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ABSTRACT

A problem of packing unequal circles in a fixed size rectangular container is considered. An 
heuristic is proposed, based in a linear relaxation of a integer mathematical model as approximation of 
the optimal solution of the problem. The circle is considered in a general sense, as a set of points that 
are all the same distance (not necessary Euclidean) from a given point. The aim is to maximize the 
(weighted) number of circles placed into the container or minimize the waste. An integer formulation is 
proposed using a grid approximation of the container and considering the grid nodes as potential 
positions for centers of the circles. The binary variables represent the assignment of centers to the nodes 
of the grid. The packing problem is then stated as a large scale linear 0-1 optimization problem. Valid 
inequalities are used to strengthening the formulation. Numerical results on packing circles and 
octagons are presented to demonstrate the efficiency of the proposed approach.

Keywords. Circle packing. Integer programming. Large scale optimization.
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1. Introduction
Packing problems generally consist of packing a set of items of known dimensions into one or

more large objects or containers to minimize a certain objective (e.g. the unused part of the objects or 
waste). Packing problems constitute a family of natural combinatorial optimization problems applied in 
computer science, industrial engineering, logistics, manufacturing and production processes (E. 
Baltacioglu, J.T. Moore and Hill R.R (2013), I. Castillo, F.J. Kampas and J.D. Pinter (2008),  H.J. Frazer 
and J.A. George (1996))

The circle packing problem is a well studied problem (E.G. Birgin and J.M. Gentil (2010), J.A. 
George (1996), (2009)) whose aim is packing a certain number of circles, each 
one with a fixed known radius inside a container. The circles must be totally placed in the container 
without overlapping. The shape of the container may vary from a circle, a square, a rectangular, etc.

Along with aforementioned applications, circle (sphere) packing problems arise in automated 
radiosurgical treatment planning for treating brain and sinus tumours (J. Wang (1999))]. Radiosurgery 
uses t
target tumor area. For large target regions multiple shots of different intensity are used to cover different 
parts of the tumor. However, this procedure may result in large doses due to overlap of the different 
shots. Optimizing the number, positions and individual sizes of the shots can reduce the dose to normal 
tissue and achieve the require coverage. 

Many variants of packing circular objects in the plane have been formulated as nonconvex 
(continuous) optimization problems with decision variables being coordinates of the centres. The 
nonconvexity is mainly provided by no overlapping conditions between circles. These conditions 
typically state that the Euclidean distance separating the centres of the circles is greater than a sum of 
their radii. The nonconvex problems can be tackled by available nonlinear programming (NLP) solvers, 
however most NLP solvers fail to identify global optima. Thus, the nonconvex formulation of circular 
packing problem requires algorithms which mix local searches with heuristic procedures in order to 
widely explore the search space.  It is impossible to give a detailed overview on the existing solution 
strategies and numerical results within the framework of a single short paper. We will refer the reader to 
review papers presenting the scope of techniques and applications for the circle packing problem (see, H. 
Akeb and M. Hifi (2013), E.G. Birgin and J.M. Gentil (2010), C.O. Lopez and J.E. Beasley (2011 and 
2013), Y.G. Stoyan and G.N. Yaskov (2013) and the references therein).

In this paper we study packing circular-like objects using a regular grid to approximate the 
container. The circular-like object is considered in a general sense, as a set of points that are all the same 
distance (not necessary Euclidean) from a given point. Thus different shapes, such as ellipses, 
rhombuses, rectangles, octagons can be treated the same way by simply changing the norm used to 
define the distance. The nodes of the grid are considered as potential positions for assigning centers of 
the circles. The packing problem is then stated as a large scale linear 0-1 optimization problem. Valid 
inequalities are used to strengthening the original formulation and improve LP-bounds. Reduced costs of 
the LP-solution are used to fix some variables in the original problem to get an approximate integer 
solution. Numerical results on packing circles and regular octagons are presented to demonstrate 
efficiency of the proposed approach.

To the best of our knowledge, the idea to use a grid was first implemented by Beasley (1985) in 
the context of cutting problems. Recently this approach was applied for S.I. Galiev and M.S. Lisafina
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(2013), I. Litvinchev and L. Ozuna (2013 and 2014), Toledo et al (2013) for packing problems. This 
work is a continuation of  I. Litvinchev and L. Ozuna (2014).

2. The Model
Suppose we have non-identical circles Ck of known radius kR , {1,2,... }k K K . Here we 

consider the circle as a set of points that are all the same distance Rk (not necessary Euclidean) from a 
given point. In what follows we will use the same notation Ck for the figure bounded by the circle

assuming that it is easy to understand from the context whether we mean the 
curve or the figure. Denote by Sk the area of Ck. Let at most Mk circles Ck are available for packing
and at least km of them have to be packed. Denote by {1,2..., }i I n the node points of a regular grid
covering the rectangular container. Let F I be the grid points lying on the boundary of the container. 
Denote by ijd the distance (in the sense of norm used to define the circle) between points i and j of the 

grid. Define binary variables 1k
ix if centre of a circle Ck is assigned to the point i ; 0k

ix otherwise. 
In order to the circle kC assigned to the point i be non-overlapping with other circles being 

packed, it is necessary that 0l
jx for ,j I l K , such that ij k ld R R . For fixed i,k let 

{ , : , }ik ij k lN j l i j d R R . Let ikn be the cardinality of ikN : ik ikn N . Then the problem of 
maximizing the area covered by the circles can be stated as follows:

max k
k i

i I k K
S x (1)

subject to
, ,k

k i k
i I

m x M k K (2)

1, \k
i

k K
x i I F , (3)

min , , ,k
k i ijj F

R x d i I k K (4)

1,k l
i jx x for i I , k K , ( , ) ikj l N (5)

{0,1}, ,k
ix i I k K (6)

Constraints (2) ensure that the number of circles packed is between mk and Mk; constraints (3) that at 
most one centre is assigned to any grid point; constraints (4) that the point i can not be a centre of the 
circle kC if the distance from i to the boundary is less than kR ; pair-wise constraints (5) guarantee that 
there is no overlapping between the circles; constraints (6) represent the binary nature of variables.

Similar to plant location problems [21] we can state non-overlapping conditions in a more 
compact form. Summing up pair-wise constraints (5) over ( , ) ikj l N we get

, ik

k l
ik i j ik

j l N
n x x n for i I , k K (7)

Note that constraints similar to (7) were used in [8] for packing equal circles. 
Proposition 1 [13, 15 ]. Constraints (5), (6) are equivalent to constraints (6), (7).
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Thus the problem (1)-(6) is equivalent to the problem (1)-(4), (6), (7). To compare two 
equivalent formulations, let

1 { 0: 1,k l
i jP x x x for i I , k K , ( , ) }ikj l N ,

2
,

{ 0 :
ik

k l
ik i j ik

j l N
P x n x x n for i I , }k K .

Proposition 2 [13, 15 ]. 1 2P P .

As follows from Proposition 2, the pair-wise formulation (1)-(6) is stronger (in the sense of 
[17]) than the compact one. Numerical experiments presented in [14, 15] demonstrate that the pair-wise 
formulation is also computationally more attractive since it provides a tighter LP-bound. Bearing in 
mind these reasons we restrict ourselves by considering below only pair-wise formulations.

By the definition, { , : , }ik ij k lN j l i j d R R and hence if ( , ) ikj l N , then ( , ) jli k N . Thus 
a half of the constraints in (5) are redundant: 

1,k l
i jx x for i I , k K , ( , ) ikj l N

and 

1,l k
j ix x for j I , l K , ( , ) jli k N .

The redundant constraints can be eliminated without changing the quality of LP-bound giving a 
reduced pair-wise non overlapping formulation. In what follows we will assume that the redundant 
constraints are eliminated from (5).
Note that all constructions proposed above, including Propositions 1,2, remain valid for any norm used 
to define a circular-like object. In fact, changing the norm affects only the distance ijd used in the 
definitions of the sets ,ik ikN in the non-overlapping constraints (5). That is, by simple pre-processing 
we can use the basic model (1)-(6) for packing different geometrical objects of the same shape. It is 
important to note that the non-overlapping condition has the form ij k ld R R no matter which norm 
is used.

For example, a circular object in the maximum norm : max { }i iz z is represented by a square, 

taxicab norm 
1
: iz z yields a rhombus. In a similar way we may manage rectangles, ellipses, etc. 

Using a superposition of norms we can consider more complex circular objects. For

: max { , }i i iz z z (8)

and a suitable 0.5 1 we get an octagon, an intersection of a square and a rhombus. In particular 

for 1/ 2 we get a regular octagon.

3. LP-based heuristic
We may expect that the linear programming relaxation of the problem (1)-(6) provides a poor 

upper bound for the optimal objective. For example, for 1K and suitable ,k kM m the point 0.5k
ix for 

all i I may be feasible to the relaxed problem with the corresponding objective growing linearly with 
respect to the number of grid points.

2455



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

To tightening the LP-relaxation for (1)-(6) we consider valid inequalities aimed to ensure that 
no grid point is covered by two circles. Define matrix k

ij as follows. Let 1k
ij for ij kd R , 0k

ij

otherwise. By this definition, 1k
ij if the circle kC centred at i covers point j . The following 

constraints ensure that no points of the grid can be covered by two circles:

1,k k
ij j

k K j I
x i I . (9)

Note that (9) is not equivalent to non-overlapping constraints (5). Constraints (9) ensure that 
there is no overlapping in grid points, while (5) guarantee that there is no overlapping at all. We can treat 
(9) as a relaxed non-overlapping conditions and expect that refining the grid reduces overlapping. The 
valid inequalities (9) hold for any norm used to define the circular object.

Numerical experiments presented in [14, 15 ] demonstrate that aggregating valid inequalities 
(9) to the original problem (1)-(6) improves significantly the value of the corresponding LP-bound.
Moreover, valid inequalities change the structure of the optimal LP-solution. Below, we will use the 
same term LP relaxation (LP-bound) for the problem (1)-(5) as well as for problems (1)-(5), (9) and (1)-
(4), (9). That is along with relaxing integrality constraints (6) we may substitute non-overlapping 
conditions (5) for valid inequalities (9).

Let G be a set of the nodes of an original grid and FG be a set of the nodes of the refined grid 
constructed such, that G FG , i.e. all nodes of the original grid remain the nodes of the refined one. 
Let Gz and FGz be the optimal values of the integer problems (1)-(6) or (1)-(6), (9) obtained for 
corresponding grids ,G FG . Then we have

G FG FGz z lp , (10)

where FGlp is the value of the LP-bound corresponding to the grid FG . Here the first inequality holds 
since we may construct a feasible solution to the problem corresponding to FG by setting 0ix for 
i FG G and leaving all other components equal to G - optimal solution. Thus we can construct LP-
bounds for the original objective using grids different from the original one.

Suppose that a relaxed problem for the grid FG is solved and corresponding reduced costs are 
known. The heuristic algorithm below aimed to reduce the number of variables in integer problem (1)-
(6), (9) by fixing 0ix for the nodes of G with sufficiently negative reduced costs.

LP-based heuristic.

Step 1. For the original grid G define a refined grid FG , G FG , and solve LP-relaxation for the 
grid FG . Let id , i FG be corresponding reduced costs. 

Step 2. Define the set of non-positive reduced costs, { : 0}iFG i FG d .

Step 3. For i FG define scaled reduced costs [0,1]id as follows: /(max )i i i FG id d d

Step 4. For a fixed parameter (0,1)
{ : }iFG i FG d

Step 5. Solve the integer problem (1)-(6), (9) corresponding to the grid G fixing 0ix for 
i FG G .
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4. Computational results
In this section we numerically compare LP-relaxations obtained for different grids and study 

the impact of introducing valid inequalities for the case of packing equal circular objects without the 
limits (2) for the availability of the objects. A rectangular uniform grid of size ( is the space 

) along both sides of the container was 
used to form an initial grid.  The test bed set of 9 instances from [8, Table 3] was used for packing 
maximal number of objects into a rectangular container of width 3 and height 6. All optimization 
problems were solved by the system CPLEX 12.6. The runs were executed on a desktop computer with 
CPU AMD FX 8350 8-core processor 4 Ghz and 32Gb RAM. 

First, we compare linear programming bounds obtained by different grids for circular objects
defined by the Euclidian norm (circles). The LP-bound was calculated for the problem (1)-(4), (9), that 
is non-overlapping constraints (5) were substituted for valid inequalities (9). The following three grids 
were used: original grid of size generated the same way as in [8, Table 3] with n nodes and two
refined grids with / 2n and / 3n nodes obtained by reducing the original grid size to / 2 and /3 ,
respectively. The results of the numerical experiment are given in Table 1. Here the first three columns 
show the characteristics of the instances, number of instance, radius R used to define the circular object
and original size of the grid , the four column show the optimal integer solution Iz obtained for the 
grid . The rest of the columns give the number of grid points ( n ), value of the corresponding LP-
relaxation ( LPz ) and CPU time (in seconds).

# R Iz n LPz CPU / 2n LPz CPU / 3n LPz CPU

1 0.5 0.125 18 697 19 0 2673 18.06 3 8017 18.14 23

2 0.625 0.078125 10 1403 10 1 5445 10 38 16333 10 390

3 0.5625 0.0625 13 2449 14.07 5 9577 13.96 130 28729 13.7 1500

4 0.375 0.09375 32 1425 36.33 0 5537 34.54 10 16609 34.75 88

5 0.3125 0.078125 45 2139 53.4 1 8357 50.76 23 25069 50.77 350

6 0.4375 0.546875 21 3666 23.86 5 14399 24.01 200 43195 24.19 3400

7 0.25 0.0625 74 3649 90.98 2 14337 85.76 180 43009 85.24 3100

8 0.275 0.06875 61 2880 72 2 11289 67.78 70 33865 67.52 1100

9 0.1875 0.046875 140 6897 152.9 35 27233 151.8 3401 81697 151.8 3591

Table 1. LP-bounds for circles

In the second part of the experimentation, we compare the best bounds obtained using the 
original model integer with the bounds obtained with the heuristic, the objective is prove if the bounds 
obtained with the heuristic are of quality similar. Table 2 provides results obtained by the heuristic 
proposed in the previous section for 0.1 and the grid with / 2n nodes used to form the relaxed 
problem.  Here the first four columns present instance number, number of integer variables n
corresponding to the original grid, optimal integer solution Iz and the corresponding CPU time. For all 
integer problems in Table 2 mipgap = 0 was set for running CPLEX. Computations to get integer 
solution Iz were interrupted after the computational time exceeded 12 hours CPU time and the value in 
parenthesis gives the corresponding mipgap. More details on getting Iz one can find in [15]. The last 
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three columns give the number of integer variables in the reduced problem ( reducedn ), corresponding 
integer solution ( Hz ) and CPU time. For the heuristic the time limit was set to 1 hour CPU.

# n Iz CPU reducedn Hz CPU

1 697 18 1 404 18 0

2 1403 10 41 718 10 4

3 2449 13 186 738 13 9

4 1425 32 4 790 32 1

5 2139 45 114 1372 45 28

6 3666 21 17654 1441 21 130

7 3649 74 (5%) > 12 h. 2491 74 1400

8 2880 61 177 777 61 24 

9 6897 140 (5%) > 12 h. 558 139 (1.3%) 3600

Table 2. Heuristic solutions for circles

Tables 3, 4 present LP-bounds and heuristic solutions obtained for packing regular octagons 
corresponding to 1/ 2 in (7). In both Tables CPU time was limited to 1 hour.

# R Iz n LPz CPU / 2n LPz CPU / 3n LPz CPU

1 0.5 0.125 18    697 19 0 2673 18 12 8017 18 20

2 0.625 0.078125 9 1403 10 1 5445 9.524 37 16333 9.571 450

3 0.5625 0.0625 12 2449 14.0743 3 9577 13.18 140 28729 13.00 1700

4 0.375 0.09375 26 1425 30.9485 0 5537 30.94 9 16609 30.94 80

5 0.3125 0.078125 41 2139 53.4043 1 8357 50 19 25069 49.79 250

6 0.4375 0.546875 20 3666 22.5537 5 14399 22.75 200 43195 22.84 2800

7 0.25 0.0625 72 3649 90.9767 2 14337 81.57 71 43009 83.99 170

8 0.275 0.06875 50 2880 59.014 2 11289 59.03 67 33865 59.21 570

9 0.1875 0.046875 106 6897 134.342 25 27233 134.0 2800 81697 134.0 3487

Table 3. LP-bounds for octagons

As we can see from Tables 1, 3 refining the grid typically (but not always) results in improving 
the LP-bound. However, solving LP-relaxation for fine grids may be computationally too expensive. 
Concerning the quality of the integer solution obtained by the heuristic, we may conclude that in most 
cases (except for the instance 9 for packing circles) the optimal solution was obtained. The use of 
heuristic reduces CPU time significantly. 
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# n Iz CPU reducedn Hz CPU

1 697 18    1 371 18 0

2 1403 9 52 692 9 2

3 2449 12 202 752 12 5

4 1425 26 49 830 26 1

5 2139 41 6850 1383 41 77

6 3666 20 1430 1795 20 59

7 3649 72 22 2261 72 25

8 2880 50 20495 2254 50 (4.8%) 3600

9 6897 106 > 12 h. 5652 106 (5.7%) 3600

Table 4. Heuristic solutions for octagons

Figures 1-4 present optimal packing and grid points left after heuristic node-reduction based on 
reduced costs.

Fig.1. Circles, instance 2 Fig.2. Circles, instance 6
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Fig.3. Octagons, instance 2 Fig.4. Octagons, instance 6

4. Conclusions
An integer formulation and LP-based heuristic were proposed for approximated packing 

circular-like objects in a rectangular container. Different shapes of the objects, such as circles, ellipses, 
rhombuses, rectangles, octagons can be considered by simply changing the norm used to define the 
distance. The presented approach can be easily generalized to the three (and more) dimensional case and 
to different shapes of the container, including irregulars. Valid inequalities are proposed to strengthening 
the original formulation. A heuristic approach is proposed based on analysis of the reduced costs 
obtained by LP-relaxation. An interesting direction for the future research is to study the use of 
Lagrangian relaxation and corresponding heuristics (see I. Litvinchev, S. Rangel and J. Saucedo (2010))
to cope with large dimension of arising problems. 
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