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ABSTRACT
In this paper, we address the Demand Responsive Transport (DRT) services. A DRT

is a flexible transportation service that provides transport on demand, being especially useful in

sparsely inhabited areas, which deal with a lack of transportation service. Users formulate requests

specifying desired locations and times of pickup and delivery. The vehicle routes are planned and

scheduled based on these requests minimizing a set of objectives, like costs and user inconvenience,

while respecting a set of constraints imposed by the passengers and vehicles, as time windows and

capacity. We adapt a formulation and propose a multi-objective evolutionary algorithm (MOEA)

with feasibility-preserving operators. To compare and validate our approach, a MOEA proposed

in the literature was reimplemented. Computational experiments were performed on benchmark

instances and the results were analyzed by quality indicators widely used for multi-objective algo-

rithms comparison. The proposed algorithm proved to be better in all indicators for all instances.

KEYWORDS. Demand Responsive Transport, Multiobjective, Evolutionary Algorithm.

Main Area: MH - Metaheuristics; SE - OR in Services; L&T - Logistic and Transport.
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1. Introduction
Demand Responsive Transport (DRT) is a transport service operated on demand by a fleet

of vehicles, which are scheduled to collect and deliver passengers in accordance with their needs

(Mageean and Nelson, 2003). Users formulate requests determining intended locations and times

of pickup and delivery (Ambrosino et al., 2004). Usually this type of transport service is shared,

i.e., many passengers can be in the same vehicle at the same time (Cordeau et al., 2007).

A DRT service is specially useful in sparsely inhabited areas, which deal with a lack of

transportation service, given that the service providers do not want to admit the cost of a transport

service insufficiently used (Chevrier, 2008). This type of service is activated only on demand. In

(Ambrosino et al., 2004), three main reasons of the growth in popularity of the DRT are presented:

the lack of the adaptability of conventional regular bus and taxi services; shortcomings of special

transport services; and new developments in community transport. According to Mageean and

Nelson (2003), there is also an interest in the potential of DRT to combat social exclusion.

Managing a DRT service in an optimized way consists in grouping the largest possible

number of passengers in the same vehicle and planning the routes in the best way in order to reduce

the operational costs besides respecting a number of constraints like the capacity of the vehicles and

the locations and schedules of requests’ pickup and delivery without decreasing the service quality

(Chevrier et al., 2012).

In its usual form, a DRT service can be related with the Dial-a-Ride Problem (DARP) and

to increase the efficiency of these services, models and optimization techniques have been proposed

for this passenger transportation problem (Chevrier et al., 2012; Parragh et al., 2010). The DARP

consists of designing a set of vehicle routes and schedules for a number of passengers, who send

pickup and delivery requests between desired origins and destinations (Cordeau and Laporte, 2007).

This problem is similar to the Pickup and Delivery Problem (PDP), both belonging to the class of

Vehicle Routing Problems with Pickups and Deliveries (VRPPD), where goods are transported be-

tween pickup and delivery locations. Both problems operate based on transportation requests, that

consist of paired pickup and delivery points. However, there is a important difference between

PDP and DARP: the first deals with the transportation of goods while the second deals with pas-

senger transportation. Thus, DARP focuses on quality of service usually expressed by additional

constraints or objectives instead of or besides others related to cost (Parragh et al., 2008; Parragh et
al., 2010).

The main difference between a DRT service and the DARP is the flexibility. The first

accepts delays on the journeys, but limiting them by constraints to keep a good quality of service.

Another difference is the way in which the user sends requests: in a DARP, the users often send two

requests during the same day, an outbound request from a pickup to a delivery point, and an inbound

request for the return trip (e.g., from home to the hospital and return to home). In a DRT, this does

not necessarily occur. For surveys on the DARP and DRT, we refer to (Cordeau and Laporte, 2007)

and (Parragh et al., 2010), respectively.

In the literature, there are a number of different versions of the DARP. Most papers con-

sider a static variant of the problem, in which all requests are known in advance of the planning. In

(Cordeau and Laporte, 2003), a tabu search heuristic is proposed for solving the static DARP that

minimizes total routing costs, considering time windows, a maximum user ride time limit, and a

maximum route duration limit as constraints. In (Chevrier et al., 2010) a DRT service is addressed

as a special case of the DARP adding some of its specificities (DARP applied to a DRT service)

and a multi-objective formulation. To solve the problem, an evolutionary approach was proposed

as well as new solution representation and variation operators. Such mechanisms were integrated in

three algorithms state of the art: Non dominated Sorting Genetic Algorithm II (NSGA-II) (Ded et
al., 2002), Strength Pareto Evolutionary Algorithm 2 (SPEA-2) (Zitzler et al., 2001) and Indicator

Based Evolutionary Algorithm (IBEA) (Zitzler e Künzli, 2004). In order to intensify the search

process in the solution space, Chevrier et al. (2012) solve the DRT problem by proposing a hybrid
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multi-objective evolutionary approach based on the algorithms used in (Chevrier et al., 2010). The

routes are improved by a Local Search strategy based on the metaheuristic Iterated Local Search

(ILS) together with the local search 2-opt algorithm within the mutation operator.

Another variant of the DARP is the dynamic one, in which the routing process is done

in real time. In other words, new requests may come during the planning of the routes and have

to be scheduled into existing routes. A number of parallel implementations of the tabu search

heuristics created by Cordeau and Laporte (2003) were proposed by Attanasio et al. (2004) to solve

a dynamic DARP. Berbeglia et al. (2012) introduced a hybrid approach that is used to solve the

dynamic variant of the problem combining an exact constraint programming algorithm and a tabu

search heuristic.

In this paper, we present a new mathematical model adapted for a DRT service based on a

static DARP model proposed in the literature and also propose a new multi-objective evolutionary

algorithm (MOEA) that performs a search in the feasible search space instead of exploring the entire

search space. Our goal is producing a large set of well spread non-dominated solutions close to the

Pareto-optimal set. A construction heuristic to create the initial population, as well as mutation and

crossover operators to produce diversity in the population and new solutions, respectively, without

generating infeasible solutions were created. These modules are integrated in the Non-dominated

Sorting Genetic Algorithm II (NSGA-II). The proposed approach is compared to an algorithm of

the literature by means of two different solution quality indicators.

The remainder of this paper is organized as follows: Section 2 presents a formal defini-

tion of the DRT and a mathematical formulation of the problem. An overview of the concepts of

multi-objective optimization, evolutionary algorithms and the NSGA-II are presented in Section 3.

Section 4 shows how the NSGA-II modules were defined in our approach. Finally, the computa-

tional results and conclusion are presented in sections 5 and 6, respectively.

2. Problem Definition
The operation of a general DRT service can be formulated as a Demand Responsive Trans-

port Problem (DRTP) and is classified as a multi-objective combinatorial optimization problem

(MOCOP). The mathematical model proposed in this paper is a DARP (Cordeau, 2006) adaptation

that introduces the flexibility (e.g. delays tolerance) and multi-criteria decision. In this work, the

problem is addressed considering three objective functions. Given that the problem under study is

a generalization of the DARP, it is also a NP-hard problem due to its complexity. Preliminary tests

discourage the use of the model in exact methods for instances test with more than twenty requests.

The DRTP is modeled on a complete direct graph G = (V,A), where V = V + ∪ V − ∪
{0, 2n + 1} is the set of all vertices and A the set of all arcs. The subsets V + = {1, . . . , n} and

V − = {n + 1, . . . , 2n} contain all pick-up and drop-off vertices, respectively. A total of n users

(or requests) to be served consist of a pickup vertex i and a delivery vertex n+ i. The nodes 0 and

2n+ 1 represent the origin and destination depots.

Let K be an homogeneous fleet with k identical vehicles, each with a capacity Q. To

each user i = 1 . . . n is associated a number of passengers qi and a service duration di for loading

or unloading operations at each vertex. For pickup and drop-off vertex we have qi = −qn+i (i =
1, . . . , n) and di > 0, and for the depots q0 = q2n+1 = 0 and d0 = d2n+1 = 0. To each arc

(i, j) ∈ A is associated a travel time tij .
Each user i = 1, . . . , n defines a desired pick-up time hi+ . The time window duration

wi+ of a pick-up point is proportional to the journey duration ti,n+i from i to n + i, defined as:

wi+ = kw · ti,n+i , being kw a coefficient that indicates the percentage of the duration allocated

to the time window. The theoretical arrival time at the delivery point hi− is the sum of the desired

pick-up time and journey duration from i to n+ i, i.e., hi+ + ti,n+i. The maximal delivery time h′i−
is defined as: h′i− = hi+ + (kr · ti,n+i) being kr a coefficient of relaxation.

The DRTP can be formulated as the following 3-index mixed integer program. The main

decision variables are:
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• xkij : binary variable set to 1 if vehicle k travels arc (i, j), 0 otherwise

• vk: binary variable set to 1 if vehicle k is used, 0 otherwise

Other auxiliary variables are used to model the constraints and objectives:

• tk: total travel time of vehicle k if it is used, 0 otherwise
• Di: delivery delay of customer i
• Hk

i : arrival time of vehicle k at node i, 0 if not served by the vehicle
• Qk

i : number of passengers on the vehicle k after visiting node i, 0 if not served by the vehicle

Objective functions
F1 = min

∑

k∈K
vk (1)

F2 = min
∑

k∈K
tk (2)

F3 = min
∑

i∈V −
Di (3)

Subject to: ∑

k∈K

∑

j∈V
xkij = 1, ∀i ∈ V + (4)

∑

j∈V
xkij −

∑

j∈V
xkn+i,j = 0, ∀i ∈ V +, k ∈ K (5)

∑

j∈V
xk0j = vk, ∀k ∈ K (6)

∑

j∈V
xkji −

∑

j∈V
xkij = 0, ∀i ∈ V + ∪ V −, k ∈ K (7)

∑

i∈V
xki,2n+1 = vk, ∀k ∈ K (8)

∑

j∈V
xkij ≤ vk, ∀i ∈ V +, k ∈ K (9)

Hk
j ≥ Hk

i + di + tij −Mk
ij(1− xkij), ∀i ∈ V, j ∈ V, k ∈ K (10)

where Mk
ij ≥ max{0, li + di + tij − ej}

Qk
j ≥ Qk

i + qj −W k
ij(1− xkij), ∀i ∈ V, j ∈ V, k ∈ K (11)

where W k
ij ≥ min{Q,Q+ qi}

tk = Hk
2n+1 −Hk

0 , ∀k ∈ K (12)

Di ≥ max{0, Hk
i − hi−}, ∀i ∈ V −, k ∈ K (13)

vk−1 ≥ vk, ∀k ∈ K\1 (14)

vk ∈ {0, 1}, ∀k ∈ K (15)

xkij ∈ {0, 1}, ∀i ∈ V, j ∈ V, k ∈ K

tk ≥ 0, ∀k ∈ K

Di ≥ 0, ∀i ∈ V −

hi+ ≤ Hk
i ≤ hi+ + wi+ , ∀i ∈ V +, k ∈ K

hi− ≤ Hk
i ≤ h′i− , ∀i ∈ V −, k ∈ K

max{0, qi} ≤ Qk
i ≤ min{Q,Q+ qi}, ∀i ∈ V, k ∈ K
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The objective functions (1, 2 and 3) minimize respectively the number of vehicles used,

the journeys durations and delays. The constraints (4) and (5) guarantee that each request is served

exactly once and that the same vehicle visits the origin and destination nodes. The constraints (6),

(7) and (8) ensure that if the vehicle k is used, its route starts at the origin depot and ends at the

destination depot and that if the vehicle visits a node, it must leave that node. The constraint (9)

ensures that the vehicle will be defined as used if it serves any request. The constraints (10) and (11)

guarantee the consistency of time and occupancy of a vehicle while it travels through its route. The

equalities (12) and (13) define the route time of each vehicle and the delay at each delivery node.

Constraint (14) remove symmetry in the use of vehicles. Finally the set of constraints (15) defines

the binary variables and the bounds of each other variable, ensuring that each user is serviced within

its defined time window and that vehicle capacity is respected at each node.

3. Multi-Objective Optimization
In a multi-objective optimization problem (MOOP), there are a number of objective func-

tions, which are to be minimized or maximized. These objectives are usually in conflict with each

other. Furthermore, a feasible solution must satisfy both a number of constraints and variable

bounds imposed by the problem. The MOOP can be defined by a set of m objective functions

f = (f1, f2, . . . fm), a set X of feasible solutions in the decision space and a set Z of feasible

points in an objective space Z = f(X). A solution x = (x1, x2, . . . xn) is a vector of n decision

variables in the decision space. For each solution x ∈ X , there exists a point z ∈ Z, denoted by

f : X → Z with z = f(x) = (f1(x), f2(x), . . . , fm(x)). The main goal of a MOOP is finding

solutions in the decision space optimizing (minimizing or maximizing) m objectives (Chevrier et
al., 2012; Coelho et al., 2007; Deb, 2001; Dhaenens et al., 2010).

Generally, multi-objective optimization algorithms use the concept of dominance to define

that one solution x is better than other solution x′. This occurs if two conditions holds:

• The solution x is no worse than x′ in all objectives.
• The solution x is strictly better than x′ in at least one objective.

If any of the conditions is violated, the solution x does not dominate the solution x′. A

solution x ∈ X is called Pareto-optimal when it is not dominated by any other solution of the

decision space. Such solution is also called efficient. The set of all efficient solutions is the efficient

set or Pareto-optimal set. The set of all non-dominated vectors is the Pareto Front.

Instead of finding a good approximation of the global optimum solution like in a single-

objective optimization, in a MOOP there are two goals: find a set of solutions as close as possible

to the Pareto-optimal front and find a set of solutions as diverse as possible. An efficient multi-

objective optimization algorithm must work on satisfying both of them, although these tasks are

somewhat complicated to do simultaneously (Deb, 2001). Generating the entire efficient set is

usually a difficult task due to the complexity of the MOOPs. Therefore, often the main goal is

finding a good approximation of it with good diversity.

3.1. Evolutionary Algorithms
Evolutionary algorithms (EA) are optimization methods, which are based on natural evo-

lutionary principles to compose search and optimization procedures (Deb, 2001). These methods

iteratively simulate the evolution of a set of solutions, utilizing the notion of competition, where

the individuals with better fitness survive for next generations (Talbi, 2009). Based on biology, the

EAs are composed by mechanisms of reproduction, mutation, combination, and selection. Their

success is motivated by the ability in solving difficult optimization problems in various domains

and has been successfully applied to many real and complex problems (Talbi, 2009). Among these

problems, there are the multi-objective ones, with more than one objective that have to be simultane-

ously optimized. In this paper, the multi-objective evolutionary algorithm (MOEA) Non-dominated

sorting genetic algorithm II (NSGA-II) was chosen to solve the DRTP.
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3.2. NSGA-II
The NSGA-II (proposed in (Deb et al., 2002)), is one of the most widely used algorithms

for solving multi-objective optimization problems. This algorithm uses the fast non-dominated

sort method to rank the solutions of a population into several non-domination classes called fronts.

To ensure the diversity in the population, the NSGA-II uses a crowded-comparison approach that

calculates an estimate of the density of solutions surrounding each solution in the population. Both

these approaches allow the NSGA-II to assign to each solution the rank and the crowding distance

values which represent the quality of the solution in terms of convergence to the Pareto-optimal

set and in terms of diversity, respectively. Given these two values, one solution x is chosen over

another solution y if it has a better rank value. If both have the same rank value, x is chosen over y
if it has a better crowding distance.

In the NSGA-II, firstly, a random initial population P0 of size N is created. Generically,

all solutions of the parent population Pt are sorted into different non-dominated classes. An off-

spring population Qt of size N is created using binary tournament selection, recombination and

mutation operators applied to Pt. The two populations are combined together to create Rt of size

2N , then the population Rt is classified using the non-dominated sorting. The construction of the

new population Pt+1 of size N starts with the best non-dominated front of Rt, continues with the

second non-dominated front, and so on. This process ends when the current front can not be en-

tirely accommodated with previous fronts in N slots, in other words if there are more solutions in

the current front than remaining slots in the new population. Then, the solutions of the current front

with higher crowding distance values are chosen to complete the new population Pt+1.

4. NSGA-II for the DRTP
In this paper the multi-objective evolutionary algorithm NSGA-II is used to solve the

DRTP. A new population initialization and operators are proposed here for compose a new NSGA-

II approach. To validate the proposed approach, the NSGA-II described in (Chevrier et al., 2012)

was reimplemented. In the following, the NSGA-II modules proposed in this paper are detailed.

Figure 1 shows a flowchart of how the proposed NSGA-II works.

4.1. Solution Representation
The solution representation choice is an important step that influences all the remainder

modules design of an optimization method. In this paper the same representation proposed by

Chevrier et al. (2012) is used. A solution is composed by a set of routes that starts and ends at the

depot point. Generally, a route is a set of visited points. Here the vehicle journey is represented by

a sequence of request identifiers. The first occurrence of a request identifier represents the pick-up

point r+ and the second one is the delivery point r−. The sequence of request identifiers of a route

literally represents the sequence of respective points of pickup or delivery that the vehicle will visit.

Since the solutions are vectors of routes, which are vectors of request identifiers, the best solution

encoding is a vector of vectors. Note that each individual of the population is a problem solution.

4.2. Population Initialization
To generate the initial population, a slightly more sophisticated procedure than proposed

by (Chevrier et al., 2012) is used. Here, the initialization strategy considers the desired pickup time

and closeness to the depot during the procedure while (Chevrier et al., 2012) constructs randomly

the initial population. Since the vehicles are initially in the depot, all requests are firstly sorted

according to the desired pickup time and the distance between the depot and the request pickup

point. The nearest and the most urgent requests will have priority. Then, the first m requests on

the list are assigned to a distinct vehicle. After that, the other requests are sorted according only to

desired pickup time and if possible, randomly added to an existing vehicle route. Otherwise, a new

vehicle route is created to serve the request. The number of vehicle routes may vary between m and

the number of requests received.
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Figure 1: Flowchart of the NSGA-II algorithm

4.3. Selection Operator
The selection operator, also called reproduction operator, performs a selection process,

that imitates natural selection by giving to good solutions higher opportunity to breed. These so-

lutions are placed in a memory called mating pool, in which the variation operators (crossover and

mutation) are applied. Here, the adopted strategy is the binary tournament selection that performs

a contest between two randomly chosen solutions from the population. A solution wins if it has a

smaller rank value (better convergence), or in case of equality, if it has a larger crowding distance

value (better diversity).

4.4. Crossover Operator
The crossover operator produces new solutions called offspring by the exchange of infor-

mation between two parents of the current population. The operator proposed here, firstly chooses

two parents (P1 and P2) through the selection operator and makes a copy of both solutions to create

the offspring (C1 and C2). In order to modify C1, a route in P2 is randomly chosen, and to avoid

duplicated data, all requests of this route are removed from C1. If any route of C1 becomes empty,

it is deleted. The second step is performed in a way that the offspring solutions do not become

infeasible. The route chosen from P2 is inserted in the same position in C1 and the counterpart

route and all subsequent routes are moved forward. The production of C2 follows the same process

by inverting the parent solutions. To control the possibility of performing a crossover, a probability

pc called crossover rate is defined. The algorithm 1 shows how the operator was designed.
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Algorithm 1 Crossover Operator (population)

1: P1 ← RandomSolution (population)

2: repeat
3: P2 ← RandomSolution (population)

4: until P1 �= P2
5: C1 ← CopySolution(P1)

6: C2 ← CopySolution(P2)

7: randomRoute1 ← RandomRoute (P2)

8: for all requests of randomRoute1 do
9: for all routes of C1 do

10: if Contains(route, request) then
11: RemoveRequest (route, request)
12: break
13: InsertRoute (C1, randomRoute1)

14: randomRoute2 ← RandomRoute (P1)

15: for all requests of randomRoute2 do
16: for all routes of C2 do
17: if Contains(route, request) then
18: RemoveRequest (route, request)
19: break
20: InsertRoute (C2, randomRoute2)

4.5. Mutation Operator
The main goal of a mutation operator is to introduce diversity in the current population. In

this paper we propose a mutation operator that performs a swap of a single request between different

routes, keeping the solution feasibility. Randomly, a single request is selected and removed from

a route. After that, a different route is chosen to insert the removed request. If the swap results

in an infeasible solution, a subsequent route is tried until the swapping is feasible. If no route can

accommodate the request, a new route is created to assign the costumer. Like in the crossover

operator, to control the possibility of performing a mutation, a probability pm called mutation rate

is defined. The algorithm 2 shows how the operator was designed.

Algorithm 2 Mutation Operator (population)

1: solution ← RandomSolution (population)

2: route1 ← RandomRoute (solution)

3: repeat
4: route2 ← RandomRoute (solution)

5: until route1 �= route2
6: request ← RemoveRandomRequest (route1)

7: i ← RouteIndex (solution, route2)

8: repeat
9: if i �= RouteIndex (solution, route1) then

10: if FeasibleInsert(solution, i, request) then
11: break
12: i ← i+ 1
13: until i > RouteNumbers (solution)

14: if i > RouteNumbers (solution) then
15: NewRoute(solution, request)

Given the route index and the request identifier, the Feasible Insert function tries to insert

the request in the route so that it continues feasible. Both in the insertion of the pickup point as in

the delivery point, the scan is started in the last position of the route and proceeds backwards up

to the start of the route. The insertion of the two points are performed on the first viable position

found, so that it does not cause big delays on subsequent visits and therefore, bring on less impact

on the service quality. The algorithm 3 describes how the operator was designed.

5. Computational Experiments
In this section, we discuss the results obtained using two sets of test instances. The pro-

posed and the literature approaches were coded in C++. The mathematical programming model

was run in CPLEX 12.6 and implemented using Concert C++ library. The computational tests were

run on a 3.40 GHz Intel Core i5 computer, with 16 GB RAM running Windows Seven.
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Algorithm 3 FeasibleInsert (solution, routeIndex, request)
1: route ← GetRoute(solution, routeIndex)

2: i ← RouteEnd(route)

3: while i >= 0 do
4: if FeasibleInsertPickupPoint(i, request) then
5: j ← RouteEnd(route)

6: while j �= i do
7: if FeasibleInsertDeliveryPoint(j, request) then
8: return true

9: j ← j − 1

10: i ← i− 1

11: return false

5.1. Benchmark Test Instances
In order to evaluate the proposed and literature approaches, computational experiments

were realized using two sets of test instances introduced by Chevrier et al. (2012). The first set,

called “Rnd100” has 10 instances with an almost homogeneous distribution of customers, which

contain 100 requests randomly generated. The second set, denoted “Gravit100” contains 10

instances with a non-homogeneous distribution of customers, that have 100 requests generated using

a geographical model of people or freight flows.

5.2. Performance Assessment
For the purpose of evaluating the quality of the approximation sets obtained in the com-

putational experiments and of comparing the approaches, the proposed and the literature algorithms

were run 10 times and the 10 outcomes of each algorithm were stored in sets A and B, respectively.

After that, two reference sets (Ra,Rb) were created with all non-dominated points of the sets A
and B, respectively. Also, a reference set Ref containing all non-dominated points from the union

of the sets Ra and Rb was created.

5.2.1. Solution Quality Indicators
The performance assessment of the two approaches was performed using two indicators

frequently employed in the literature, which Zitzler et al.(2003) states that are the best suited, given

that they provide compatibility and completeness to most of the dominance relations. The first is

the unary additive ε-indicator Iε+ proposed by Zitzler et al.(2003), which is based on the binary

additive Iε+ . It represents the minimum factor ε that any objective vector in a reference set has to

be added to obtain a set that is dominated by the analyzed approximation set. Due the complexity

of the problem, the Pareto front for all test instances is not known. Therefore, the reference set Ref
is used instead. For each instance, both Iε+(A,Ref) and Iε+(B,Ref) were calculated. Before

that, a normalization of the objective function values was performed in order to adjust the scale and

provide an equal interval for all objective functions. The second quality indicator is the set coverage

metric C (Zitzler e Thiele, 1998). The C metric maps the ordered pair (X,Y ) to the interval [0, 1]
(Zitzler, 1999). The C(Ra,Rb) calculates the proportion of solutions in the reference set Rb, which

are weakly dominated (covered) by solutions of the reference set Ra. The two directions have to

be considered, since C(Ra,Rb) is not necessarily complementary to C(Rb,Ra). Note that both

indicators values are to be minimized. Other information provided is the number of solutions in

the sets Ra and Rb on each test instance, which represents the cardinality of the approximation set

achieved by each algorithm.

5.2.2. Parameters Setting
For both approaches, the population size was defined as 100. All runs were performed

during 1 minute, given that decision makers on real-time services usually need information in a

short time. In order to calibrate the mutation and crossover rates, while the rate of a operator was

fixed (50%), three different rates (20%, 50% and 80%) were tested and compared for the other

operator. This process was performed for both operators.
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Table 1: Iε+ for different crossover and mutation probabilities

Rate 0.2 0.5 0.8

Crossover 0,0958 0,1025 0,1097

Mutation 0,1228 0,0989 0,0794

The table 1 shows the performance of the proposed approach (regarding the unary additive

ε-indicator) for all mutation and crossover rates compared. We can see that the lowest averages

Iε+ were obtained for crossover probability 20% and mutation probability 80%. Despite the fact

that mutation probability is usually small in the literature, our probability is high as stated by the

calibration. The parameter m, used to generate the initial population, was defined on 10% of the

requests. This value must be low in order to avoid solutions with a large number of unnecessary

routes.

5.2.3. Computational Results
Performing the mathematical model, no exact results were found for any instance within

24 hours of execution, not even when the model was run for a single objective. However, the model

was able to find and prove the optimality of solution for smaller instances, with a subset of 20

out of 100 requests, when the objective function was set to minimize the number of vehicles. In

this case, the non-dominated solution sets found by the two NSGA-II approaches include solutions

with this minimum number of vehicles in all runs. The quality of the other objectives could not be

attested because the model did not find or prove optimal values. Then, for now on the approaches

are compared to each other.

Figure 2: Proposed NSGA-II and literature NSGA-II reference sets of the Gravit100 0 instance test

The comparison of the two approaches is performed according to the previously explained

methodology. Every test instance was run 10 times during 1 minute. The table 2 shows that in all test

instances the proposed approach obtained average Iε+ values smaller than the ones of the literature

approach. We can conclude that the proposed approach found better approximation sets, given that
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Table 2: Average of the Iε+ and C results and cardinality of the reference sets

Instance Iε+ C |R|
Proposed Literature Prop/Lit Lit/Prop Prop Lit

Gravit100 0 0,1717 0,7790 1,0000 0,0000 135 43

Gravit100 1 0,0999 0,7378 1,0000 0,0000 166 39

Gravit100 2 0,1004 0,7575 1,0000 0,0000 136 32

Gravit100 3 0,1067 0,8265 1,0000 0,0000 150 23

Gravit100 4 0,1415 0,7888 1,0000 0,0000 173 19

Gravit100 5 0,0949 0,7734 1,0000 0,0000 188 20

Gravit100 6 0,1169 0,7184 1,0000 0,0000 201 57

Gravit100 7 0,1193 0,7366 1,0000 0,0000 175 40

Gravit100 8 0,1044 0,7631 1,0000 0,0000 171 69

Gravit100 9 0,1790 0,7914 1,0000 0,0000 127 25

Rnd100 0 0,0519 0,6373 1,0000 0,0090 221 45

Rnd100 1 0,0303 0,6250 0,9770 0,0045 220 87

Rnd100 2 0,0340 0,6310 1,0000 0,0049 204 55

Rnd100 3 0,0297 0,6531 1,0000 0,0145 207 42

Rnd100 4 0,0329 0,6621 1,0000 0,0049 205 62

Rnd100 5 0,0325 0,6026 0,9663 0,0141 213 89

Rnd100 6 0,0478 0,6508 0,9762 0,0123 243 84

Rnd100 7 0,0477 0,6809 1,0000 0,0117 256 63

Rnd100 8 0,0484 0,6734 1,0000 0,0250 240 67

Rnd100 9 0,0346 0,6570 1,0000 0,0046 218 65

the indicator values are closer to zero. The results C(Ra,Rb) and C(Rb,Ra) show that in all

“Gravit” instances Ra covers Rb. For the “Rnd” instances, the C(Ra,Rb) and C(Rb,Ra) were

next to 1 and 0, respectively, indicating the superiority of our approach. By the Figure 2 it is possible

to see the quality difference between the two reference sets obtained applying both algorithms in

a test instance. The number of the non-dominated solutions obtained in each test instance shows

that, considering the set cardinality factor, the proposed algorithm also reached better results than

the literature algorithm.

The improvement obtained by our approach is due to the new operators here proposed.

They generate only feasible solutions. Given that the problem has many complex constraints, the

crossover and mutation operator may have a small chance to remove infeasibility of solutions based

solely on penalties using simple blind exchanges. This results in a slow convergence and a worse

set of non-dominated solutions.

6. Conclusion
We can conclude that the multi-objective genetic algorithm is a good approach to solve

this complex problem. For all exact solutions that the model reached, both GA approaches converge

to solutions with at least the same objective function value (number of vehicles). Our approach

proposes new operators that keep the feasibility of the solutions. According to the two quality

indicators widely used in the literature, the proposed approach performed better than the literature

approach that works with infeasible solutions. For some test instances, the reference set found by

our approach covers the reference set found by the literature approach. Therefore, the focus on the

feasible search space has brought improving in the quality of the solutions. Future works include

the use of other metaheuristics, mainly those with selection based on quality indicators in order to

find a better reference set for larger instances. Other direction is the use of integer programming

techniques to improve the model and explore the dynamic variant of the problem.
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