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ABSTRACT
The Compressor Scheduling Problem (CSP) can be considered a variation of the classical

Capacitated Facility Location Problem, with two types of demands and capacities (gas rate and gas

pressure). In the CSP, the objective is to minimize the compressors installation cost and the main-

tenance/energy loss in the pipeline between all wells and the installed compressors. The problem

is characterized by non-linear and non-convex functions. For more efficiency, a piecewise-linear

function is used to approximate the objective value. In this paper, we present a Column Generation

(CG) approach for the CSP to provide tightened lower bounds for the problem. We run experiments

over a set of synthetically generated instances. Experimental results are compared with CPLEX

applied to a compact model and its linear relaxation. The same procedures are used for the Single

Source Capacitated Facility Location Problem with the objective to compare the degree of difficulty

of both problems.

KEYWORDS. Compressor Scheduling Problem, Column Generation, Piecewise-Linear For-
mulation. Main Area: OC, P&G.

RESUMO
O Problema de Escalonamento de Compressores (CSP) pode ser considerado uma

variação do problema clássico de localização de instalações capacitadas, com demandas e capaci-

dades de taxa e volume de gás. O CSP visa minimizar os custos de instalação dos compressores

e de manutenção/perda de energia das tubulações. As funções do problema são não-lineares e

não-convexas. Para mais eficiência, uma função linear por partes é usada para aproximar o valor

objetivo. Nesse artigo é apresentado uma abordagem de Geração de Colunas para o CSP a fim

de obter melhores limitantes inferiores para o problema. São executados experimentos sobre um

conjunto de instâncias geradas artificialmente. Resultados experimentais são comparados com o

CPLEX aplicado ao modelo compacto e sua relaxação linear. Os mesmos procedimentos são usa-

dos para o Problema de Localização de Instalações Capacitadas com Fonte Única, com o objetivo

de comparar o grau de dificuldade de ambos os problemas.

PALAVRAS CHAVE. Problema de Escalonamento de Compressores, Geração de Colunas,
Formulação linear por partes. Área Principal: OC, P&G
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1. Introduction

In the process of oil production, after some time of extraction, the internal pressure of the

wells may not be sufficient to lift the hydrocarbons (mix of oil, gas and water) to the surface. For

this problem, many artificial lifting techniques exist. One of them is called gas-lift, that consists

of continuous injection of high-pressure gas at the bottom of the production tubing with a certain

rate and pressure. Compressors provide the gas, which enters the production tube through valves,

mingling with the oil and making it less dense. Consequently, the hydrocarbons can flow through

the column fluid to the surface. Figure 1 represents the scheme of the gas-lift technique.

Figure 1: Oil well operating gas-lift (Camponogara & Nakashima, 2006).

The gas-lift is a preferable technique due to its robustness, relatively low installation and

maintenance costs, and its wide range of operating conditions (Nakashima & Camponogara, 2006).

For instance, if the fluid contains sand, it can damage lift systems as hydraulic pumps, but this is

not a problem for the gas-lift.

The oil field needs a study and recovery plan for the gas-lift before its exploration, which

establishes the gas-lift injection rates and pressures for the wells along its lifespan to obtain the op-

timal production. However, these rates and pressures are overestimated due the unpredicted events

as compressor failures or dynamic changes in the reservoir conditions. If a compressor needs to

reduce its capacity, there is a loss of energy, and consequently the production cost increases. The

problem in scheduling the gas-lift to the oil wells, minimizing the installation and maintenance

costs, taking into account costs of energy loss, becomes very difficult. The problem was initially

proposed by Huppler (1974) and Dutta-Roy et al. (1997). In Kanu et al. (1981) it is presented an

economic slope as an approach to define the best oil production function of the gas demand, and a

model is proposed for resolving the gas allocation in a field with limited gas. Buitrago et al. (1996)

propose a search algorithm to determine the optimal gas injection to maximize the oil production in

an environment with a given total amount of gas. In Hamedi & Khamehchi (2012) a particle swarm

optimization algorithm and a penalty function are presented for scheduling gas-lift to a group of

oil wells considering the gas pressure. The Compressor Scheduling Problem (CSP) is formulated

as a generalization of the Capacitated Facility Location Problem (CFLP) with capacity and de-

mand constraints and a non-convex objective function proposed by Camponogara & Nakashima

(2006). Based on this model, a column generation approach is proposed in Camponogara & Pluce-

nio (2008). Afterwards the model was improved by Camponogara et al. (2012), where a nonlinear

constraint was replaced by a representation of linear inequalities.
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The CFLP is a classical integer programming problem with a given set of potential facili-

ties and a set of customers. The problem is to locate a subset of facilities in such a way that the total

cost of assigning facilities is minimized when meeting the demands of all customers and respecting

the facility capacities. The Single-Source Capacitated Facility Location Problem (SSCFLP) is the

variation of the CFLP where the customer must be supplied by only one facility. Applications of

the SSCFLP are found in many areas as distribution planning, telecommunications and others. Be-

cause of this, many works to resolve the problem at optimality are presented in the literature. Klose

& Görtz (2006) embedded a Column Generation (CG) approach in a Branch-and-Bound (B&B)

framework for solving the problem exactly. The CG gives improved lower bounds, and the knowl-

edge of a fractional optimal solution of the master problem can be exploited to improve the branch

decision in the B&B framework.

This work implements the column generation for the CSP. Unlike the CG proposed in

Camponogara & Plucenio (2008), our implementation is based on the model proposed by Cam-

ponogara et al. (2012), which has linear constraints and thus tends to be faster than the previously

proposed CG approach. Moreover, a simple procedure that takes advantage of the piecewise-linear

function is applied to handle the approximation on the pricing subproblem.

This paper is organized as follows: Section 2 presents the formalization of the problem

and its piecewise-linear reformulation. Section 3 presents the column generation approach. The CG

is also adapted to the classical SSCFLP to compare the difficulty level between the two problems.

Section 4 presents results to compare the quality of lower bounds and processing times of the CG

considering the compact and relaxed models of CSP and SSCFLP. Finally, in Section 5 we present

conclusions and future perspectives of the work.

2. Problem Definition
The Compressor Scheduling Problem becomes a mixed integer nonlinear problem (MINLP).

For convenience, we present the notation used in the compact model in the Table 1.

Table 1: Notation used in the compact formulation (1a)-(1h).

Symbol Definition

Sets
j ∈ N : Set of all compressors.

i ∈ M : Set of all wells.

j ∈ Ni : Set of compressor that can supply the well i.
i ∈ Mj : Set of wells that can be supplied by compressor j.

Parameters
cj : Installation cost of compressor j.

dj : Energy cost loss of compressor j.

qc,min
j : Minimum gas rate of compressor j.

qc,max
j : Maximum gas rate of compressor j.

α0..4,j : Parameters of discharge pressure of compressor j.

qwi : Gas rate demand of well i.
pwi : Gas pressure demand of well i.
cij : Cost of supply or maintenance between compressor j and well i.
lij : Pressure loss in the pipeline between compressor j and well i.
qc,max
i,j : Max output gas rate of compressor j for well i such that pcj(q

c
j) ≥ pwi + lij .

Variables
yj ∈ {0,1} : Indicates whether compressor j is installed.

xij ∈ {0,1} : Indicates whether the well i is supplied by compressor j.

qcj ∈ R
+ : Gas rate of compressor j.

pcj(q
c
j) ∈ R

+: Discharge pressure with the gas output rate qcj .
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The CSP model is formulated as follows:

Min f =
∑
j∈N

cjyj +
∑
i∈M

∑
j∈Ni

cijxij +
∑
j∈N

djq
c
jp

c
j(q

c
j) (1a)

S.t. : xij ≤ yj , i ∈ M, j ∈ Ni (1b)∑
j∈Ni

xij = 1, i ∈ M (1c)

qcj ≤ qc,max
ij xij + qc,max

j (yj − xij), j ∈ N, i ∈ Mj (1d)

qcj ≥ qc,min
j yj , j ∈ N (1e)∑

i∈Mj

qwi xij ≤ qcj , j ∈ N (1f)

yj ∈ {0, 1}, j ∈ N (1g)

xij ∈ {0, 1}, i ∈ M, j ∈ Ni. (1h)

The objective function f accounts costs for the compressor installation, supply or main-

tenance between compressors and wells, and compressors operation. Constraints sets (1b) and (1c)

are the same of the SSCFLP. The first determines that a well can be supplied only by a compressor

that was installed, and the second imposes that all wells must be supplied. Constraints sets (1d)

and (1e) define the upper and lower limits of the compressor gas rate output. Constraint set (1f)

imposes that the capacity of the compressor must be respected. In the CSP, the right-hand side

(RHS) of this constraint is a variable while in the SSCFLP the RHS is a parameter. Because of the

definition of the parameter qc,max
i,j , the constraint set (1d) is a combination of linear constraints that

replaces the non-linear constraint pcj(q
c
j) ≥ pwi + lij , j ∈ N, i ∈ Mj in the formulation of Cam-

ponogara et al. (2007). This approach ensures that the model (1a)-(1h) has only linear constraints,

and consequently its resolution is expected to be faster than using the previous model.

2.1. Piecewise-Linear Formulation

The CSP is an NP-Hard problem (Camponogara et al., 2012). Because the performance

curve function pressure pcj(q
c
j) = α0,j + α1,jq

c
j + α2,j(q

c
j)

2 + α3,j(q
c
j)

3 + α4,jln(1 + qcj) of a

compressor j is a non-linear and non-convex function, model (1) can be difficult to be solved. A

piecewise-linear function was proposed in (Camponogara et al., 2007; Camponogara & Plucenio,

2008; Camponogara et al., 2012) based on Sherali (2001), to allow the use of techniques and algo-

rithms for linear problems.

We assume that Qj = {(qc,0j , hc,0j ), ..., (q
c,κ(j)
j , h

c,κ(j)
j )} are the points of the compressor j

with the output gas rate and operating cost hj = djq
c
jp

c
j(q

c
j), where:

i) κ(j) is the number of points in the piecewise-linear function;

ii) qc,k−1
j < qc,kj for all k ∈ K(j) = {1, ..., κ(j)};

iii) qc,0j = qc,min
j and q

c,κ(j)
j = qc,max

j to maintain the output gas rate in a feasible range;

iv) hc,kj = djq
c,k
j pcj(q

c,k
j ) to be consistent with the piecewise-linear formulation.

The piecewise-linear formulation of the CSP becomes a mixed-integer linear program
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(MILP) as follows:

Min f1 =
∑
j∈N

cjyj +
∑
i∈M

∑
j∈Ni

cijxij +
∑
j∈N

∑
k∈K(j)

(hc,k−1
j λk,L

j + hc,kj λk,R
j ) (2a)

S.t. Equations (1b) to (1d) (1f) to (1j) (2b)

qcj =
∑

k∈K(j)

(qc,k−1
j λk,L

j + qc,kj λk,R
j ), j ∈ N (2c)

∑
k∈K(j)

zkj = yj , j ∈ N (2d)

λk,L
j + λk,R

j = zkj , j ∈ N, k ∈ K(j) (2e)

λk,L
j , λk,R

j ≥ 0, j ∈ N, k ∈ K(j) (2f)

zkj ∈ {0, 1}, j ∈ N, k ∈ K(j), (2g)

where λk,L
j and λk,R

j are the weights of the left and right points of the segment from qc,k−1
j to qc,kj .

Variable zkj assumes value 1 if qcj is approximated linearly with the points qc,k−1
j and qc,kj , where

qcj = qc,k−1
j λk,L

j + qc,kj λk,R
j .

The objective value of f1 is a lower bound of f due to the piecewise-linear formulation.

The degree of discrepancy between f1 and f can be adjusted by increasing the number κ(j) of linear

segments. This approach needs a numerical analysis to define the optimal number of segments of

each compressor. Increasing the number κ(j) of segments, the number of variables in the model

(2a)-(2g) also increases taking longer to be solved.

3. Column Generation Approach
Solving the compact model (2) directly with a mixed-integer programming solver can

take a long time especially when considering large instances of the CSP. Moreover, the compact

formulation of the MILP may have a weak linear programming relaxation (Barnhart et al., 1998).

An alternative way for producing a lower bound of the CSP efficiently is using a column generation

approach.

3.1. Master problem
We consider a column in CSP as an assignment S of the compressors to wells that is

represented as a pair (y, x), where y = (yj : j ∈ N) and x = (xij : i ∈ Mj , j ∈ Ni) are vectors

associated with the decision variables. The master problem (MP) can be formulated as:

Min
∑
j∈N

∑
S∈M∗

j

cjSλjS (3a)

S.t. :
∑
j∈N

∑
S∈M∗

j

δijSλjS = 1, i ∈ M (3b)

∑
S∈M∗

j

λjS ≤ 1, j ∈ N (3c)

λjS ∈ {0, 1}, j ∈ N,S ∈ M∗
j (3d)

M∗
j ⊆ 2Mj is the set of feasible assignments of the compressor j, where S ∈ M∗

j if
∑

i∈S qwi ≤
qc,max
j and max(

∑
i∈S qwi , q

c,min
j ) ≤ (qc,max

ij : i ∈ S). The cost of the assignment/column is:

cjS = cj +
∑

i∈S cij + dj
∑

i∈S qwi p
c
j(max{∑i∈S qwi , q

c,min
j }). The parameter δijS is set to 1 if

i ∈ S, S ∈ M∗
j , and 0 otherwise. Variable λjS is set to 1 if compressor j is assigned to S, and 0

otherwise. Constraint (3b) ensures that all wells are met, each well by a single compressor. Finally,

constraint (3c) states that is designated at most one assignment to compressor j.
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Solving the master problem (3a)-(3d) with all columns S ∈ M∗
j , j ∈ N , is not efficient

due to the large number of variables, which is potentially exponential, while most of them have zero

value in an optimal solution. Then the CG algorithm starts with an initial subset of columns and

adds others at each CG iteration.

3.2. Initial columns
The model (3a)-(3d) with a subset of columns is called restricted master problem (RMP).

For generating the initial columns for the RMP, we consider the vectors qc[j][c] as the gas rate qcj
of the compressor j in the column c, and δ[j][c][i] is set to one if the well i in the column c of

compressor j is supplied. The pseudo-code to create the initial subset of columns for the CSP is

given in Algorithm 1.

Algorithm 1 Initial RMP of the CSP

1: δ[j][c][i] = 0, for all j, c, and i.
2: for each j ∈ N do
3: int c = 1;

4: qc[j][c] = 0;

5: for each i ∈ Mj do
6: if (qc[j][c] + qw[i] ≤ qc,max[i][j]) then
7: qc[j][c] = qc[j][c] + qw[i];
8: δ[j][c][i] = 1;

9: else
10: c = c+ 1;

11: qc[j][c] = qw[i];
12: δ[j][c][i] = 1;

13: end if
14: end for
15: end for

The algorithm assumes that all qwi ≤ qc,max
j for all j ∈ N, i ∈ M . In this procedure, each

compressor has a minimum number c of columns such that all clients in Mj are supplied at least

once. In Line (6) it is verified if the current column of the compressor j can supply well i. If it

cannot, a new column is initialized for this compressor (lines 10 to 12).

The initial RMP must have a feasible relaxation solution to ensure that proper information

is passed to the subproblems (Barnhart et al., 1998). Then we insert n slack variables λ�
jS with a

large cjS , where δijSλ
�
jS = 1 for all i ∈ M, j ∈ N . Thus, the initial solution is feasible, but using

artificial variables. If we have at least one λ�
jS > 0 at the end of the CG procedure, the solution of

the CSP is infeasible.

3.3. Pricing sub-problem
To add new columns that can improve the solution of RMP, we need to find one with

minimum reduced cost. This procedure is known as pricing sub-problem, where we consider two

vectors (π, μ) as an optimal dual solution of the linear relaxation of the RMP. The π vector is

associated with the constraint set (3b), and the μ vector is associated with the constraint set (3c).

The pricing sub-problem of the compressor j is:

SPj : cj = min
S∈Mj

cjS −
∑
i∈S

πi − μj (4a)

where cj is the least reduced cost of the compressor j. As we do not consider all columns in the

RMP, we need to execute the pricing indirectly, reformulating it as an MILP problem based on the
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model (2). The pricing sub-problem that approximates SPj is:

S̃P j : c̃j = Min : cj − μj +
∑
i∈Mj

(cij − πi)xi +
∑

k∈K(j)

(hc,k−1
j λk,L + hc,kj λk,R) (5a)

S.t. : qcj =
∑

k∈K(j)

(qc,k−1
j λk,L + qc,kj λk,R) (5b)

qcj ≤ qc,max
ij xi + qc,max

j (1− xi), i ∈ Mj (5c)∑
i∈Mj

qwi xi ≤ qcj (5d)

∑
k∈K(j)

zk = 1 (5e)

λk,L + λk,R = zk, k ∈ K(j) (5f)

λk,L, λk,R ≥ 0, k ∈ K(j) (5g)

zk ∈ {0, 1}, k ∈ K(j) (5h)

xi ∈ {0, 1}, i ∈ Mj (5i)

where c̃j is the reduced cost of the S̃P j . The new column is associated with the vector of vari-

ables x. After the execution of model (5a)-(5i) , if c̃j < 0, then the column found can improve the

solution of the RMP and it enters in the basis. Algorithm 2 presents a pseudo-code of an iteration

of the CG.

Algorithm 2 Column Generation procedure

1: repeat
2: Solve the linear relaxation of RMP;

3: (π, μ) = optimal dual solution of the linear relaxation of RMP;

4: for each j ∈ N do
5: Solve S̃P j with (π, μ);
6: if (c̃j < 0) then
7: RMP ← RMP ∪ column generated by S̃P j ;

8: end if
9: end for

10: until (c̃j : j ∈ N) > 0, for all j.

In the Algorithm 2, we first solve the linear relaxation of RMP (line 2). Next, n pricing

sub-problems are solved (line 5) considering the dual values. If at least one pricing has negative

reduced cost, the RMP is executed again, considering the new inserted column(s). This algorithm

runs until all pricing subproblems return a value greater or equal to 0, which means that the solution

of the RMP is optimal and thus it cannot be improved.

Because of the discharge pressure curve characteristic, the standard piecewise-linear for-

mulation of the S̃P j may underestimate the cost of the column. Although the generated column

is feasible for the original pricing (without piecewise-linear formulation), its reduced cost can be

underestimated, and a column entering the RMP, should not enter. This issue is discussed in Cam-

ponogara & Plucenio (2008), although it is not explained how to solve it. This phenomenon during

the execution of the CG procedure may cause the addition of repeated columns. To handle with this

issue, first we calculate the cost of the column taking into consideration the values of qcj and the

variables x found in the S̃P j . Next, we recalculate the reduced cost cj of the column j according to

Equation (4). The cjS represents the actual (not approximated) reduced value of the column. This

procedure is only possible because the value of qcj in the piecewise-linear formulation is exact.
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Table 2: Transformation of SSCFLP instances to CSP instances.

Parameter name SSCFLP CSP

Facility & Compressor
Installation cost: cj cj
Energy cost loss - dj = rand(1, 7)

Capacity bj qc,min
j = bj/rand([bj/l

c], [bj/g
c])

Capacity bj qc,max
j = bj/rand(0.11, 0.44)

Pressure parameter - α0,j =qc,max
j ∗ rand(0.2887, 0.7983)

Pressure parameter - α1,j = rand(−1.215,−0.14)
Pressure parameter - α2,j = α1,j ∗ rand(−0.12,−0.09)
Pressure parameter - α3,j = α1,j ∗ rand(0.0061, 0.0138)
Pressure parameter - α4,j = α1,j ∗ rand(−1.6258,−0.976)
Client & Well
Demand di qwi = di/rand([di/l

w], [di/g
w])

Demand - pwi = rand(0.74, 5)
Client/Well x Facility/Compressor
Supply cost cij cij
Pipeline pressure drops - lij = 0.1

3.4. Column Generation for the Single Source Capacitated Facility Location

The CG procedure for the SSCFLP is similar to the CG for the CSP. For the SSCFLP, the

pricing subproblem consists in the Equation (5) without the last sum of objective value and without

the constraints (5b) to (5c), and (5e) to (5h). The RHS of constraint (5d) is replaced from qcj to

qc,max
j , then the maximum output gas rate of compressor j in CSP is equivalent to the capacity of

the facility j in the SSCFLP. Furthermore, in Algorithm 2, the reduced cost of the column does not

need to be recalculated because no piecewise-linear formulation is used.

4. Computational Results

The Column Generation for the CSP and the SSCFLP were implemented in C++ language

using Cplex API version 12.5.0, and it was compiled with the CMake 2.8.10.1. The application run

in a computer AMD-FX-8150 (8 cores) running at 3.6GHz, and with 32Gb of RAM.

4.1. Instances

There are three sets of synthetic instances used in the computational tests for the CSP and

SSCFLP. Set 1 is composed of 6 instances from Camponogara et al. (2012) and an instance that was

made available by the authors. They have different sizes of n and m. Sets 2 and 3 are instances from

the SSCFLP, and they were extended to CSP based on data from the first instance of Set 1 (called

hereafter as reference instance). Set 2 is composed by instances from Holmberg et al. (1999) and

consists in 12 instances named ‘p13’ to ‘p24’, all with n = 20 and m = 50. Set 3 is composed

by 8 instances from Delmaire et al. (1999), named ‘p34’ to ‘p41’, having n = 30 and m = 60.

All experiments were executed with the number of points κ(j) = 10. For the SSCFLP, we used

only the parameters cj as installation cost and qc,max
j as capacity for the facilities j = 1..n, qwi as

demand for the clients i = 1..m, and cij as assigning cost for j = 1..n and i = 1..m.

Instances from SSCFLP were transformed into CSP instances according to the following

procedure. Let lc and gc be the smaller and higher values of gas rate of all compressors j ∈ N in

the reference instance. Accordingly, let lw and gw be the smallest and highest values of gas rate

demands of all wells i ∈ M in the reference instance. The function rand(x, y) represents a random

value between x and y, where the seed used corresponds to the index of facility/client. Table 2

demonstrates how the instances were transformed.
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4.2. CSP Results
The experimental results for the CSP are presented in Table 3. There are three main

columns. The set of columns indicated by CG, LP and MILP represent results for the column

generation approach, for the integer relaxation of model (2), and for CPLEX resolution of model (2),

respectively. Column Obj represents the objective value of the function at the end of the algorithm,

except when it was stopped due the memory overflow, which is signed by ‘*’. Thus, Obj values

signed with ‘*’ are the objective value in hands when the memory overflow happened. The column

GAP represents the relative deviation (100 |MILP−LB|
LB ) of the MILP integer solution and the

lower bound (LB) found in the columns CG and LP. Column Time(s) corresponds to the total time

in seconds to solve the model. The last row of each set represents the average values.

From the results presented in Table 3, we observe that for the small instances of the Set

1, the MILP model has the best time results. However in the two largest instances of this set, the

running times grow, and the algorithm does not solve the problem before the memory overflow.

In the first instance of this set, the solution found by CG approach is optimal and greater than the

solution obtained by MILP because the first does not use the approximated result of the piecewise-

linear formulation. In the Set 2, the integer solutions were found in about 30 minutes by CPLEX

running the MILP model. This time can be considered derisive for this problem, although the

average time for finding the lower bound in CSP is tiny. For Set 3, no instance could be solved by

the MILP model while the CG algorithm can find the lower bound in approximated 71 seconds.

Comparing results from CSP and LP model, the execution of the second is quick and

faster than the first model in all instances. Nonetheless, the GAP of the lower bound found by the

CSP model is always tighter regarding the integer solution.

4.3. SSCFLP results
Table 4 presents results for SSCFLP when applied on the adapted instances.

The results for the SSCFLP are alike the ones presented in Table 3. Differences can be

found in the two last instances of Set 1, where the MILP model can find the integer solution. The

same happens with the instances ‘p34-p35’ and ‘p37-p41’ of Set 3. Only instance ‘p36’ of this set

has memory overflow before the integer optimal solution is found. In Set 2 we can observe that the

CG algorithm finds the optimal solution in three instances. In Set 3 the lower bound found by the

LP is tighter than the CG lower bound.

For the CSP tests with column generation, the average time spent to solve the relaxation

of RMP is on average 0,09% of the total time, while the pricing sub-problem spends 98,55% of

the total time. Similarly, in the SSCFLP test, the RMP spends on average 0,1% of the time, while

the pricing spends 97,11% of the total time. From these results, one can observe that solving the

subproblems is considerable more time demanding than solving the RMP. Strategies to improve the

sub-problem can be considered for more efficiency.

Finally, we can observe that it is harder to solve CSP than SSCFLP since more variables

and constraints are added due to the piecewise-linear formulation.

5. Conclusion and future works
In this paper, we presented a column generation approach to the compressor scheduling

problem. The results show that the CG can be solved quickly, obtaining good lower bounds.

The CSP is a generalization of the single source capacitated facility location problem, and

in this work we solve both problems with a common set of instances, which were adapted for CSP.

From the results it can be concluded that solving CSP is harder than solving SSCFLP, in the sense

that it takes longer. Moreover, the lower bounds obtained by the column generation approaches are

in most cases better than the straightforward MILP relaxation. Finally, the MILP can take too long

in large instances.

We intend to solve each node of a branch-and-bound algorithm with the CG algorithm,

providing a branch-and-price algorithm to obtain exact solutions for the problem. Furthermore,
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we intend to apply other methods such as Lagrangian decomposition and subgradient method to

improve the bounds provided by column generation. This approach is used for the CFLP (Klose &

Görtz, 2006) and give good results for the CFLP.
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Table 3: CSP Results.

CG LP MILP

I N M Time (s) Obj GAP(%) Time (s) Obj GAP(%) Time (s) Obj

Set 1

1 5 6 0.40 275.6 -0.2783 0.11 266.8 3.0075 0.06 274.9

2 7 16 2.93 420.1 5.8315 0.25 369.5 20.3213 1.47 444.6

3 8 18 5.35 452.2 5.8108 0.14 394.5 21.2808 2.59 478.5

4 9 14 1.90 357.9 1.1218 0.20 325.9 11.0676 0.65 361.9

5 14 20 10.56 424.1 0.1929 0.23 380.4 11.6974 5.21 424.9

6 14 32 24.82 621.8 0.4619 0.59 556.5 12.2501 3,805.30 *624.6

7 31 64 100.66 1084.8 0.9620 2.67 910.3 20.3241 577,801.33 *1,095.3

Avg 20.94 2.0147 0.60 14.2784 83,088.09

Set 2

13 20 50 31.58 18,202.5 0.4170 7.24 14,867.8 22.9395 1,528.90 18,278.4

14 20 50 26.18 15,525.8 0.3588 6.52 12,696.2 22.7257 808.56 15,581.5

15 20 50 29.90 19,424.5 0.4165 7.28 16,069.9 21.3785 1,224.08 19,505.4

16 20 50 34.17 23,216.9 0.3812 7.27 19,269.9 20.9420 3,242.65 23,305.4

17 20 50 30.99 18,202.5 0.4170 7.25 14,867.8 22.9395 1,527.64 18,278.4

18 20 50 26.95 15,525.8 0.3588 6.68 12,696.2 22.7257 809.24 15,581.5

19 20 50 30.15 19,424.5 0.4165 7.23 16,069.9 21.3785 1,224.15 19,505.4

20 20 50 36.27 23,216.9 0.3812 7.24 19,269.9 20.9420 3,247.84 23,305.4

21 20 50 30.15 18,202.5 0.4170 7.19 14,867.8 22.9395 1,528.79 18,278.4

22 20 50 26.99 15,525.8 0.3588 6.58 12,696.2 22.7257 810.21 15,581.5

23 20 50 30.08 19,424.5 0.4165 7.24 16,069.9 21.3785 1,223.91 19,505.4

24 20 50 34.36 23,216.9 0.3812 7.24 19,269.9 20.9420 3,246.85 23,305.4

Avg 30.65 0.3934 7.08 21.9964 1701.90

Set 3

34 30 60 45.35 15,141.8 6.6802 0.82 14,699.0 9.8938 2,319.47 *16,153.3

35 30 60 70.94 18,021.1 4.0883 3.17 15,779.2 18.8771 4,806.56 *18,757.9

36 30 60 74.91 56,364.3 5.7348 1.03 48,777.7 22.1802 3,214.51 *59,596.7

37 30 60 72.38 50,714.1 6.8391 2.35 43,875.7 23.4909 6,071.16 *54,182.5

38 30 60 76.05 62,894.3 5.7509 0.91 53,864.6 23.4786 3,056.54 *66,511.3

39 30 60 81.07 64,117.2 9.8134 2.64 55,655.3 26.5096 3,136.20 *70,409.3

40 30 60 68.28 90,058.4 8.5377 0.64 78,196.7 25.0018 3,733.23 *97,747.3

41 30 60 79.09 205,173.0 7.2696 1.08 169,814.0 22.8428 7,720.41 *220,088.3

Avg 71.01 6.8392 1.58 21.5344 4,257.26
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Table 4: SSCFLP Results.

Set 1 CG LP MILP

I N M Time (s) Obj GAP( %) Time (s) Obj GAP(%) Time (s) Obj

1 5 6 0.07 31.0 0.0000 0.02 29.7 4.3069 0.01 31.0

2 7 16 3.40 23.6 1.6553 0.02 23.9 0.4188 0.19 24.0

3 8 18 5.31 26.1 6.3683 0.11 27.6 0.5225 0.90 27.8

4 9 14 3.10 20.4 6.5751 0.03 21.5 0.8240 0.15 21.7

5 14 20 6.87 25.8 4.3058 0.11 26.4 1.5914 1.35 26.9

6 14 32 16.69 40.5 0.8871 0.11 39.9 2.3703 12.74 40.8

7 31 64 35.63 62.4 3.3778 0.96 63.9 0.9236 4,427.77 64.5

Avg 10.15 3.3099 0.19 1.5654 634.73

Set 2

13 20 50 16.18 12,343.0 0.0000 0.15 11,502.9 7.3034 2.04 12,343.0

14 20 50 12.11 10,349.9 0.1459 0.34 9,727.7 6.5510 1.35 10,365.0

15 20 50 13.39 13,507.7 0.4242 0.27 12,727.7 6.5786 4.09 13,565.0

16 20 50 14.35 16,624.8 0.6448 0.66 15,727.7 6.3855 6.57 16,732.0

17 20 50 17.55 12,343.0 0.0000 0.16 11,502.9 7.3034 1.98 12,343.0

18 20 50 14.32 10,349.9 0.1459 0.23 9,727.7 6.5510 1.34 10,365.0

19 20 50 13.24 13,507.7 0.4242 0.27 12,727.7 6.5786 4.01 13,565.0

20 20 50 15.76 16,624.8 0.6448 0.47 15,727.7 6.3855 6.56 16,732.0

21 20 50 15.38 12,343.0 0.0000 0.16 11,502.9 7.3034 2.09 12,343.0

22 20 50 12.91 10,349.9 0.1459 0.34 9,727.7 6.5510 1.33 10,365.0

23 20 50 14.49 13,507.7 0.4242 0.27 12,727.7 6.5786 4.02 13,565.0

24 20 50 15.56 16,624.8 0.6448 0.49 15,727.7 6.3855 6.66 16,732.0

Avg 14.60 0.3037 0.32 6.7046 3.50

Set 3

34 30 60 28.96 12,972.4 0.4209 1.46 12,748.8 2.1822 53,761.60 13,027.0

35 30 60 26.23 12,879.1 3.9203 1.21 12,872.6 3.9728 86,400.80 13,384.0

36 30 60 36.18 45,488.2 1.0174 1.17 45,513.6 0.9610 14,552.74 *45,951.0

37 30 60 33.84 39,786.5 4.2690 1.60 41,269.6 0.5219 311.22 41,485.0

38 30 60 36.50 50,055.0 1.0109 1.14 50,322.0 0.4749 271.85 50,561.0

39 30 60 43.15 51,963.5 2.5912 1.34 53,034.1 0.5202 19,36.00 53,310.0

40 30 60 41.75 74,491.7 1.1173 1.16 74,927.7 0.5289 51,773.20 75,324.0

41 30 60 59.61 163,100.0 2.2164 1.04 166,473.0 0.1454 4,067.01 166,715.0

Avg 38.28 2.0704 1.26 1.1634 26,634.30

2281


