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ABSTRACT
The qualitative momentum, proposed herein, is used for designing a single perceptron

neuron whose purpose is operate as system of checks and balances of uncertainties, these measured

from similarities and dissimilarities from a pair of western European words, in order to match (or

not) the pair of words. A metric of how doubtful is the classification itself is also presented. The

mechanism to generate myths as counting problems to yield uncertainty is also explained and in-

terpreted. It is established a relation between a comprehensive concept of quality and the classic

Gaussian distribution: suggesting a strong connection between qualitative assessments and Shan-

non’s information theory. This relation is also herein defined as differential quality. The research

results suggest that qualitative momentum may have strong potential for improvements on record

linkage techniques, for example, and on the approach of processes of qualitative nature, such as

decision making problems and qualitative artificial intelligence.

KEYWORDS. Approximate String Matching, Data Quality, Artificial Intelligence.
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1. Introduction
It is undeniable that humanity is living in the age of data science. In text mining, iden-

tifying morphological or semantic similarities of words to obtain useful information from the text

content to issue value judgments is both a technical challenge as well as of scientific interest – for

the ability to handle and understand a content that sometimes embodies shades of a particular cul-

ture. In the Internet social networks, an ideal intelligent agent would have to be able to deal with

ambiguity, noise and even idiosyncrasies of a target group – otherwise its designers have to give up

and build one that only tackles the problem in order to grasp some useful informations . In social

network analysis, monitoring the life cycle of a relationships between entities (from its start up to its

end) may not be easily done since such information may be signaled by unstructured data. So this

information may be not readily available for immediate processing by natural language systems.

Obviously, on a statistical analysis in which enormous sampling is feasible, a marginal technical

improvement might not reflect in any significant leap as far as the achieved knowledge and insights

are concerned. However, there are situations where the noise itself, or the odd, is expected to be

unveiled: a fraudulent transaction or terrorist actions, for instance. In such cases an average has

butterfingers. So the state of the art, skills and huge financial resources must be gathered together.

Usually only large private institutions have the means for such an undertaking. In other cases,

besides the means, only governments have the legitimacy to carry them out.

Regardless of practical needs, even a technology may have its limits. These may be some-

times predicted by the theory that rules the problem’s application field for which such technology

was meant. In other situations, not even a technique exists: the problem remains untouched. How-

ever, from time to time, the application of a scientific concept in one field may pave the way for

technical development in another. So where not even a single possibility does exist, glimmers of

uncertainty may be turned into glimpses of opportunity and may end a past of blindness – even if

the mist that blurs the sight fades away bit by bit.

2. Motivation
The concept of quality is tricky to grasp even in literature or in a dictionary. It appears in

different contexts and fields of knowledge. In the productive environment of goods over decades

up until the 1950s, the concept of product quality was strictly linked to technical perfection (Costa

et al., 2008). In the ISO 9000:2005, quality is the “degree to which a set of inherent characteristics

fulfils requirements”. So quality was also extended into the degree of user satisfaction with products

and services. Where data is a corporate asset, data quality may be seen as adequacy of the data for

use in the successful implementation of business processes of a company (DAMA, 2009).

In the context of pattern recognition for qualitative assignment of numerical scores, Guil

and Marín (2013) use the Shafer’s Theory of Evidence to derive metrics to quantify the degree of

PERCEIVED quality of pattern in a prescriptive fashion. Aggarwal and Yu (2009) point out that the

uncertainty has become an integrant part of data for some data sources: a challenge to data mining

to deal with inherently uncertain data.

In a process of identity resolution (PIR), the quality of data from different sources can

be a determinant factor for its effectiveness and efficiency. It involves both gathering data and the

discovery of new knowledge, or facts, about the entities that are the real source of this data – not

only data sources: the real people. As particular case of PIR, record-linkage is the gathering and

comparison of file records which share some common attributes. Based on these attributes, a record-

linkage technique should decide whether a set of records are related, or not, to the same entity in

the real world. Examples of improved and classic techniques of matching and record-linkage can

be seen in (Bilenko and Mooney, 2002) and (Herzog et al., 2007).

In the Brazilian governmental sphere, Pinto et al. (2013) and Pinto and Carvalho (2014)

address the problem of record linkage, cross-checking data and data quality between personal data

records from governmental nationwide databases, in particular: the records of health insurance con-

tractual data in the Beneficiary Information System under the jurisdiction of National Regulatory
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Agency for Private Health Insurance (Brazil’s Ministry of Health) and the records of taxpayers

in Natural Persons Register under the jurisdiction of Department of Federal Revenue of Brazil

(Brazil’s Ministry of Finance). In the Project of Restructuring the Registry of Beneficiaries of

Health Insurances and Plans, carried out between the years 2008 and 2011, whose efforts, mainly

and especially from 2010, resulted in the identification of 59,7 millions records of private health

insurance beneficiary – due to their consistency to taxpayer information checked by a determinis-

tic methodology and, as a side effect, the Brazilian government was able to assigned the National

Health Card Identification Number to approximately 31 million of private health insurance benefi-

ciaries in the Brazil (Pinto and Carvalho, 2014). In the Brazilian operational research, Pinto and

Carvalho (2014) also suggest that Shannon’s information theory may lead to a better understanding

of the qualitative nature of record-linkage alike processes. They formulate the deontic-epistemic
dilemma1: the existence of “conflicts between the facts and an intelligent agent’s beliefs”, espe-

cially, when comparing personal information such as ID numbers; names and dates of birth from

data records from different jurisdictions.

3. Objectives
Primary Objective: to present a strictly theoretical model that employs Shannon’s entropy

to combine metric distance between strings of characters - in particular those representing western

European words in the Latin alphabet - to obtain a single neuron perceptron with effectiveness

to classify similar pairs of strings (machted) and dissimilar pairs of strings (not-machted). So an

approach to a particular kind of approximate string matching problem. Secondary Objectives: to

argue that entropy measures can be a raw material of a decision processes - not only a quantity to

be maximized or minimized as an optimization parameter. To propose a magnitude that suggests a

connection between a concept of quality and uncertainty by probing the coherence among empirical

prescriptions, mathematical relationships and Shannon’s information theory.

4. Methodology
Discuss briefly the classical concept of Shannon’s information entropy. Explain the pro-

cess of myth variant generation. Give evidence that the weighting of entropies is no novelty, but

tacitly present in scientific literature. Weight these myth variations using the concept of qualitative

momentum and use a perceptron as decision unit to solve the approximate word matching. Tabulate

some pairs of English and Portuguese words for comparison purposes as well as their matching

results, a base line metric and other data of interest.

5. Basic Definitions
N, Z and R are, respectively, the natural (including zero), integer and real number sets.

A string σ is a finite sequence of symbols belonging to a set called alphabet. If a string does not

have symbols, it is denoted by the symbol ε (empty string). |σ| denotes the length of a string σ
– total number of alphabet symbols that makes up the string. Let σ, σ1 and σ2 be strings. Let x
and y be such that x, y ∈ R. L(σ1, σ2) denotes the Levenshtein distance (or edit distance) between

σ1 and σ2, which is the minimum number of edit operations (insertions, deletions or substitutions)

needed to transform σ1 into σ2, or vice versa. σ[i] denotes the i-th letter symbol (from left to

right) of the string σ. If i < 1 or |σ| < i then σ[i] is not defined. The function max(x, y)
denotes the maximum number of x and y. The function min(x, y) denotes the minimum number

of x and y. The function I(σ1, σ2) is the equality number between σ1 and σ2 and is defined as

I(σ1, σ2) = max(|σ1|, |σ2|)−L(σ1, σ2). Φ(z) is an algorithm that returns the absolute value of z,

if z is a number, otherwise returns ∞. See example 5.1. Sx(σ1) is soundex code of σ1. Such code

is also a string. Black (2010) explains that soundex code will be formed by first letter of string σ1

1Pinto and Carvalho (2014) studied role of this dilemma especially when an intelligent agent is facing up the decision

whether to link, or not to unlink, two personal data records whose data are believed to concern the same entity in the

real world. Although the two under assessment records are necessarily from two governmental data sources of different

jurisdictions.

2200



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

composed by three digits, where each digit corresponds to one of six consonant sounds of σ1. Black

(2010) also states that the soundex code was developed for the matching problem due to different

spellings of people’s names in US census records and points out it works best for European names.

Examples of soundex code2 obtained from Portuguese and English words are in table 3 (section 12).

Example 5.1. Let σ1, σ2 and σ3 be strings such that σ1 = abaabcba, σ2 = ε and σ3 = c Then

σ1[6] = c, |σ1| = 8, |σ2| = 0, |σ3| = 1, max(|σ1|, |σ3|) = 8, min(|σ1|, |σ2|) = 0, L(σ1, σ3) = 7,

I(σ1, σ1) = 8, I(σ1, ε) = 0, I(σ1, σ3) = 1, Φ(10) = 10, Φ(−3) = 3 and Φ(−10
0 ) = ∞.

Definition 5.1. Let σ1 and σ2 be strings. The difference indicator function is defined as:

u(σ1, σ2) =

{
0 if L(σa, σb) = 0

1 otherwise
(1)

u function will be useful in the calculation of a degree of uncertainty for the sole fact that

an intelligent agent perceives that σa �= σb.

Definition 5.2. Let σ1 and σ2 be strings. The normalized Levenshtein distance is defined as:

Ln(σ1, σ2) = L(σ1, σ2)/max(|σ1|, |σ2|). (2)

Definition 5.3. N(μ, σ2) denotes a normal Gaussian distribution with mean μ and variance σ2.

6. A Baseline Quality Metric between Strings
In the field of data quality, Heinrich et al. (2007) say that quantifying data quality is

essential for planning quality measures in an economic manner. Montgomery (2009) proposes

three properties that characterize the concept of quality in the production of goods and services.

These three properties are below:

Property 6.1. Quality means fitness for use.

Property 6.2. The quality is inversely proportional to variability.

Property 6.3. The quality improvement processes are characterized by the reduction of variability.

Definition 6.1. The metric for correctness function between two strings σ1 and σ2 is defined as

(Heinrich et al., 2007):
Qc(σ1, σ2) = 1− Ln(σ1, σ2) (3)

The function (3) quantitatively expresses a degree similarity between σ1 and σ2 that may

also be consistent with a qualitative judgement made due to a visual inspection of this pair of strings.

if Q′
c(σ1, σ2) = 1 it is a match such that σ1 = σ2; if Q′

c(σ1, σ2) = 0 then it is undoubtedly a not-

matched, for I(σ1, σ2) = 0. if 0 < Q′
c(σ1, σ2) < 1 then it is consistent with a growing degree of

quality from 0 up to 1 – in which it is considered both the number of editing operations and the size

of the strings. Interestingly, the first attempt of Heinrich et al. (2007) was the following one:

Q′
c(σ1, σ2) =

1

L(σ1, σ2) + 1
(4)

Although Heinrich et al. (2007) do not mention (Montgomery, 2009), it is not hard to see

that the function (4) tries to mimic the property 6.2, since more different characters, or more missing

ones, are perceived between two strings, so the greater the perceived variability is, then the quality

metric should be lower in inversely proportional fashion. On the other hand, this function was ex-

cluded by the following experimental fact: Q′
c(Eissonhour,Eisenhower) = Q′

c(Bird,Hunt) =
0.200. This fact shows that this function is not in compliance to property 6.1. And it is was also

ruled out by Heinrich et al. (2007) for its obviously lack of effectiveness. The table 3 lists some

values for the function (3) when it is applied to other pair of words.

2In this work Sx(ε) results in the string ????, otherwise it behaves according to org.apache.commons.codec.language

(version Soundex.java 1429868 2013-01-07 16:08:05Z ggregory).
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7. Counting Myths and their Variations
An intelligent agent may conjecture while comparing data why he should accept, or not,

them based on system of checks and balances of uncertainties instead of using logic – in the sense

of safeguard the truth – for the agent does not have access to the historical records of the process.

Such historical records would track back to the real world source that would explain the changes

undergone by the data. Instead he may create “new histories” or myths. In classical studies a myth

is a creation account in a narrative style that tries to explain “how something that is so, but was not

the case, began to be” - as “new reality” because of the forgetting of “true history” (Brandão, 2011).

Definition 7.1. A minimal sequence of operations for σ1 and σ2, it is a sequence of editing opera-

tions to transform the string σ1 in σ2, or σ2 in σ1, such that the number of operations is the smallest.

So L(σ1, σ2) is number of operations for such sequence.

Definition 7.2. A maximal sequence of equalities for σ1 and σ2, it is a sequence of equalities

operations between characters of strings, respectively, σ1 and σ2 in which the number of equalities

is the largest and there is a bijection f(i) such that for every σ1[i] = σ2[j] from this sequence then

j = f(i). So I(σ1, σ2) is the largest number of equalities for such sequence.

Definition 7.3. Ω−(σ1, σ2) is the number of permutations of a minimal sequence of operations for

σ1 and σ2. Then Ω−(σ1, σ2) = L(σ1, σ2)!.

Definition 7.4. Ω+(σ1, σ2) is the number of permutations of a maximal sequence of equalities for

σ1 and σ2. Then Ω+(σ1, σ2) = I(σ1, σ2)!.

Example 7.1. To transform the string TIP into PIT it is required at least two distinct editing

operations (denoted by op1 and op2), so 2! (two factorial) possibilities:

Permutations of op1 and op2

TIP
op1−−→ TIT

op2−−→ PIT

TIP
op2−−→ PIP

op1−−→ PIT

Table 1: Permutations of a minimal sequence of operations for TIP and PIT .

Example 7.2. The number of permutations of a maximal sequence of equalities to σ1 = back and

σ2 = bak is 3! (six) permutations.

Permutations of (σ1[1] = σ2[1], σ1[2] = σ2[2], σ1[4] = σ2[3])

(σ1[1] = σ2[1], σ1[2] = σ2[2], σ1[4] = σ2[3])
(σ1[1] = σ2[1], σ1[4] = σ2[3], σ1[2] = σ2[2])
(σ1[2] = σ2[2], σ1[1] = σ2[1], σ1[4] = σ2[3])
(σ1[2] = σ2[2], σ1[4] = σ2[3], σ1[1] = σ2[1])
(σ1[4] = σ2[3], σ1[1] = σ2[1], σ1[2] = σ2[2])
(σ1[4] = σ2[3], σ1[2] = σ2[2], σ1[1] = σ2[1])

Table 2: Permutations of a maximal sequence of equalities for back e bak.

Definition 7.5. An intelligent agent that can know the result of an equality between two strings

may also believe that one of the strings is the original source of the other string. He may consider

exclusively one possibility (σ1 = σ2); or two possibilities (σ1 was transformed into σ2 or σ2 was

transformed into σ1). Ω(σ1, σ2) = 2u(σ1,σ2) stands for this counting.

By construction, Ω+ endorses similarities between strings. Similarly, Ω− endorses dis-

similarities. Ω is a difference detector based on the supposition of pre-existing communication

process. Because Ω+ and Ω− are factorial they are sensitive to the size of strings. These three

functions are the raw material for measuring uncertainties to be weighted in the string matching

process. The values of Ω+, Ω− and Ω can be used for corroboration, or counteraction, and can

be also weighed in a process of acceptance (or rejection). Such processes have rhetorical nature

without being irrational. Each permutation of a sequence is analogous to a variation of the same

myth.
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8. The Shannon’s Entropy as Uncertainty Measure
Definition 8.1. Let 0 < m ∈ N. P is a sequence of m discrete probability distribution functions.

Then P [i] is the i-th discrete probability distribution function of P . P [i]j is the value of the j-th

probability of P [i]. For 1 ≤ ni ∈ N, if ni is the cardinality of the domain of P [i] then
∑ni

j=1 P [i]j =
1. If the results of the experiment P [i] are equally likely then, for the sake of simplicity, P [i] =
1/ni.

Definition 8.2. p is a single discrete probability distribution function with a domain of n outcomes.

Then p is a sequence of one discrete probability distribution function, where pi = P [1]i and n = n1.

If the results are equally likely then, for the sake of simplicity, p = 1/n.

In (Shannon, 1948), choice means the same as discrete probability distribution, since the

outcome itself of probabilistic experiment is irrelevant to calculate uncertainty. However when

Shannon (1948) uses the term outcome it is simply to indicate the cardinality of the domain of

the probability distribution function. So discrete probability distribution function and choice are

interchangeable herein. Shannon (1948) formulated the entropy of a choice p with n possible

outcomes, denoted by H , as an “uncertainty measure” that should satisfy the three properties below:

Property 8.1. “H should be continuous in the pi”.

Property 8.2. “If all the pi are equal, pi = 1/n, then H should be a monotonic increasing function

of n. With equally likely events there is more choice, or uncertainty, when there are more possible

events”.

Property 8.3. “If a choice be broken down into two successive choices, the original H(p) should

be the weighted sum of the individual values of H .”

Theorem 8.1. Let k ∈ R and k > 0. The only family of functions satisfying the properties 8.1, 8.2

and 8.3 is (Shannon, 1948):

H(p) = k
n∑

i=1

pi log(1/pi) (5)

Corollary 8.1. In (Sethna, 2011) a special case of the function (5) where p = 1/n is called counting

entropy, denoted herein by Hc.

H(p) = k
n∑

i=1

1

n
log(

1
1
n

) = k log(n) = k log(1/p) = Hc(p) (6)

The constant k is related to the changing in the base logarithmic function and of estab-

lishing a unit to entropy measurement. For k = 1 and logarithm base 2, the unit of entropy is called

bit (Shannon, 1948) and (Sethna, 2011). Both values are herein the standards.

Example 8.1. Let p, p′, p′′ and p′′′ be choices. p′′ e p′′′ are two successive choices corresponding to

p′ as far as the overall probabilities of the outcomes A1, A2 and A3 are concerned and the outcome

A′ is a precondition to reach p′′′ from p′′. Also if p′′ e p′′′ are repeated over and over expecting

the final outcomes A1, A2 and A3 (A′ is not taken into account as final outcome), 2/3 will be the

weight for the entropy of p′′′ and the weight for entropy of p′′ is 1 as far as uncertainty is concerned.

So it is to say that p′ was broken in p′′ and p′′′. The trees in figure 1 depict the relation among p′′

and p′′′ and also provide further information about these and the other choices.

Property 8.2 is quite intuitive: more equiprobable possibilities, the greater shall be the

uncertainty about the choice: log(2) = H(p) < H(p′) = log(3). Property 8.3 ensures that

H(p′) = log(3) = H(p′′) + 2
3H(p′′′). The understanding lies in modifying a sequence of choices

2203



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

p

A1

p1=1/2

A2

p2=1/2

p’

A1

p’1=1/3

A2

p’2=1/3

A3

p’2=1/3

p”

A1

p”1=1/3

A’

p”2=2/3

p”’

A2

p”’1=1/2

A3

p”’1=1/2

Figure 1: Four choices in tree-like representation: p, p′, p′′ e p′′′.

and their local uncertainty, while conserving final uncertainty since more choices by themselves do

not entail less nor more uncertainty. So the properties of Shannon’s entropy3 4 provide a way to

measure a quantity that may be conserved in some processes involving choices.

9. The Qualitative Momentum
Definition 9.1. Let P a sequence of m discrete probability distribution functions (or choices) and

W a sequence of m real numbers (w1, ..., wi, ..., wm). The qualitative momentum Q(P,W ) is the

weighted uncertainties as following:

Q(P,W ) =

m∑
i=1

wi H(P [i]) (7)

Unlike Shannon entropy, Q(P,W ) may assume negative values. It can be even zero. The

immediate motivation for the definition of the qualitative momentum is that in probability problems

involving the equiprobable event counting, the counting entropy of the original problem can often

be rewritten as multiples of log(n) or by adding or subtracting terms like log(n!), where n ∈ N.

That suggests that the uncertainty of a counting problem can be interpreted as the weighting of the

uncertainties due to other counting problems. The second motivation is provided in section 10.

Example 9.1. Sn
r denotes the number distinct sequences of r selected elements each at a time from

n elements with replacement. Then Sn
r = nr. The counting entropy of p = 1

Sn
r

is the following:

log(Sn
r ) = log(nr) = r · log(n) =

r∑
i=1

log(n) (8)

Example 9.2. Pn denotes the number distinct sequences of n distinct elements. Then Pn = n!.
Cn

k denotes the number of distinct sets of k elements selected from n distinct elements. Then

Cn
k = n!

k!(n−k)! . The counting entropy of p = 1
Cn

k
is the following:

log(Cn
k ) = log(

n!

k!(n− k)!
) = log(PN )− log(PK)− log(PN−K) (9)

In the example 9.2, the negative signed terms are linked to decrease in the counting en-

tropy when growing in absolute figures and the positive signed term are linked to increase in the

counting entropy when growing in absolute figures. Even the share of the term −log(PN−K), in

which N −K can be considered a pseudo parameter A (if A = N −K), can be taken into account

in that way since increasing values of A contribute to the decrease in the net counting entropy.

3See the classic (Verdú, 1998) for an historical perspective on the development of the concept of entropy and further

information.
4So Shannon’s entropy is not a fancy measurement function with a bunch of logarithms that appeared out of thin air.
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The rightmost expressions of the equations (7), (8) and (9) have an analogous formal char-

acteristic: a weighted sum of entropies. However, (7) can never be considered a generalization of

Shannon entropy, equation (5), because a qualitative momentum can be negative. But the expres-

sion (7) may allow us to envision a mathematical model in which possibilities can counteract and

catalyze one another in a decision process – but not annihilate themselves.

Corollary 9.1. Let Q1(P1,W1) and Q2(P2,W2) be qualitative momenta and a1, a2 ∈ R. Then

a1 ·Q1(P1,W1) + a2 ·Q2(P2,W2) is also a qualitative momentum.

10. Differential Entropy, Qualitative Momentum and Quality
Here the concept of differential entropy is used to suggest a relationship between the

differences of entropy and the properties of quality suggested by Montgomery (2009), see section 6.

Definition 10.1. Let X be a continuous random variable with the probability density function (PDF)

pX. The differential entropy of X is (Shannon, 1948) and (Haykin, 2009):

Hdif (X) =

∫ +∞

−∞
pX(x) log(

1

pX(x)
) dx (10)

Example 10.1. The differential entropy of N(μ, σ2) (Shannon, 1948):

Hdif (N(μ, σ2)) = log(
√
2πe · σ) (11)

Definition 10.2. Let X be a continuous random variable with PDF pX. Hx is a discretization process

ruled by x to subject X then pk = pX(xk) ·Δx and the domain of pX(x) is divided into an countably

infinite number of intervals (xk, xk+1) such that xk = k · Δx and Δx → 0+ for all k ∈ Z, such

that (by analogy to equation (5)):

Hx(X) = lim
Δx→0+

+∞∑
k=−∞

pk · log( 1

pk
) (12)

In (Haykin, 2009):

lim
Δx→0+

+∞∑
k=−∞

pk · log( 1

pk
) =

∫ +∞

−∞
pX(x) log(

1

pX(x)
) dx+ lim

Δx→0+
log(

1

Δx
) = Hdif (X) + lim

Δx→0+
log(

1

Δx
) (13)

Haykin (2009) points out that the term limΔx→0+ log( 1
Δx) can be considered as a mere

reference because the entity of interest in stochastic systems studies is the entropy difference be-

tween two terms with the same reference. However the concept of the x ruled processes, proposed

herein, avoids the disadvantage of ignoring limΔx→0+ log( 1
Δx) as a residue when time-like parame-

ters are not a concern, but does not at all exclude time-like parameters from being object of analysis

in other studies.

Example 10.2. Hx is a discretization process ruled by x to subject X and Y. Then:

Hx(X)−Hx(Y) = Hdif (X)−Hdif (Y)+ lim
Δx→0+

log(
1

Δx
)− lim

Δx→0+
log(

1

Δx
) = Hdif (X)−Hdif (Y)+ lim

Δx→0+
log(

Δx

Δx
) =

(14)

= Hdif (X)−Hdif (Y) + lim
Δx→0+

log(1) = Hdif (X)−Hdif (Y) (15)

Example 10.3. Hx is a discretization process ruled by x to subject N(μa, σ
2
a) and N(μ, σ2). Then:

Hx(N(μa, σ
2
a))−Hx(N(μ, σ2)) = Hdif (N(μa, σ

2
a))−Hdif (N(μ, σ2)) = log(

σa

σ
) = log(σa)− log(σ) (16)

2205



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

The concept differential entropy, a well-established concept in literature, necessarily de-

pends on the difference between entropy measures from at leat two PDFs to be mathematically

meaningful. Example 16 is enlightening: the difference between uncertainties arising from normal

gaussian distribution is connected to the standard deviation of these distributions and is indepen-

dent of their means. Furthermore, depending on the values of σa and σ the difference between

differential entropies can be positive, negative or zero, respectively for σa
σ > 1, σa

σ < 1 e σa
σ = 1.

At the end of the section 8, it was reported that the choice of logarithmic base to calculate

entropy is just a matter of choosing the entropy unit of measurement. To use the natural logarithm,

it suffices to multiply the Shannon entropy for 1
log(e) . Let c be a constant such that c = k

log(e) and

0 < k ∈ R and multiplying the equation (16) by c then:

k · Hdif (N(μa, σ
2
a))−Hdif (N(μ, σ2))

log(e)
= k · ln(σa

σ
) (17)

From equation (17), where c = k
log(e) and

lim
σa→σ

k · Hdif (N(μa, σ
2
a))−Hdif (N(μ, σ2))

log(e)
= lim

σa→σ
k · ln(σa

σ
) (18)

then it follows the diferencial equation:

c · dHdif =
k

σ
dσ (19)

Definition 10.3. Q′
dif is a differential quality if, only if, Q′

dif is a quantity such that dQ′
dif =

−c · dHdif . Where 0 < c ∈ R and c is a constant.

Corollary 10.1. Let be N(μ, σ2) and 0 < k
log(e) = c ∈ R. A differential quality Q′

dif for N(μ, σ2)
obeys:

dQ′
dif =

−k

σ
dσ (20)

Let N(μ, σ2) be the model of a process whose standard deviation σ is the metric of vari-

ability and mean μ is the standard of fitness-for-use. Globally Q′
dif always increases as σ decreases,

and vice versa – for σ > 0 and k > 0 always. Locally, σ has an inertial effect on ΔQ′
dif for a small

Δσ. Thus, Q′
dif is partial consistent with the proposition 6.2 in the sense that Q′

dif always decreases

with increase in the variability, but Q′
dif is not inversely proportional to variability. Moreover, the

concept of reducing variability is the concept of quality improvement process, see proposition 6.3.

The concept of μ of an normal gaussian distribution would be consistent property 6.1, as a qual-

ity process decreases the variability then the greater the likehood of achieving the fitness-for-use

vicinities (i.e. reduncing error) as long as there is no μ drifting. So these results suggest that the

relationship dQ′
dif = −c· dHdif is quasi-adherent to the quality properties recommended by Mont-

gomery (2009) as far as N(μ, σ2) is concerned. If k = log(e) then the unit of Q′
dif is the bit since

c = 1 and differential entropy, equation (10), is also in bit units.

It is noteworthy herein that, in the field of cognitive sciences, the rightmost expressions

of equations (17 and 19) are analogous to the negative symmetric of Weber–Fechner law (only

from a formal perspective). This observation suggests a possible connection to the differential

quality of N(μ, σ2), entropy and studies on sensorial perception. For further information on the

Weber–Fechner law, see (Masin et al., 2009).

11. A Perceptron: Matching a Pair of Words
Definition 11.1. Let Q(P,W ) , σa and σa, and w be, respectively, a qualitative momentum, two

strings and w ∈ R such that P [1] = 1/Ω+(σa, σb), P [2] = 1/Ω−(σa, σb), P [3] = 1/Ω(σa, σb),
W = (w,−w,−w). Q(σa, σb, w) is a qualitative dipole for strings σa and σb, if Q(σa, σb, w) =
Q(P,W ). Q(σa, σb) = Q(σa, σb, 1), if w is omitted as a parameter.
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By construction, a qualitative dipole is intuitively a metric that weights uncertainties due

to the similarities and dissimilarities between two strings and also the fact that they strings are

different or the same, as shown by equations (21).

Q(P,W ) = w log(Ω+(σa, σb))− w log(Ω−(σa, σb))− w log(Ω(σa, σb)) = w log(
Ω+(σa, σb)

Ω−(σa, σb)Ω(σa, σb)
) (21)

As a suggestion, the classic supervised learning algorithm of the perceptron may be em-

ployed to search for weights of a qualitative momentum. If the training instances are not linearly

separable, a strategy that combines the pocket algorithm and multiple training (the restart with dif-

ferent synaptic weights chosen at random) may be used in that search. The ADALINE can also

be used, since there is neither morphological nor functional difference from the perceptron. The

sole difference lies in the training algorithm because the first uses the local induced field value and

the second the classification value to calculate the error. Both neural learning classification models

may allow a synaptic weight search that meets both the classification effectiveness and fine-grained

tuning by using low learning rates in the delta rule.

Definition 11.2. Let n ∈ N, n > 0. x = (x1, ..., xi, ..., xn) is an instance, w = (w1, ..., wi, ..., wn)
is the vector of synaptic weights and Σ(w, x) an induced local field function (ILFF) such that

Σ(w, x) =
∑n

i=1wi · xi. ν(w, x) is a single perceptron neuron defined as following:

ν(w, x) =

{
+1 if Σ(w, x) ≥ 0

−1 otherwise
(22)

Definition 11.3. Let Q(σ1, σ2) be a qualitative dipole. νQ(σ1, σ2) is a single neuron perceptron

such that: x is an instance for σ1 and σ2 defined as x = (Q(σ1, σ2), Q(Sx(σ1), Sx(σ2)), 1); w
is the vector of synaptic weights such that w = (12 , 1, 0); νQ = +1 e νQ = −1 are, respectively,

the classification matched, or not-matched, for the pair σ1 and σ2; The ILFF of νQ is denoted as

ΣQ(σ1, σ2) = Σ(w, x). DQ(σ1, σ2) = Φ( 1
ΣQ(σ1,σ2)

) is the doubt degree (a metric of how doubtful

is the classification itself).

Intuitively, νQ(σ1, σ2) weights lexical uncertainties favoring phonetic uncertainties on the

classification process: ΣQ(σ1, σ2) =
1
2Q(σ1, σ2)+Q(Sx(σ1), Sx(σ2)). By the definition 11.1 and

the corollary 9.1 then ΣQ(σ1, σ2) is also a qualitative momentum. DQ(x,w) measures how unsure

the perceptron should be about its own classification. Suppose ΣQ(σ1, σ2) ≈ 0 then in this case

minor changes in one of the strings may be crucial to regard the pair either as matched or not

matched. if ΣQ(σ1, σ2) = 0, although a decision is made, then doubt should be out of scale.

12. Experimenting on Perceptron νQ
Table 3 is the result of a small experiment in order to quantitatively record the results of

computations on approximate string matching using the concepts engendered in the previous sec-

tions. The words in this table are especially from the Portuguese and English languages. Most

from English, though. Columns L, Ln, Qc, Ω
+, Ω−, Ω, ΣQ, DQ and νQ are functions of the

columns σ1 and σ2 (the pair of strings to be classified as matched or not matched), for example:

Ω+ = Ω+(σ1, σ2). In particular, the column Qc is the metric proposed in (Heinrich et al., 2007).

Columns ΣQ, DQ and νQ are respectively the values of the ILFF, the doubt metric and the percep-

tron decision according to definition 11.3. Heinrich et al. (2007) did not explicitly give a threshold

for acceptance or rejection for Qc, however the 19o pair in table 3 was also valued Qc = 0.600 in

(Heinrich et al., 2007). The 19o pair, as far as data quality is concerned, was considered acceptable

too. So, as a baseline to the reader, Qc ≥ 0.600 is a match, otherwise not.

Both Qc and νQ were effective in not matching pairs whose soundex code were totally

different: the 19o and 22o pairs. When the pairs were identical, both methods were equally effective
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in matching them: 7o, 13o, 18o, 23o and 36o. For the pairs mentioned in this paragraph, the lowest

and highest values of DQ were 0, 056 and 0, 218.

For the 9o pair (pile and mile), Qc = 0, 750 e νQ = +1. So it is a false positive for

both. Such occurrence was expected since no semantic analysis is made. But it is noteworthy that

DQ = 0, 421.

From the 31o up to the 36o pair, there are only comparisons with a well-know English (or

American) name Jessica with its Portuguese homophonic versions, excepted for the 36o pair which

is a matched by lexical equality. For these 6 pairs, νQ classifies 5 as matched while Qc, 4. The 31o

pair might be an outlier because DQ = 0, 535 and a higher value was expected. Two plausible

computational explanations are the low capacity of the soundex algorithm to deal with vowels;

and the employed edit distance algorithm considers an alphabetic letter and its diacritically-marked

version5 as different as two distinct alphabetic letters. In other words: the low ability to create

myths figuring diacritic marks and vowel sounds. For 40o pair (σ1 = Jessica and σ2 = Celina)

both are names have the same vowel letter sequence (i.e. e-i-a) and DQ = 0, 197 what is consistent

with original purpose of soundex coding algorithm to privilege consonant letters.

At last, for DQ ≥ 1, there are four pairs: 8o, 14o, 32o e 39o. it is noteworthy that either

are pairs of homophones, whose spelling is quite different, or of quite misspelt words.

Table 3: The experimental results: the perceptron νQ, the baseline Qc and other data.
No σ1 σ2 Sx(σ1) Sx(σ2) |σ1| |σ2| L Ln Qc Ω+ Ω− Ω ΣQ DQ νQ

1o cocho coxo C200 C200 5 4 2 0,400 0,600 6 2 2 4,877 0,205 +1

2o nós noz N200 N200 3 3 2 0,667 0,333 1 2 2 3,585 0,279 +1

3o xeque cheque X200 C200 5 6 2 0,333 0,667 24 2 2 2,877 0,348 +1

4o cacei cassei C200 C200 5 6 2 0,333 0,667 24 2 2 5,877 0,170 +1

5o cacei xeque C200 X200 5 5 5 1,000 0,000 1 120 2 -2,368 0,422 -1

6o conselho concelho C524 C524 8 8 1 0,125 0,875 5040 1 2 10,235 0,098 +1

7o conselho conselho C524 C524 8 8 0 0,000 1,000 40320 1 1 12,235 0,082 +1

8o ship cheap S100 C100 4 5 3 0,600 0,400 2 6 2 0,292 3,419 +1

9o pile mile P400 M400 4 4 1 0,250 0,750 6 1 2 2,377 0,421 +1

10o hear here H600 H600 4 4 2 0,500 0,500 2 2 2 4,085 0,245 +1

11o replace replacements R142 R142 7 12 5 0,417 0,583 5040 120 2 6,781 0,147 +1

12o I Z I000 Z000 1 1 1 1,000 0,000 1 1 2 1,085 0,922 +1

13o I I I000 I000 1 1 0 0,000 1,000 1 1 1 4,585 0,218 +1

14o I eye I000 E000 1 3 3 1,000 0,000 1 6 2 -0,208 4,819 -1

15o kill queue K400 Q000 4 5 5 1,000 0,000 1 120 2 -4,953 0,202 -1

16o weak week W200 W200 4 4 1 0,250 0,750 6 1 2 5,377 0,186 +1

17o one own O500 O500 3 3 2 0,667 0,333 1 2 2 3,585 0,279 +1

18o one one O500 O500 3 3 0 0,000 1,000 6 1 1 5,877 0,170 +1

19o Eissonhour Eisenhower E256 E256 10 10 4 0,400 0,600 720 24 2 6,538 0,153 +1

20o complement compliment C514 C514 10 10 1 0,100 0,900 362880 1 2 13,320 0,075 +1

21o complement Eissonhour C514 E256 10 10 10 1,000 0,000 1 3628800 2 -16,980 0,059 -1

22o complement Eisenhower C514 E256 10 10 10 1,000 0,000 1 3628800 2 -16,980 0,059 -1

23o Eisenhower Eisenhower E256 E256 10 10 0 0,000 1,000 3628800 1 1 15,480 0,065 +1

24o fir fur F600 F600 3 3 1 0,333 0,667 2 1 2 4,585 0,218 +1

25o tip pit T100 P300 3 3 2 0,667 0,333 1 2 2 -2,000 0,500 -1

26o plain plane P450 P450 5 5 2 0,400 0,600 6 2 2 4,877 0,205 +1

27o write right W630 R230 5 5 4 0,800 0,200 1 24 2 -3,792 0,264 -1

28o whole hole W400 H400 5 4 1 0,200 0,800 24 1 2 3,377 0,296 +1

29o Eissonhour ε E256 ???? 10 1 10 1,000 0,000 1 3628800 2 -16,980 0,059 -1

30o Bird Hunt B630 H530 4 4 4 1,000 0,000 1 24 2 -3,792 0,264 -1

31o Jessica Gécika J220 G220 7 6 5 0,714 0,286 2 120 2 -1,868 0,535 -1

32o Jessica Gecika J220 G220 7 6 4 0,571 0,429 6 24 2 0,085 11,770 +1

33o Jessica Jecika J220 J220 7 6 3 0,429 0,571 24 6 2 5,085 0,197 +1

34o Jessica Jecica J220 J220 7 6 2 0,286 0,714 120 2 2 7,038 0,142 +1

35o Jessica Jesica J220 J220 7 6 1 0,143 0,857 720 1 2 8,831 0,113 +1

36o Jessica Jessica J220 J220 7 7 0 0,000 1,000 5040 1 1 10,735 0,093 +1

37o Jessica Jessca J220 J200 7 6 1 0,143 0,857 720 1 2 5,831 0,172 +1

38o Jessica Gessca J220 G200 7 6 2 0,286 0,714 120 2 2 1,453 0,688 +1

39o Jessica Gesca J220 G200 7 5 3 0,429 0,571 24 6 2 -0,500 2,000 -1

40o Jessica Celina J220 C450 7 6 4 0,571 0,429 6 24 2 -5,085 0,197 -1

13. Conclusions
The objectives were achieved especially with the handcrafted perceptron, however de-

rived from de qualitative momentum, with decision-making ability to a string approximate match-

ing problem – with a metric of degree of doubt. The results suggest a clear cut amongst uncertainty,

doubt and data quality although they may be related. The differential quality is directly proportional

5Examples of letters and its diacritically-marked version: a/ã, c/ç, a/à, e/é and u/ü.
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and symmetrical to the differential entropy and almost captured a set of quality properties as far as

processes obeying a classical normal Gaussian distribution are concerned. It is noteworthy that: the

bit as a quality metric unit of differential quality and the ubiquity of the Gaussian in many fields of

knowledge. These suggest a broad application of the concepts herein. As far as quality is concerned,

the Gaussian is also a mathematical cornerstone in both theoretical and experimental studies: from

assembly lines to software metrics. Myth counting not only gave another interpretation to a partic-

ular case of string matching but it did not restrict the approach to a specific algorithm. Instead it

suggests the blending of effectiveness of other algorithms other than soundex, such as metaphone,

if they allow counting that can account for similarities and dissimilarities. The results suggest that

record linkage may benefit from greater diversities of methods and theories along side with statistics

to assess performance which involves cognitive abilities and artificial intelligence.
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