorithm

Step 0. Choose two pairs (d0, H0) ∈ F+(C̄), (d′0, H ′
0) ∈ F+(K̄) satisfying the condition (Iviii)

and define (d,H), (d′, H ′) given by (1) and (2) respectively. Take three sequences ak ≥ 0, bk ≥ 0
and λk > 0 and choose an arbitrary starting point (x0, z0, y0) ∈ C× K× IRm.

Step 1. For k = 0, 1, 2, . . ., calculate pk+1 ∈ IRm by

pk+1 = yk + λk(Ax
k +Bzk − b). (3)

Step 2. Find (xk+1, υk+1) ∈ C× IRn and (zk+1, ξk+1) ∈ K× IRp such that

υk+1 ∈ ∂akf
k(xk+1), υk+1 + λ−1

k ∇1d(x
k+1, xk) = 0, (4)

ξk+1 ∈ ∂bkg
k(zk+1), ξk+1 + λ−1

k ∇1d
′(zk+1, zk) = 0. (5)

where the functions fk : IRn → (−∞,+∞] and gk : IRp → (−∞,+∞] are defined by fk(x) =
f(x) + 〈pk+1, Ax〉 and gk(z) = g(z) + 〈pk+1, Bz〉, respectively.

Step 3. Compute

yk+1 = yk + λk(Ax
k+1 +Bzk+1 − b). (6)

Stopping criterion: If xk+1 = xk, zk+1 = zk and yk+1 = yk then stop. Otherwise to do k :=
k + 1, and go to Step 1.

In the paper Sarmiento et al. (2015), the following results were obtained

Theorem 3.1 Let d0 ∈ D(C) and d′0 ∈ D(K) be proximal distances that satisfy the premises of
Definition 1. Suppose that the problem (CP) has an optimal solution (x∗, z∗) and a corresponding
Lagrange multiplier y∗ and there exist x ∈ ri(dom d(·, v)) ∩ ri(dom f) and z ∈ ri(dom d′(·, v′))∩
ri(dom g) such that Ax+Bz = b. Then, for any (xk, zk, yk) ∈ C× K× IRm, λk > 0, there exists
a unique point (xk+1, zk+1) ∈ C× K satisfying (4) and (5).

Theorem 3.2 Let (d0, H0) ∈ F+(C̄), (d′0, H ′
0) ∈ F+(K̄) be a proximal and induced proximal

distance satisfying the condition (Iviii). Suppose that the assumptions of Theorem 3.1 are satisfied
and {ak}, {bk} are sequences nonnegative such that

∑∞
k=0(ak + bk) < ∞. Let {(xk, zk, yk)} be a

sequence generated by (PMAPD) algorithm. If {λk} satisfies

η < λk < c̄− η

for some η ∈ (0, c̄/2) with c̄ := min{
√
γμ

2‖A‖ ,
√
γ′μ′

2‖B‖ } where γ, γ′ are constant defined in Defini-
tion 2, (Iii) and μ, μ′ are positive constant defined in (1) and (2) respectively, then the sequence
{(xk, zk, yk)} globally converges to (x∗, z∗, y∗), with (x∗, z∗) optimal for (CP ) and y∗ be a cor-
responding Lagrange multiplier.
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4. Convergence rate of (PMAPD) algorithm
In this section, we will analyze the global convergence rate of (PMAPD) algorithm. Gold-

farb et al. (2013) presented alternating linearization algorithms based on an alternating direction

augmented Lagrangian approach for minimizing the sum of two convex functions. They showed

that their basic method require at most O(1/ε) iterations to obtain an ε-optimal solution, while their

accelerated version require at most O(1/
√
ε) iterations, with little change in the computational ef-

fort required at each iteration. Independently to the works of Goldfarb et al. (2013), Chen and

Teboulle (1994) developed a proximal decomposition method for convex minimization problems

and they showed that the iterations of their algorithm converge linearly (where they use Euclidean

distance). It is thus natural to ask if our (PMAPD) method, where we use proximal distances, can

get the linear convergence as the works of Chen and Teboulle (1994) and Goldfarb et al. (2013). Be-

low, we answer the question positively but to prove this result we need some additional assumptions

on the problem’s data. Before that, remember the next results.

Remark 1 Let T be a set valued maximal monotone operator on IRn. Following Rockafellar
(1976), we say that the mapping T−1 is Lipschitz continuous at the origin with modulus a ≥ 0, if
there exists a unique solution ū such that 0 ∈ T (ū) and for some τ > 0, we have ‖u− ū‖ ≤ a ‖v‖ ,
whenever v ∈ T (u) and ‖u‖ ≤ τ .
Remember that, the Lagrangian L(x, z, y) is a closed convex-concave function. Therefore, the
set-valued subdifferential mapping S on IRn × IRp × IRm given by

S(x, z, y) = ∂x,zL(x, z, y)× ∂y(−L(x, z, y)) (7)

is maximal monotone, see Rockafellar (1976).

Assumptions. Throughout the section we assume the following assumptions:

(T1) S−1 is Lipschitz continuous at the origin with modulus a ≥ 0.

(T2) The sequence {(xk, zk, yk)} is generated by (PMAPD) algorithm under the approximate cri-

terion

‖xk+1 − x̄k+1‖ ≤ ηk‖xk+1 − xk‖, ‖zk+1 − z̄k+1‖ ≤ ηk‖zk+1 − zk‖ (8)

where x̄k+1, z̄k+1 denote the points obtained in Step 2 of (PMAPD) algorithm, when ak =
bk = 0 ∀k, and ηk ≥ 0 with

∑+∞
k=0 ηk < +∞.

The Assumptions (T1) and (T2) were suggested by Rockafellar (see Rockafellar (1976), p. 100),

to derive the rate of convergence of the proximal method of multipliers. It was used in the work of

Chen and Teboulle (1994) and will also be used here to derive the rate of convergence for (PMAPD)

algorithm.

Also we assume assumptions to the proximal distances (d0, H0) ∈ F+(C̄), (d′0, H ′
0) ∈ F+(K̄).

Remark 2 We consider the proximal distances d, d′ with μ = μ′ = 1, i.e.,

d(x, y) := d0(x, y) + (1/2)‖x− y‖2, d′(x, y) := d′0(x, y) + (1/2)‖x− y‖2.

(T3) Let (x∗, z∗) be an optimal solution for (CP). Then for some k0 ∈ IN , the points x̄k+1, z̄k+1

satisfy

d0(x̄
k+1, xk) ≥ d0(x

∗, xk), d′0(z̄
k+1, zk) ≥ d′0(z

∗, zk), ∀k ≥ k0.
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(T4) The functions ∇1d0(·, u),∇1d
′
0(·, v) are locally Lipschitz continuous with modulus α1, α2

on C and K respectively, that is, for any x0 ∈ C, z0 ∈ K there exist α1 > 0, α2 > 0 and

r1 > 0, r2 > 0 such that

‖∇1d0(x, u)−∇1d0(x̄, u)‖ ≤ α1‖x− x̄‖, ∀x, x̄ ∈ Br1(x0), ∀u ∈ C̄,

‖∇1d
′
0(z, v)−∇1d

′
0(z̄, v)‖ ≤ α2‖z − z̄‖, ∀z, z̄ ∈ B′

r2(z0), ∀v ∈ K̄,

where Br1(x0) := {x ∈ C : ‖x− x0‖ < r1} and B′
r2(z0) := {z ∈ K : ‖z − z0‖ < r2}.

Remark 3 With regard to the assumptions we make the following comments:

1. Note that for problem (CP) we have

S−1(v1, v2, v3) = argmin
x,z

max
y

{L(x, z, y)− 〈x, v1〉 − 〈z, v2〉+ 〈y, v3〉}

and therefore Assumption (T1), considering Remark 1, can be interpreted in terms of the
problem’s data as: there exists a unique saddle point w∗ such that for some τ > 0, we have
‖w − w∗‖ ≤ a ‖v‖, whenever ‖v‖ ≤ τ and w = (x, z, y) ∈ S−1(v1, v2, v3).

2. Note that the use of the same ηk for the approximation criterion (8) is just to simplify notation
in the analysis below. In fact, if one chooses different sequences ηik ≥ 0,

∑+∞
k=0 η

i
k <

+∞, i = 1, 2, then one should simply define ηk = max{η1k, η2k} in (8).
Observe also, that if one has different ki0, i = 1, 2 in Assumption (T3), then one should
simply define k0 = max{k10, k20}.

3. It is clear that ϕ-divergence proximal distances and second order homogeneous proximal
distances satisfy the Assumption (T4) using their definitions, i.e.,

dϕ(x, y) :=

n∑
i=1

yiϕ(
xi
yi
) with ϕ ∈ C2(IR++),

dϕ(x, y) :=

n∑
i=1

y2i ϕ(
xi
yi
)

with ϕ(t) = μp(t) + ν
2 (t− 1)2, ν ≥ μp′′(1) > 0, p ∈ C2(IR++), respectively. We note that

in both cases, ∇1dϕ ∈ C1(IRn
++). Therefore, ∇1dϕ(·, y) is locally Lipschitz continuous.

Remark 4 Given x̄k+1, z̄k+1 defined in (T2). We define ȳk+1 = yk + λk(Ax̄
k+1 +Bz̄k+1 − b).

The subsequent convergence rate analysis follows a line of argument similar to that given by Chen

and Teboulle (1994). Before proving our convergence rate result, we need some previous results.

Lemma 4.1 (Chen and Teboulle (1994), Lemma 3.1) Let F : IRm → (−∞,+∞] be a closed
proper convex function, τ > 0 and define: uk+1 = argminu∈IRm{F (u) + (1/(2τ))‖u − uk‖2}.
Then for any integer k ≥ 0,

2τ [F (uk+1)− F (u)] ≤ ‖uk − u‖2 − ‖uk+1 − u‖2 − ‖uk+1 − uk‖2, ∀u ∈ IRm.

Lemma 4.2 Let F : IRn → IR ∪ (−∞,+∞] be a closed proper convex function and d0 ∈ D(C),
define

v̄k+1 := argmin{F (v) + (1/λk)d(v, v
k)},

where d(x, y) := d0(x, y) + (1/2)‖x− y‖2. Then, for any integer k ≥ 0,

2λk[F (v̄k+1)−F (v)] ≤ ‖vk − v‖2 −‖v̄k+1 − v‖2 −‖v̄k+1 − vk‖2 − 2d0(v̄
k+1, vk) + 2d0(v, v

k).
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Proof: Let ψk(v) := F (v) + (1/λk)d0(v, v
k) + (1/2λk)‖v− vk‖2. By definition of v̄k+1 we have

0 ∈ ∂ψk(v̄
k+1), since F (·) and d0(·, vk) are convex functions, then ψk is strongly convex with

modulus (1/λk) (see, Rockafellar (1976), Proposition 6), it follows that

2λk[ψk(v)− ψk(v̄
k+1)] ≥ ‖v̄k+1 − v‖2, ∀ v, (9)

so, from definition of ψk, we have

2λk

[
F (v̄k+1) +

1

λk
d0(v̄

k+1, vk)− F (v)− 1

λk
d0(v, v

k)

]
≤ ‖vk − v‖2 − ‖v̄k+1 − v‖2 − ‖v̄k+1 − vk‖2.

Therefore

2λk[F (v̄k+1)−F (v)] ≤ ‖vk−v‖2−‖v̄k+1−v‖2−‖v̄k+1−vk‖2−2d0(v̄
k+1, vk)+2d0(v, v

k).

In the next result, we establish two fundamental estimates relating the exact and inexact iterates

from an optimal solution.

Lemma 4.3 Let (d0, H0) ∈ F(C̄), (d′0, H ′
0) ∈ F(K̄) be a proximal and induced proximal dis-

tance that satisfy the premises of Definition 2 and let {(xk, zk, yk)} be the sequence generated by
(PMAPD) algorithm. Then, for any k ≥ 0

(i) ‖x̄k+1 − x∗‖2 + ‖z̄k+1 − z∗‖2 ≤ ‖xk − x∗‖2 + ‖zk − z∗‖2 − {‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2}
−2λk

〈
pk+1 − y∗, Ax̄k+1 +Bz̄k+1 − b

〉
−2[d0(x̄

k+1, xk) + d′0(z̄
k+1, zk)] + 2[d0(x

∗, xk) + d′0(z
∗, zk)];

(ii) ‖ȳk+1 − y∗‖2 ≤ ‖yk − y∗‖2 − {‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2}
−2λk{

〈
y∗ − ȳk+1, Ax̄k+1 +Bz̄k+1 − b

〉
+
〈
ȳk+1 − pk+1, Axk +Bzk − b

〉
}.

Proof: (i) From Step 2 of (PMAPD) algorithm the sequences {x̄k}, {z̄k} are obtained when ak =
bk = 0, so,

x̄k+1 = argmin{fk(x) + δC̄(x) + (1/λk)d(x, x
k)},

z̄k+1 = argmin{gk(z) + δK̄(z) + (1/λk)d
′(z, zk)}.

from Remark 2 and applying Lemma 4.2 twice with the choice F (·) := (fk + δC̄)(·), F (·) :=
(gk + δK̄)(·) at the optimal point x = x∗ and z = z∗ respectively, we obtain

2λk[f
k(x̄k+1)− fk(x∗)] ≤ ‖xk − x∗‖2 − ‖x̄k+1 − x∗‖2 − ‖x̄k+1 − xk‖2

−2d0(x̄
k+1, xk) + 2d0(x

∗, xk),
2λk[g

k(z̄k+1)− gk(z∗)] ≤ ‖zk − z∗‖2 − ‖z̄k+1 − z∗‖2 − ‖z̄k+1 − zk‖2
−2d′0(z̄k+1, zk) + 2d′0(z∗, zk),

adding the above two inequalities and from definition of Lagrangian L, we obtain

2λk[L(x̄
k+1, z̄k+1, pk+1)− L(x∗, z∗, pk+1)] ≤ ‖xk − x∗‖2 + ‖zk − z∗‖2

−(‖x̄k+1 − x∗‖+ ‖z̄k+1 − z∗‖2)
−(‖x̄k+1 − xk‖+ ‖z̄k+1 − zk‖2)
−2[d0(x̄

k+1, xk) + d′0(z̄k+1, zk)]
+2[d0(x

∗, xk) + d′0(z∗, zk)].

(10)

Since (x∗, z∗, y∗) is a saddle point for Lagrangian L(x, z, y), we also have

2λk[L(x
∗, z∗, y∗)− L(x̄k+1, z̄k+1, y∗)] ≤ 0. (11)
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Adding the inequalities (10) and (11) after rearranging terms, we get

‖x̄k+1 − x∗‖2 + ‖z̄k+1 − z∗‖2 ≤ ‖xk − x∗‖2 + ‖zk − z∗‖2 − {‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2}
−2λk

〈
pk+1 − y∗, Ax̄k+1 +Bz̄k+1 − b

〉
−2[d0(x̄

k+1, xk) + d′0(z̄k+1, zk)] + 2[d0(x
∗, xk) + d′0(z∗, zk)].

On the other hand, note that Step 1 of (PMAPD) algorithm and from definition of ȳk+1 we obtain:

pk+1 = argmin{−L(xk, zk, y) + (1/(2λk))‖y − yk‖2}. Then, using Lemma 4.1 twice with the

choice τ = λk, F (y) = −L(xk.zk, y) and F (y) = −L(x̄k+1, z̄k+1, y) respectively, we obtain

2λk[L(x
k, zk, ȳk+1)− L(x̄k, zk, pk+1)] ≤ ‖yk − ȳk+1‖2 − ‖pk+1 − ȳk+1‖2 − ‖pk+1 − yk‖2,

2λk[L(x̄
k+1, z̄k+1, y∗)− L(x̄k+1, z̄k+1, ȳk+1)] ≤ ‖yk − y∗‖2 − ‖ȳk+1 − y∗‖2 − ‖ȳk+1 − yk‖2.

Adding both inequalities and after rearranging terms, we obtain (ii).

Proposition 4.4 Suppose that the assumptions of Lemma 4.3 are satisfied and suppose that {λk}
satisfies η < λk < c̄− η (for all k), for some η ∈ (0, c̄/2) with c̄ := min{

√
γ

2‖A‖ ,
√
γ′

2‖B‖} where γ, γ′

are positive constants related to the d and d′, respectively, in Definition 2. Let (x∗, z∗) an optimal
solution for (PC) and y∗ be a corresponding Lagrange multiplier. Then, for any k ≥ 0

‖w̄k+1 − w∗‖2 ≤ ‖wk − w∗‖2 −D{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2
+‖pk+1 − yk‖2} − 2{d0(x̄k+1, xk)− d0(x

∗, xk) + d′0(z̄k+1, zk)− d′0(z∗, zk)}
(12)

where D := min{1− 4(c̄− η)2‖A‖2, 1− 4(c̄− η)2‖B‖2}.

Proof: We denote w = (x, z, y) with associated norm ‖w‖2 = ‖x‖2 + ‖z‖2 + ‖y‖2. Adding the

inequalities (i)− (ii) of Lemma 4.3, we obtain

‖w̄k+1 − w∗‖2 ≤ ‖wk − w∗‖2 − {‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2} − {‖pk+1 − ȳk+1‖2
+‖pk+1 − yk‖2} − 2{d0(x̄k+1, xk) + d′0(z̄k+1, zk)}
+2{d0(x∗, xk) + d′0(z∗, zk)}+ φ

(13)

where φ := 2λk

〈
ȳk+1 − pk+1, A(x̄k+1 − xk) +B(z̄k+1 − zk)

〉
.

Since ȳk+1 = yk + λk(Ax̄
k+1 + Bz̄k+1 − b) and pk+1 = yk + λk(Ax

k + Bzk − b), using the

inequality (r + q)2 ≤ 2(r2 + q2), we obtain

φ ≤ 4λ2
k‖A‖2‖x̄k+1 − xk‖2 + 4λ2

k‖B‖2‖z̄k+1 − zk‖2. (14)

From (13) and (14), we get

‖w̄k+1 − w∗‖2 ≤ ‖wk − w∗‖2 − (1− 4λ2
k‖A‖2)‖x̄k+1 − xk‖2 − (1− 4λ2

k‖B‖2)‖z̄k+1 − zk‖2
−{‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2} − 2{d0(x̄k+1, xk) + d′0(z̄k+1, zk)}
+2{d0(x∗, xk) + d′0(z∗, zk)}.

(15)

Note that from assumption for λk, we have λk < c̄− η, with c̄ := min{
√
γ

2‖A‖ ,
√
γ′

2‖B‖}, and together

with the definition of γ and γ′ (see Definition 2) and η ∈ (0, c̄/2), we obtain

0 < 1− 4(c̄− η)2‖A‖2 < 1− 4λ2
k‖A‖2, 0 < 1− 4(c̄− η)2‖B‖2 < 1− 4λ2

k‖B‖2.
Therefore, considering D := min{1− 4(c̄− η)2‖A‖2, 1− 4(c̄− η)2‖B‖2} > 0, in the inequality

(15), we obtain

‖w̄k+1 − w∗‖2 ≤ ‖wk − w∗‖2 −D{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2
+‖pk+1 − yk‖2} − 2{d0(x̄k+1, xk)− d0(x

∗, xk) + d′0(z̄k+1, zk)− d′0(z∗, zk)}.
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Lemma 4.5 If the Assumption (T2) holds, then

‖wk+1 − w̄k+1‖ ≤ δk‖wk+1 − wk‖

where δk := ηk max{
√
1 + 2λ2

k‖A‖2,
√

1 + 2λ2
k‖B‖2}.

(16)

Proof: We have

yk+1 = yk + λk(Ax
k+1 +Bzk+1 − b), ‖xk+1 − x̄k+1‖ ≤ ηk‖xk+1 − xk‖,

ȳk+1 = yk + λk(Ax̄
k+1 +Bz̄k+1 − b), ‖zk+1 − z̄k+1‖ ≤ ηk‖zk+1 − zk‖,

then using the inequality (r + q)2 ≤ 2(r2 + q2), we obtain

‖yk+1 − ȳk+1‖2 ≤ 2(ηkλk)
2(‖A‖2‖xk+1 − xk‖2 + ‖B‖2‖zk+1 − zk‖2).

Therefore from assumption (T2) and the definition of δk given in the lemma,

‖wk+1 − w̄k+1‖2 = ‖xk+1 − x̄k+1‖2 + ‖zk+1 − z̄k+1‖2 + ‖yk+1 − ȳk+1‖2

≤ η2k(‖xk+1 − xk‖+ ‖zk+1 − zk‖2)
+2(ηkλk)

2(‖A‖2‖xk+1 − xk‖2 + ‖B‖2‖zk+1 − zk‖2)
≤ η2k{(1 + 2λ2

k‖A‖2)‖xk+1 − xk‖2 + (1 + 2λ2
k‖B‖2)‖zk+1 − zk‖2}

≤ δ2k‖wk+1 − wk‖2.

We can now state and prove our convergence rate result.

Theorem 4.6 Let (d0, H0) ∈ F+(C̄), (d′0, H ′
0) ∈ F+(K̄) be a proximal and induced proximal

distance satisfying the condition (Iviii). Let {(xk, zk, yk)} be a bounded sequence generated by
(PMAPD) algorithm and suppose that the assumptions of Lemma 4.3 and (T1)− (T4) hold and λk

satisfies η < λk < c̄− η (for all k), for some η ∈ (0, c̄/2) with c̄ := min{
√
γ

2‖A‖ ,
√
γ′

2‖B‖}. Then, {wk}
converges linearly to the unique optimal solution w∗ := (x∗, z∗, y∗), that is, there exists an integer
k̄ such that, for all k ≥ k̄

‖wk+1 − w∗‖ ≤ θk‖wk − w∗‖ (17)

where θk ≤
√
a2N+D+a

√
N

2
√
a2N+D

< 1 with D defined in (12) and N := max{4(c̄ − η)2(‖ATA‖2 +

‖BTA‖2) + 2α2η−2, 4(c̄− η)2(‖ATB‖2 + ‖BTB‖2) + 2(α′)2η−2}.

Proof: Under our assumptions, {wk} is bounded and considering

ak = ηk‖xk+1 − xk‖, bk = ηk‖zk+1 − zk‖

we obtain
∑+∞

k=1(ak + bk) < +∞, and therefore Theorem 3.2 holds and {wk} converges to w∗.

We now establish the rate of convergence.

From Step 2 of (PMAPD) algorithm, when ak = bk = 0,

−λ−1
k ∇1d(x̄

k+1, xk) ∈ ∂fk(x̄k+1),

−λ−1
k ∇1d

′(z̄k+1, zk) ∈ ∂gk(z̄k+1),

furthermore,

0 ∈ ∂f(x̄k+1) +AT pk+1 + λ−1
k ∇1d(x̄

k+1, xk)

= ∂f(x̄k+1) +AT ȳk+1 −AT (ȳk+1 − pk+1) + λ−1
k ∇1d(x̄

k+1, xk)
(18)
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0 ∈ ∂g(z̄k+1) +BT pk+1 + λ−1
k ∇1d

′(z̄k+1, zk)

= ∂g(z̄k+1) +BT ȳk+1 −BT (ȳk+1 − pk+1) + λ−1
k ∇1d

′(z̄k+1, zk).
(19)

From Remark 4, we have ȳk+1 = yk + λk(Ax̄
k+1 +Bz̄k+1 − b), then

−λ−1
k (ȳk+1 − yk) = b−Ax̄k+1 −Bz̄k+1. (20)

Furthermore, since

∂xL(x̄
k+1, z̄k+1, ȳk+1) = ∂f(x̄k+1) +AT ȳk+1,

∂zL(x̄
k+1, z̄k+1, ȳk+1) = ∂g(z̄k+1) +BT ȳk+1,

∂y(−L(x̄k+1, z̄k+1, ȳk+1)) = b−Ax̄k+1 −Bz̄k+1.

then from (18), (19), (20) and Definition of S, see (7), we obtain

(πk, σk, ξk) ∈ S(x̄k+1, z̄k+1, ȳk+1)

where πk := AT (ȳk+1 − pk+1)− λ−1
k ∇1d(x̄

k+1, xk), (21)

σk := BT (ȳk+1 − pk+1)− λ−1
k ∇1d

′(z̄k+1, zk), (22)

ξk := −λ−1
k (ȳk+1 − yk). (23)

From Step 1 of (PMAPD) algorithm pk+1 = yk + λk(Ax
k + Bzk − b), and since ȳk+1 = yk +

λk(Ax̄
k+1 +Bz̄k+1 − b) then by subtracting, we obtain

ȳk+1 − pk+1 = λk(A(x̄k+1 − xk) +B(z̄k+1 − zk)). (24)

Substituting (24) in (21)-(23), we get

πk = λkA
T (A(x̄k+1 − xk) +B(z̄k+1 − zk))− λ−1

k ∇1d(x̄
k+1, xk) (25)

σk = λkB
T (A(x̄k+1 − xk) +B(z̄k+1 − zk))− λ−1

k ∇1d
′(z̄k+1, zk) (26)

ξk = −λ−1
k (ȳk+1 − yk). (27)

On the other hand, let (x∞, z∞) be an optimal solution of (CP) with y∞ be a corresponding La-

grange multiplier such that wk = (xk, zk, yk) converges to w∞ = (x∞, z∞, y∞), we have

‖w̄k+1 − w∞‖ ≤ ‖w̄k+1 − wk+1‖+ ‖wk+1 − w∞‖,

since ‖wk+1 − w∞‖ → 0 and by Lemma 4.5, ‖w̄k+1 − wk+1‖ → 0 (k → +∞), then

‖w̄k+1 − w∞‖ → 0, (k → +∞)

using this result, considering the assumption (T3) and taking the limit on both sides of (12), we

obtain

‖x̄k+1 − xk‖ → 0, ‖z̄k+1 − zk‖ → 0, ‖pk+1 − ȳk+1‖ → 0, ‖pk+1 − yk‖ → 0. (28)

From Assumption (T4), ∇1d0(·, u) is locally Lipchitz continuous, and since ‖x̄k+1 − x∞‖ → 0
and ‖xk − x∞‖ → 0 with x∞ ∈ C then, there exist α1 > 0, k′1, k′′1 ∈ IN such that

‖∇1d0(x̄
k+1, xk)−∇1d0(x

k, xk)‖ ≤ α1‖x̄k+1 − xk‖, ∀k ≥ k′′′1 := max{k′1, k′′1},

therefore,

‖∇1d(x̄
k+1, xk)‖ = ‖∇1d0(x̄

k+1, xk) + (x̄k+1 − xk)‖
= ‖∇1d0(x̄

k+1, xk)−∇1d0(x
k, xk) + (x̄k+1 − xk)‖

≤ α‖x̄k+1 − xk‖, ∀k ≥ k′′′1 := max{k′1, k′′1}
(29)
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where α = α1 + 1.

Analogously, there exists α2 > 0, k′2, k′′2 ∈ IN such that

‖∇1d
′(z̄k+1, zk)‖ ≤ α′‖z̄k+1 − zk‖, ∀k ≥ k′′′2 := max{k′2, k′′2}, (30)

where α′ = α2 + 1.
Thus, using (28), (29) and (30) in (25)-(27) with η < λk < c̄− η, we obtain

(πk, σk, ξk) → 0, (k → +∞).

That is, there exist k̈ such that ‖(πk, σk, ξk)‖ < τ for all k ≥ k̈ and using the Assumption (T1) and

the facts that 0 ∈ S(x∗, z∗, y∗) and (πk, σk, ξk) ∈ S(x̄k+1, z̄k+1, ȳk+1), with the choice

w∗ = (x∗, z∗, y∗) v = (πk, σk, ξk),

we obtain

‖w̄k+1 − w∗‖ ≤ a‖(πk, σk, ξk)‖ ∀ k ≥ k̈. (31)

We will estimate the right side of inequality (31). Using the definition of (πk, σk, ξk), the inequality

(r + q)2 ≤ 2(r2 + q2) and (29) - (30), we obtain

‖πk‖2 ≤ (4λ2
k‖ATA‖2 + 2α2λ−2

k )‖x̄k+1 − xk‖2 + 4λ2
k‖ATB‖2‖z̄k+1 − zk‖2, ∀k ≥ k′′′1

‖σk‖2 ≤ 4λ2
k‖BTA‖2‖x̄k+1 − xk‖2 + (2(α′)2λ−2

k + 4λ2
k‖BTB‖2)‖z̄k+1 − zk‖2, ∀k ≥ k′′′2

‖ξk‖2 ≤ 2λ−2
k (‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2).

Therefore, for all k ≥ k′′′3 := max{k′′′1 , k′′′2 }, we obtain

‖(πk, σk, ξk)‖ = ‖πk‖2 + ‖σk‖2 + ‖ξk‖2
≤ Dk{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2}

(32)

where

Dk := max{4λ2
k(‖ATA‖2+‖BTA‖2)+2α2λ−2

k ; 4λ2
k(‖ATB‖2+‖BTB‖2)+2(α′)2λ−2

k ; 2λ−2
k },

since η < λk < c̄ − η, it is clear that Dk ≥ M with M := 2(c̄ − η)−2 > 0. Moreover, since

α > 1, α′ > 1 and considering the definition of N := max{4(c̄ − η)2(‖ATA‖2 + ‖BTA‖2) +
2α2η−2, 4(c̄− η)2(‖ATB‖2 + ‖BTB‖2) + 2(α′)2η−2}, we obtain that Dk < N , and therefore

0 < M ≤ Dk < N. (33)

Now, from (31), (32) and (33), for all k ≥ k̂ := max{k̈, k′′′3 }, we obtain

‖w̄k+1 − w∗‖2 ≤ a2Dk{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2}
< a2N{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2 + ‖pk+1 − yk‖2}

(34)

furthermore, from (12) and Assumption (T3), for all k ≥ k0, we obtain

‖w̄k+1 − w∗‖2 ≤ ‖wk − w∗‖2 −D{‖x̄k+1 − xk‖2 + ‖z̄k+1 − zk‖2 + ‖pk+1 − ȳk+1‖2
+‖pk+1 − yk‖2}

(35)

thus, for ǩ := max{k̂, k0}, multiplying by D and a2N in the inequalities (34) and (35), respectively

and after adding, we obtain

a2N‖w̄k+1 − w∗‖2 +D‖w̄k+1 − w∗‖2 ≤ a2N‖wk − w∗‖2 ∀k ≥ ǩ.

2880



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Defining ν := a
√
N/

√
a2N +D, the latter inequality reduces to

‖w̄k+1 − w∗‖ ≤ ν‖wk − w∗‖ ∀k ≥ ǩ. (36)

But, from Lemma 4.5, we have

‖wk+1 − w̄k+1‖ ≤ δk‖wk+1 − wk‖ = δk‖(wk+1 − w∗) + (w∗ − wk)‖
≤ δk‖wk+1 − w∗‖+ δk‖wk − w∗‖. (37)

Therefore from (36) and (37), we obtain

‖wk+1 − w∗‖ = ‖(wk+1 − w̄k+1) + (w̄k+1 − w∗)‖
≤ δk‖wk+1 − w∗‖+ δk‖wk − w∗‖+ ν‖wk − w∗‖, ∀k ≥ ǩ,

wich proved (17) with θk = ν+δk
1−δk

. Since δk → 0 and

√
a2N +D + a

√
N

2
√
a2N +D

>
a
√
N√

a2N +D
= ν,

for some k̄ ≥ ǩ, we have

1 >

√
a2N +D + a

√
N

2
√
a2N +D

≥ θk.

5. Conclusions
In this paper, we presented the global convergence result of the proximal multiplier method

using regularized proximal distances (PMAPD) and we proved under mild assumptions that its ite-

rations generated converge linearly to the unique optimal solution of the problem.
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Blaise Pascal - Clermont-Ferrand II, 2008.

Mahey, P., Ouorou, A., LeBlanc, L. and Chifflet, J. (1997), A new proximal decomposition

algorithm for routing in telecommunication networks, Networks, vol. 31, p. 227-238.

Rockafellar, R.T. Convex Analysis, Princeton University Press, Princeton New Jersey, 1970.

Rockafellar, R.T. (1976), Augmented Lagrangians and Applications of the Proximal Point Algo-

rithm in Convex Programming, Mathematics of Operations Research, vol. 1, p. 97-116.

Rockafellar, R.T. (1976), Monotone operators and the proximal point algorithm, SIAM Journal on
Control and Optimization, vol. 14, N. 5, p. 877-898.

Sarmiento, O., Quiroz, E.A.P. and Oliveira, P.R. (2015), A proximal multiplier method for sepa-

rable convex minimization, accepted for publication in Optimization Journal.

2881


