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Abstract

A problem in plant community ecology is to define the potential community expected to be
found in a given sampling unit. For the same reason, the distinction between potential and
actual community allows to analyze the difference between actual and potential community,
whose structure deserves being studied. With this objective in mind, we thought reasonable
to ground our study on the plant traits, that are characteristics of species that might influ-
ence their distribution, and we define a methodology able to estimate potential communities
based on the observed species co-occurrences and on the species trait similarities. The so de-
fined potential communities may be compared by means of different measures, such as sums
of element to element deviations, the RV coefficient and Procrustes correlations, which may
be tested against proper null models relating species traits and species abundances in com-
munities. The tools involved estimating potential communities by using (1) Beals smoothing
of the species × communities data table and (2) a fuzzy weighting of the same community
data based on traits similarity among species. As an example, we apply the method to plant
community data from grassland vegetation, considering species cover recorded at two scales
of observation (0.2× 0.2 m plots, and 0.2× 1.0 m plots). The species were described by a set
of 12 morphological traits. With both small and large plots we found a subset of traits that
maximized the RV coefficient between potential metacommunity estimated by smoothing
and by traits, which in both cases was significant by permutation test. When all traits were
used instead, the RV was not significant in any case. The results with this example suggest
that the selected traits are critical in the assembly of the studied plant communities and that
these traits are good proxies of plant adaptations to the prevailing environmental conditions
and biotic interactions.
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1 Introduction

In the framework of plant community studies, we want to study the issue of potential community
as the kind of community one may imagine to find somewhere, should not random events occur
that may favor a species in respect to another. In particular, we aim at identifying potential
communities, based on observed ones, and try to interpret their structure, based on the species
traits. This allows to study also the deviations of the observed communities from the potential
ones, and investigate the relations, if any, that may exist among them and the environmental
factors. The study may be performed at two different levels, say considering a community indi-
vidually, or considering a metacommunity, that is a set of communities, as a whole.

As usual, we start with a metacommunity, that is a sample represented by a data table
A, in which n rows represent species and p columns represent communities. Each cell entry
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aij , i = 1, . . . , n, j = 1, . . . , p is a measure of abundance of the species i in the community j.
Note that each column of A, Aj , j = 1, . . . , p is a (hopefully random) vector extracted by the
population under study: if the population from which the sample A was extracted is homo-
geneous, all Ajs are realizations of the same random vector α, whose n components are the
absolute frequencies of the species present in the population; thus, we may estimate α through
the average of the Ajs, that is α̂ = 1

p

∑p
j=1A

j .

In the present study, we are not really interested in species abundance, but only in composi-
tion of communities. Thus, we transform A to a matrix W of column profiles, that is proportions
of abundance of each species in the specific community. We obtain profiles by dividing each en-
try aij ∈ A by the total abundance of the j-th community, that is by the j-th column total:
W = {wij = aij/a.j}, where the dot indicates summation on the corresponding index. Now,
again, each column of W, W j may be an independent realization of the population profile ϕ,
this too estimated by ϕ̂ = 1

p

∑p
j=1

Aj

a.j
= 1

p

∑p
j=1W

j . In the following, the matrix A may be a

presence/absence one: should it be the case, W values would equal to the inverse of the number
of species present in each community.

A difference must be observed in the estimation of either α or ϕ: whereas the n species
abundances in each Aj are totally free, in W j an entry is constrained by the others, in that
they all sum to 1, so that only n−1 are free. We express this by saying that the estimation of α
has n degrees of freedom (df ), whereas for the estimation of ϕ df = n−1: this will be important
in testing for significance.

2 Beals smoothing

The issue of potential community seems present in plant community studies since long, in the
past discussed within the problems raised by the presence of zeros in a data table. As such, it
was already considered in the 1960’s: “where a species does not occur, its absence may be a mat-
ter of chance only, the habitat being favorable for its occurrence. Alternatively, site conditions
may be entirely unfavorable for the occurrence of the species. Since each unrecorded species is
equally absent in the data, the zeros hide this part of the dialogue between species and habitat”
(Swan 1970, quoting Lambert and Dale 1964). In order to adjust his models to real data, Swan
(1970) proposes to substitute zeros according to an average association of the species missing
from a community with those present, considering all communities, and adjusting accordingly
all cover values.

A better approach to potential community is proposed by Beals (1984), which argues that
the scales of presence and absence used by Swan (1970) are not comparable, so that he defines
a sociological favorability index generated entirely from presence/absence data, valid for both
present and absent species in each community. Let A0 a presence/absence species × communities
data table. His smoothed matrix Y is obtained by calculating, for each species i, the average
over all species in each community of the joint occurrences of i with all others, each divided by
the frequency of the other, in formula:

yij =
n∑

k=1

(
a0kj
a.0j

p∑
h=1

a0iha
0
kh

a0k.

)
=

n∑
k=1

(
a0kj

a0k.a.
0
j

p∑
h=1

a0iha
0
kh

)
. (1)

Indeed, such a table raises the number of species in a community and at the same time introduces
the idea of potential presence of species, that may be there since there could be conditions that
allow their presence and growth in the community. Thus, Y may be considered a potential
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meta-community matrix derived by A. The table smoothing occurs since the presence/absence
of species is transformed into a probability of occurrence of a species at a given site on the basis
of its joint occurrences with the remaining species in the data table (De Cáceres and Legendre,
2008); thus, each 1 in A0 is fractioned in probabilities of occurrence of absent species and a table
smoothing results. The last formulation in (1) shows that yij is based on a double normalization
of A0, according to both row and column totals, and on its cross-product AA′. On the other
side, is interesting to note that we may assume the inner sum in the first formulation in (1) as

p(i|k) =

p∑
h=1

a0iha
0
kh

ak.0
(2)

and interpret p(i|k) as the probability of the i-th species to be in a community conditioned by
the k-th species presence, since

∑
i p(i|k) = 1.

Beals smoothing is highly appreciated by plant ecologists (McCune, 1994; Schnittler et al.,
2006) and currently used in applications (see De Cáceres and Legendre, 2008, for citations).
Indeed, the latter authors warn about its misuse, and revisit smoothing to establish its reliability,
in particular suggesting a statistical test to either accept or reject the null-hypothesis of random
species co-occurrences. De Cáceres and Legendre (2008) propose also to remove the i-th species
itself from the estimation, thus proposing an alternative matrix Z, whose elements are, according
to: (2)

zij =
n∑

k=1,k 6=i

a0kj
a.0j

p(i|k) (3)

De Cáceres and Legendre (2008) suggest that conditional probabilities p(i|k) may be estimated
by considering the joint distribution of species of another metacommunity data matrix referring
to the same species. The question whether to use Equations (1) or (3) remains open: the inclu-
sion of the present species in the conditional probabilities computation could raise them in sites
in which the species is present, thus causing a problem should inference be done (Münzbergová
and Herben, 2004); on the other side, removing it could get higher probabilities for a species
to occur where it is not present than where it is (Oksanen et al., 2008). In all cases, zeros are
removed from the smoothed matrices.

Beals (1984) proposed the method only for presence/absence data. Thus, should A be a count
matrix, it might be reduced to a presence/absence one, say A0 prior to compute conditional
probabilities and perform the smoothing. It must be noted the way De Cáceres and Legendre
(2008) define the conditional probabilities p(i|k): indeed, they define the vectors of conditional
probabilities

p(|k) = (diag(A0′A0))−1A0′A0
k (4)

with A0
k the vector corresponding to the k-th column of A0. With this formulation, we may, as

they do in their electronic appendix, use Equation 4 to generalize Beals smoothing to the case
in which A contains abundances. Indeed, in this case, one must distinguish A (with abundance
data) from A0 (with presence/absence data); thus, Equation 4 becomes

p(|k) = (diag(A′A0))−1A′A0
k (5)

and the resulting p(i|k)s may be used in both Equations 1 and 3.

The choice of a smoothing, whether to exclude or not the present species from the conditional
probabilities and whether to use abundance or presence/absence, should be the consequence of
a thorough experimentation. Thus, in the following we shall refer with Y to a smoothed matrix,
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regardless how it was built.

Indeed, smoothing reduces the differences among sampled communities, so that the quest for
sub-populations may be done on Y better than on A: in fact, two different sampled communities
may have identical potential community structure and thus they would result two realization of
the same potential population ϕ. This is a crucial point that deserves being studied in detail,
since it could lead to the identification of subpopulations in the metacommunity at hand better
tham by classifying the original data matrix. A cluster analysis may do the job, but, in order
to give usable results, one should ascertain that all the communities gathered in a group are
estimates of the same potential community. The comparison may be done according to several
methods:

• The Kullback-Leibler divergence (DKL, Kullback and Leibler, 1951; Kullback, 1959): it
is a non-symmetric measure of the difference between two probability distributions P =
p1, . . . , pr and Q = q1, . . . , qr. Specifically, the DKL of Q from P , denoted DKL(P ‖ Q),
is a measure of the information lost when Q is used to approximate P :

DKL(P ‖ Q) =
r∑

i=1

pi log2
pi
qi

In information terms, the DKL(P ‖ Q) measures the expected number of bits required to
complete the code necessary to describe P once it is approximated through Q. Typically P
represents the empirical (observed) data distribution and Q a model or an approximation
of P . DKL properties are:

1. DKL(P ‖ Q) is defined only if, for every i, qi = 0 ⇒ pi = 0. For our purposes this
should not be a problem, since if species do not appear in either distribution, we are
driven to consider them two different potential communities.

2. DKL(P ‖ Q) ≥ 0 (Gibbs’ inequality).

3. DKL(P ‖ Q) = 0 if and only if for every i, qi = pi.

It is important to warn against the use of Kullback as distance, since: i) it is not symmetric
and ii) the triangular inequality does not hold. For our purposes, we may decide that two
potential communities are equal if the probability to get a random DKL(P ‖ Q) larger
than the one we want to check is sufficiently high (larger than 5%) under permutation,
randomization, montecarlo or any other suitable method.

• The Chi-square test:

CHI(P,Q) =

r∑
i=1

(pi − qi)
2

pi + qi
.

it is the usual test to compare two distributions: indeed, to be applied, it is necessary to
deal with the original counts and not with the profiles. Note that if the observations are
equal the degrees of freedom should be reduced by 1 (Press et al., 1992).

2.1 Comparison

Y may be compared to W . Which is the purpose of such a comparison? If we think that Y is a
better estimate of ϕ, we may wonder which is the meaning of the residuals, that is of differences
between W j and Y j . Are they due to some early arrival of a species? to its random presence?
is it the winner of a competition?
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Let us consider the residuals (W − Y )ij of species i in the community j. We have several
choices:

1. SSe,i =
∑

j ((W − Y )ij)
2: measures the total sum of squares of residuals for each species

in the whole metacommunity.

2. SSe,j =
∑

i ((W − Y )ij)
2: measures the total sum of squares of residuals for each com-

munity considering the found set of species.

3. SSe =
∑

j

∑
i ((W − Y )ij)

2: it is a total sum of squares of residuals in the metacommunity.

As an alternative to the ordinary sum of squares, two other measures may be taken into
account: the absolute differences, with a similar meaning

1. SADe,i =
∑

j |(W − Y )ij |.

2. SADe,j =
∑

i|(W − Y )ij |.

3. SADe =
∑

j

∑
i|(W − Y )ij |.

that have the well known advantages of the L1-metrics on the L2- Euclidean one: in this par-
ticular case, the sum of squares reduces dramatically the small differences, that may in practice
disappear. The simple differences SDe,i =

∑
j(W − Y )ij have no issue dealing with both

communities and metacommunity, since they sum up to zero, but may be of relevance when
studying species across the metacommunity at hand: some may have systematically larger (or
smaller) presence than expected everywhere, an information surely interesting to study in detail.

For exploratory purposes, it may be of interest to get an overall evaluation of the quality of
the prediction of W through the potential metacommunity Y . At least, two methods may be
proposed:

• The RV coefficient among them:

RV (W,Y ) =
trace(WW ′Y Y ′)√

trace(WW ′)trace(Y Y ′)
.

RV (Escoufier, 1973; Robert and Escoufier, 1976) acts as a squared correlation coefficient,
since it ranges [0, 1], with the ordinary meaning. As Josse et al. (2008) propose tests for
significance of RV , no particular computations are necessary to get an overall examination
of the relation between real and potential communities.

Assuming RV as correlation coefficient, Statis method (Lavit, 1988) is a three-way RV -
based PCA, that allows the representation of the tables in principal interstructure spaces,
the definition of a compromise in which to represent both the intrastructure, that is all
characters and principal components of all two-way data tables involved, and the units
trajectories, that is their position according to each data table at hand, together with
the compromise position, a kind of centroid of trajectories. For further details, see Lavit
(1988); Abdi et al. (2012).

• The Procrustes correlation
R2 = trace(∆2)

with ∆ = E′Ỹ W̃ ′F , the diagonal matrix of the singular values of the product of Y W ,
transformed as explained in the following, as resulting by the Singular Value Decomposition
(SVD, Abdi, 2007) of Ỹ W̃ ′ = E∆F ′ with E,F unit matrices.
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Procrustes Analysis (PA) is a method that provides the best adjustment of a set of points,
called test cloud, to a given set, called target cloud, according to transformations that do
not change, up to a scale factor, the reciprocal distances among the points of the test
cloud. Originally proposed by Mosier (1939), its name is due to Hurley and Cattell (1962)
and further developments are due to Gower (1971b). The method may be applied to all
situations in which direct comparisons among configurations of the same objects under
different representations are requested.

We suppose that Y and W are the two tables with dimensions (n, p) whose columns corre-
spond to the two sets of corresponding points we aim at comparing. Then a transformation
of Y is sought that minimizes the sum of the distances between the pairs of corresponding
points: the transformation is composed by three steps: a rotation T , a translation a, and
a scaling s, that may be described as (see Borg and Groenen, 2005):

1. center by columns and standardize both matrices to have both their total variance
equal to 1 (Gower, 1975), getting the matrices Ỹ and W̃ ;

2. compute the product Ỹ W̃ ′;

3. compute the SVD of Ỹ W̃ ′ = E∆F ′.

The Procrustes residual sum-of-squares statistic (Gower, 1971a, 1975) is m2
12 = 1 −

trace(∆2), whose complement to 1 is the said Procrustes correlation.

3 Traits and neighborhoods

Let us now consider species traits, that are characteristics of species that one wishes to take
into account, like leaf area and thickness, plant height, seed size, etc. Its use may be of help
in understanding the structure of the population at hand better than the catalog of present
species. Indeed, for our purposes, we may think that the potential presence and the abundance
of a species in a site may depend upon some traits the species has and that shares with others
that were actually found in the same site (Pillar et al., 2009). Thus, we may use what we know
about species traits to build a potential community matrix, analogous to the one we built by
considering the simple species association.

Referring to the same population we are dealing with, we may consider the trait matrix
B, in which the n rows represent species and the t columns represent traits. Each cell entry
bik, i = 1, . . . , n, j = 1, . . . , t is a trait level, depending upon the kind of the trait. Indeed,
the choice of the traits depends upon the specific interests of both the researcher and the in-
vestigation. Note that matrix B is independent from the specific population at hand, since
it depends upon only the traits characteristic of a species (unless in a specific site a species
shows some particular traits). Thus, B usually may be built based on other databases or litera-
ture and according to the traits that the researcher thinks may be of interest (Pillar et al., 2009).

An interesting use of B is to transform the community matrix W into a traits × communi-
ties one. For this task, it is advisable that B be an indicator matrix; thus, nominal characters
should be split into presence/absence of each level, and quantitative ones may be left as they
are. Indeed, the t×p matrix T = B′W , allows a more compact representation of the population,
in terms of traits (Pillar et al., 2009). Depending on the kind of data in B, the entries in T
are either a relative frequency of a binary trait in a community or the weighed average of a
quantitative trait of the species present in the community (Pillar et al., 2009).
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Additionally (and independently from the communities at hand), from B, a similarity (sym-
metric) n× n matrix S among species may be built, by using any similarity index. Considering
traits of different kind, the one proposed by Gower (1971a) may be a good choice, but any index
may do the job, see also Goodall (1966). Thus, S measures how two species are either different
(sij → 0) or alike (sij → 1).

S may be used in data analysis as usual for both ordination and classification, if any, with
limitations due to the nature of the used index. Here, we use it to create fuzzy sets (Zadeh, 1965;
Pillar et al., 1991) to which species may be attributed according to their degree of belonging.
Unlike ordinary sets, whose attribution of elements is ascertained without doubt, thus either
they belong to a set or do not, the degree of belonging establishes how an element belongs to
fuzzy set elements: it is a real number ranging [0, 1], where 0 meas “does not belong” and 1
means “does belong”, and intermediate values indicate intermediate conditions.

For our purposes (see Pillar et al. 2009; Pillar and Duarte 2010), we normalize the columns
of S to their respective total, we obtain a matrix U whose columns U j = Sj/s.j , j = 1, . . . , n,
are a kind of similarity profile of species j with all other species. We may interpret its values as
probabilities that the species j be replaced by another one, based on its normalized similarity,
under the assumption that the higher the similarity among species, the higher the chance to
find another species in the place of the found one. Note that this interpretation is merely based
on the fact that each profile elements sum to 1, not on empirical surveys, that may be done to
ascertain the reliability of the method.

Let us now look at U by rows: in every Ui, i = 1, . . . , n for the corresponding i-th species, its
normalized similarities with all others (including itself) appear. Note that if a species is similar
only to itself, then ujj → 1 and all other values tend to zero; if it is highly similar to another,
say k, both ujj and ukj will tend to 0.5, and so on, the column maximum progressively lowering
with the increase of the number of high similar species. This is evident, since the replacement
may be with several species, each with a lower probability. We may try to attribute a meaning to
the rows Ui, i = 1, . . . , n of U : their sums are the sum of the similarities normalized by columns;
thus, the most similar are the other species to some, the largest this sum. Thus, we may not
consider them probabilities, as they do not sum to 1, but degrees of belonging of all species to a
fuzzy set defined by the i-th species itself, that we call the neighborhood of species i in the traits
space. Indeed, the more likely a species may be replaced by species i the larger is its degree of
belonging to i-th neighborhood. Thus, a neighborhood represents the capacity of a species to
replace others, as said under the assumption that the similarity of traits favours the replacement.

Now, let us right multiply the matrix U by W , giving an n × p matrix X = UW (Pillar
et al., 2009; Pillar and Duarte, 2010). This matrix has a special meaning, since each element
xij =

∑
k uikwkj represents an estimation of the abundance of the neighborhood of species i in

the jth community. Indeed, xij is based on relative frequencies wkj and since the columns of U
are already standardized to unity sum, each element xij is also a relative frequency.

Once again, the columns of X,Xj , j = 1, . . . , p, represent the profile of a potential commu-
nity, this time built through the fuzzy sets defined by each species based on the traits similarity
among species.

Thus, matrix X describes a potential metacommunity, under the hypothesis that similarity
of species traits may favour their reciprocal replacement in a given community. As said, this
hypothesis ought to be ascertained through a specific experimentation.
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3.1 Comparison

Matrix X may be compared to other matrices in the same ways as suggested in Section 2.1,
i.e. sum of squared or absolute residuals, the RV coefficient or Procrustes correlation, with
analogous interpretation, with the difference that this time our fitting depends upon the choice
of the traits at hand. Thus, we must adopt a model-like approach, that means that we must
evaluate how X fits the target matrix. Depending upon the target, either W or Y , the meaning
of the results, in particular the interpretation of the residuals, may be different, as well as the
choice of the most suitable traits for defining X. As said, we get two alternatives:

1. Find traits that maximize the fit to W . The procedure is identical to the addition of
independent predictors in linear models, that each time improve the model, with the
consequence that one may end with a perfect fit of W , thus losing the idea of potential
community.

2. Find traits that maximize the fit to Y . This choice would mean that we assume as po-
tential community that obtained by smoothing and we search the traits that best fit it.
Indeed, should the assumption be correct, that is that common traits may define potential
communities, this seems the best way to proceed.

It is evident that the second alternative is better, because Y may be assumed as an upper limit
of the adjustment based on traits. Indeed, one may require a good fit, in order to conclude that
the communities obtained by smoothing correspond to some specific traits structure.

4 Example

We apply the method to plant community data from (Blanco et al. 2007, see also Pillar et al.
2013), which were collected in a 3-ha grassland site of the south Brazilian campos vegetation.
There were 70 0.2× 0.2 m plots located systematically in 14 sets of 5 contiguous plots, in which
the estimated cover of plant species was recorded. The species were described by a matrix B of
12 morphological traits. The traits refer to plant height (HE), leaf tensile strength (LT ), woody
biomass proportion (WB), maximum height (MH), senescent leaves proportion (SL), upper leaf
density proportion (UL), leaf width (LW ), leaf thickness (TH), all quantitative, and presence
of vegetative propagation by rhizomes (V 1), presence of vegetative propagation by stolons (V 2),
presence of smooth leaf surface (L1), presence of prickles on leaf surface (L2), as binary traits.
These traits were measured in each plot and here we considered their average value for each
species across the plots.

In the first analysis we considered as input such matrix B and a community matrix W of
70 plots by 61 species. We computed Beals smoothing based on the species relative cover and
excluding the present species from the conditional probabilities (De Cáceres and Legendre, 2008),
generating matrix Z of potential communities, which was also standardized to unit community
total. By using a simple iterative algorithm (see Pillar and Sosinski 2003) we searched, among the
12 traits, for a trait subset maximizing the RV coefficient between matrices X and Z (RV (XZ)).
Then we tested the significance of the RV coefficient against the null model described in Pillar
et al. (2009), which is based on the random permutation among the rows of matrix B, keeping
matrices W and Z fixed. Since matrices W and Z are not permuted, there is no risk of type
I error inflation due to spatial autocorrelation, since if there is any, it is incorporated in the
null model. The results indicated that maximum RV (XZ) was obtained by using the following
traits: SL,MB,BH, V 1, V 2, LW, and TH with RV (XZ) = 0.574312 (p = 0.012). When all
traits were considered in the computation of X, the coefficient dropped to a non-significant
RV (XZ) = 0.247725 (p = 0.43).
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In another analysis we considered a matrix W with 14 pooled plots in which the five plots in
each set were pooled in one larger plot of 0.2×1.0 m. Maximum RV (XZ) was obtained by nearly
the same trait subset: SL,BH, V 1, V 2, LW, and TH, with a higher RV (XZ) = 0.826478 (p =
0.008). Using all traits for defining X, the RV coefficient, again, dropped to a non-significant
RV (XZ) = 0.554034 (p = 0.182).

The results suggest that the selected traits are critical in the assembly of the studied plant
communities and that these traits are good proxies of plant adaptations to the prevailing envi-
ronmental conditions and biotic interactions. With larger plots we should expect a more robust
estimation of both X and Z, but the effects of environmental conditions and biotic interactions
may be blurred, since environmental conditions and biotic interactions are in general spatially
structured.

5 Conclusion

Some further consideration deserves being done: the choice of different traits in B may lead to
different results, thus, the problem raises to choose the traits that best build a potential com-
munity. We do not close the discussion concerning these alternatives. Systematic deviations of
one species, independently of the gradients or correlated to them, may help in establishing some
particular features. In any case, chance would play a mayor role.

Acknowledgements
This work was carried out during the stay of Sergio Camiz at Laboratório de Ecoloǵıa of Uni-
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De Cáceres, M. and Legendre, P. (2008). Beals smoothing revisited. Oecologia, 156(3):657–669.
Escoufier, Y. (1973). Le Traitement des Variables Vectorielles. Biometrics, 29(4):751–760.
Fisher, W. D. (1958). On Grouping for Maximum Homogeneity. Journal of American Statistical

Association, 53:789–798.
Goodall, D. W. (1966). A new similarity index based on probability. Biometrics, 22(4):882–907.
Gower, J. C. (1971a). A General Coefficient of Similarity and Some of Its Properties. Biometrics,

27(4):857–871.

9

622



De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Gower, J. C. (1971b). Statistical methods of comparing different multivariate analyses of the
same data. In Hodson, F., Kendall, D., and Tautu, P., editors, Mathematics in the Archaeo-
logical and Historical Sciences, pages 138–149. Edinburgh University Press.

Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1):33–51.
Hurley, J. R. and Cattell, R. B. (1962). The Procrustes Program: Producing Direct Rotation

to Test a Hypothesized Factor Structure. Computers in Behavioral Sciences, 7:258–262.
Josse, J., Pagès, J., and Husson, F. (2008). Testing the significance of the RV coefficient.

Computational Statistics and Data Analysis, 53(1):82–91.
Kullback, S. (1959). Information Theory and Statistics. John Wiley and Sons, New York.
Kullback, S. and Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79–86.
Lambert, J. and Dale, M. B. (1964). The Use of Statistics in Phytosociology. Advances in

Ecological Research, 2:59–99.
Lavit, C. (1988). Analyse Conjointe de Tableaux Quantitatifs.
Legendre, P. and Legendre, L. (2012). Numerical Ecology. 3rd ed. edition.
McCune, B. (1994). Improving community analysis with the beals smoothing function. 1:82–86.
Mosier, C. I. (1939). Determine a simple structure when loadings for certain tests are known.

Psychometrika, 4(2):149–162.
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