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ABSTRACT

We address the binary quadratic knapsack problem (QKP) of selecting from a set of

items, a subset with maximum profit, and whose overall weight does not exceed a given capacity c.
The objective function of the problem, which measures the profit of the selection, is a nonconvex

quadratic function, and the QKP is naturally formulated as a quadratic binary problem. Several

works have proposed relaxations for the QKP varying from linear programs to more sophisticated

semidefinite programs. In this work we propose the application of a cutting plane algorithm that

iteratively strengthen an initial linear programming relaxation of the problem with the goal of

obtaining bounds of good quality, with no need of solving semidefinite programming problems.

The valid inequalities added to the initial relaxation are well known and commonly referred to

in the literature as RLT inequalities and SDP cuts. Computational results illustrate the trade-off

between the quality of the bounds computed and the computational effort required by the cutting

plane algorithm.

KEY WORDS. quadratic knapsack problem, upper bound, semidefinite programming;
cutting plane algorithm.
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1. Introduction
In this paper, we address the binary quadratic knapsack problem (QKP) where we are

given: a knapsack capacity c, a set of items N = {1, . . . , n}, where each item j has a positive

integer weight wj , and an n × n symmetric nonnegative integer matrix P = {pij}, where pjj
corresponds to the profit achieved if item j is selected from N and 2pij corresponds to the profit

achieved if both items i and j are selected. The QKP is then defined as the problem of selecting a

subset of items from N with maximum profit, whose overall weight does not exceed c. Defining a

binary variable xj which indicates whether or not item j is selected, the problem may be formulated

as:
(QKP ) maximize

∑
i∈N

∑
j∈N

pijxixj

subject to
∑
j∈N

wjxj ≤ c,

xj ∈ {0, 1}, j ∈ N.

The QKP was introduced by Gallo et al. (Gallo et al., 1980) and was proved to be NP-Hard

by reduction from the clique problem. The simplicity of the QKP formulation together with its

difficulty have brought a lot of attention to the problem in the last decades. Several papers have

proposed branch-and-bound algorithms for the QKP and the main difference between them is the

method used to obtain upper bounds for the subproblems (Chaillou et al., 1989; Billionnet and

Calmels, 1996; Caprara et al., 1999; Billionnet et al., 1999; Helmberg et al., 1996, 2000). The

well known trade-off between the strength of the bounds and the computational effort required to

obtain them is intensively discussed in (Pisinger, 2007), where semidefinite programming (SDP)

relaxations proposed in (Helmberg et al., 1996) and (Helmberg et al., 2000) are presented as the

strongest relaxations for the QKP.

Although SDP relaxations have been very effective in generating tight bounds for integer

programming problems since the seminal works (Lovász, 1979; Lovász and Schrijver, 1991;

Goemans and Williamson, 1995), it is well known that the required computational effort to solve

the relaxations may be considerable, especially when the size of the relaxation becomes too big due

to the inclusion of valid inequalities. To overcome this difficulty, linear programming (LP) outer

approximations of the SDP relaxations have been investigated in several works. For example, in

(Sherali and Fraticelli, 2002), the authors propose LP relaxations of SDP constraints with the aim of

capturing most of the strength of SDP relaxations. A cutting plane algorithm is used to iteratively

strengthen the initial LP relaxation with the addition of the so-called SDP cuts.

In this paper, we initially consider the strongest SDP relaxation of the QKP presented in

(Pisinger, 2007) and eliminate from it the SDP constraint that ensures that the matrix variable is

positive semidefinite. The linear relaxation thereby obtained is a weak relaxation. We strengthen it

using the well known RLT (Reformulation Linearization Technique) inequalities and also the SDP

cuts. We apply to the QKP, a cutting plane algorithm based on the work presented in (Sherali and

Fraticelli, 2002), aiming at obtaining tight bounds for the problem by solving only LP relaxations.

Computation results compare the bounds computed with the tight bounds obtained with the SDP

relaxation of the problem. The trade-off between the quality of the bounds and the computational

effort required by the cutting plane algorithm is also investigated.

Notation
Given two symmetric n × n real matrices X,Y , we define the inner product between X

and Y as 〈X,Y 〉 = trace(XTY ) =
∑n

i,j=1XijYij . We use X � 0 to denote that the matrix X is

positive semidefinite and diag(X) to denote the vector in �n of diagonal elements of X .

2. A strong SDP bound from the literature
Besides (QKP ), an alternative lifted formulation for the QKP is obtained by replacing

each quadratic term xixj with a new variable Xij . Defining the symmetric matrix X = xxT as the

matrix with entry Xij , the QKP is equivalent to
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(QKPlifted) maximize 〈P,X〉
subject to

∑
j∈N

wjxj ≤ c,

xj ∈ {0, 1}, j ∈ N.
X = xxT .

The difficulty in solving problem (QKPlifted) comes from the nonconvex constraints

xj ∈ {0, 1} and X = xxT . Relaxations for the QKP have been obtained by relaxing the integrality

constraints to xj ∈ [0, 1], and relaxing the constraint X = xxT in two possible ways:

• By replacing the constraint X = xxT with the convex inequality X − xxT � 0, or

equivalently, using Schur’s complement, with the linear SDP inequality

(
1 xT

x X

)
� 0. (1)

• By replacing the constraint X = xxT with linear inequalities known as RLT inequalities.

These inequalities are obtained by the Reformulation Linearization Technique (RLT) (Sherali

and Adams, 1998), using products of pairs of original constraints and bounds and replacing

each nonlinear term xixj with a new variable Xij , as follows:

1. For every pair of variables xi and xj , i, j ∈ {1, . . . , n}, we consider the bound

constraints 0 ≤ xi ≤ 1 and 0 ≤ xj ≤ 1, obtaining

Xij ≤ xi,
Xij ≤ xj ,
xi + xj ≤ 1 +Xij ,
Xij ≥ 0.

(2)

2. For every variable xi, i ∈ {1, . . . , n}, we consider the bound constraint xi ≥ 0 and the

capacity constraint ∑
j∈N

wjxj ≤ c, (3)

obtaining

∑
j∈N

wjXij ≤ cxi. (4)

Finally, considering that all variables in the QKP are binary variables, we have that

Xii := xixi = xi, for all i ∈ {1, . . . , n} or, equivalently,

diag(X) = x. (5)

As a consequence, we have that

Xii ≤ 1, (6)

and we can strengthen inequality (1) to

(
1 diag(X)T

diag(X) X

)
� 0, (7)

or, equivalently, to
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X − diag(X)diag(X)T � 0. (8)

In (Helmberg et al., 1996) and (Helmberg et al., 2000), Helmberg, Rendl, and Weismantel

propose different SDP relaxations for the QKP based on the lifted formulation (QKPlifted) and on

the relaxations presented above. From the comparison numerical results presented in (Pisinger,

2007) between different bounds for the problem, we conclude that the strongest relaxation is the

SDP problem formulated as

(HRW ) maximize 〈P,X〉
subject to

∑
j∈N

wjXij −Xiic ≤ 0, i ∈ N,

X − diag(X)diag(X)T � 0,

Problem (HRW ) is derived from the lifted formulation (QKPlifted), where the capacity

constraint (3) is replaced by (4) and the nonconvex constraint X = xxT is relaxed to (8). Note that

the bound constraints 0 ≤ xi ≤ 1 are also ensured by (8).

3. New upper bounds
In this section we investigate the application of a cutting plane algorithm to iteratively

obtain tighter bounds for the QKP. At each iteration of the the algorithm a stronger LP relaxation

is solved, obtained with the addition of SDP cuts. The idea is to iteratively construct an outer

approximation of the feasible set of the lifted problem (QKPlifted) by solving a sequence of LP

problems. At each iteration of the procedure the cut added to the LP formulation eliminates the

solution of the previous relaxation from the feasible set, turning the bound tighter. The goal is to

derive as good bounds as the SDP relaxation (HRW ), but solving only LP problems.

The procedure initiates taking into account the following model

(L̃P ) maximize 〈P,X〉
subject to

∑
j∈N

wjXjj ≤ c,

∑
j∈N

wjXij −Xiic ≤ 0, i ∈ N,

X = XT ,
Xij ≤ Xii, i, j ∈ N, i < j,
Xij ≤ Xjj , i, j ∈ N, i < j,
Xij ≥ 0, i, j ∈ N, i < j,
0 ≤ Xjj ≤ 1, j ∈ N,

which corresponds to relaxation (HRW ) weakened on one side by the relaxation of the SDP

constraint X − diag(X)diag(X)T � 0 to X = XT , and strengthened on the other side by the

addition of the capacity constraint (3), the RLT inequalities (2) and the bound inequalities (6). We

didn’t include the RLT inequalities Xii+Xjj ≤ 1+Xij in the model because they are not necessary,

once we have pij ≥ 0 in the objective function.

We note here that in (Billionnet and Calmels, 1996), Billionnet and Calmels propose a

slightly weaker LP relaxation for the QKP, given by
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(BC) maximize
∑

i,j∈N,i<j

2pijyij +
∑
j∈N

pjjxj

subject to
∑
j∈N

wjxj ≤ c,

yij ≤ xi, i, j ∈ N, i < j,
yij ≤ xj , i, j ∈ N, i < j,
xi + xj ≤ 1 + yij , i, j ∈ N, i < j,
yij ≥ 0, i, j ∈ N, i < j,
0 ≤ xj ≤ 1, j ∈ N.

In (Pisinger, 2007), the authors present (BC) as one of the weakest, and also cheapest to

solve, relaxations of the QKP. Our goal with the cutting plane algorithm proposed in this work, is

to generate bounds tighter than the solution of (BC) and cheaper to compute than the ones given

by (HRW ).

3.1. A cutting plane algorithm
Let us define the (n+ 1)× (n+ 1) symmetric matrix Y as

Y :=

(
1 diag(X)T

diag(X) X

)
. (9)

In the remainder of this subsection, we describe the cutting plane algorithm to strengthen

the initial relaxation (L̃P ). The procedure is based in the equivalences:

Y � 0 if and only if X − diag(X)diag(X)T � 0,

Y � 0 if and only if vTY v ≥ 0, for all v ∈ �n+1,

and iteratively adds to the relaxation of the QKP, SDP cuts of the form v̄TY v̄ ≥ 0, where the vectors

v̄ are judiciously selected, as done in (Sherali and Fraticelli, 2002) for nonconvex programming

problems.

For the (n+ 1)× (n+ 1) symmetric matrix Y , its spectral decomposition is given by

Y =

n+1∑
k=1

λkvkv
T
k ,

where λk and vk, for k = 1, . . . , n + 1, are respectively, the eigenvalues and corresponding

orthonormal eigenvectors of Y . If Y � 0, then λk ≥ 0 for all k = 1, . . . , n + 1, otherwise

there is at least one k̄ such that λk̄ < 0.

As

vTk̄ Y vk̄ = λk̄,

the inequality

vTk̄ Y vk̄ ≥ 0,

which is satisfied by all positive semidefinite (n+ 1)× (n+ 1) matrices, is violated by Y .

The cutting plane algorithm presented in Figure 1 uses the ideas discussed above to

iteratively separate SDP cuts, and add them to our initial formulation (L̃P ) in order to tight the

bound computed.

The stopping criterion StoppingCriterion, mentioned in Figure 1 could impose the

cutting plane algorithm to stop only when the matrix Ỹ becomes positive semidefinite, or in other

words, only when λk ≥ 0, for all k = 1, . . . , n + 1. In this case the bound computed by the

algorithm would not be worse than the bound given by (HRW ). Nevertheless, the computational

effort required to satisfy this criterion may be too big to compensate. The analysis of the trade-off

between the quality of the bound obtained by the cutting plane algorithm and the computational

effort required is the main focus of our numerical experiments described in the next section.
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1: procedure CUTTINGPLANEALGORITHM(CPA)

2: while StoppingCriterion do
3: Let X̃ be an optimal solution of (L̃P ) ;

4: Let Ỹ :=

(
1 diag(X̃)T

diag(X̃) X̃

)
;

5: Let λk and vk for k = 1, . . . , n+ 1 be respectively, the eigenvalues and corresponding

orthonormal eigenvectors of Ỹ , such that λ1 ≤ λ2 ≤ . . . ≤ λn+1;

6: Let k := 1;

7: while λk < λMAX and k ≤ KMAX do
8: Add the constraint vTk Y vk ≥ 0 to (L̃P ), where Y is defined in (9);

9: k := k + 1;
10: end while
11: end while
12: return the optimal solution value of (L̃P ) .

13: end procedure

Figure 1: Cutting plane algorithm

4. Preliminary Numerical experiments
Our code was implemented in Matlab R2014a using the convex optimization toolbox

CVX 2.1 (Grant and Boyd, 2014) and the solver MOSEK 7.1 (Andersen and Andersen, 1999).

All runs were conducted on a 1.90GHz Intel(R) Core i7 CPU, 4GB, running under Linux Ubuntu,

version 14.04.

In our experiments, we used the same randomly generated instances that were used by

Jesus Cunha in (Cunha, 2014). Cunha also provided us the optimal solutions of the instances. The

instances are denoted in Table 1 presented below by In,d,i, where

• n is the number of variables,

• d is the density of the profit matrix P , i.e., the percentage of positive profits pij , i ≤ j, i, j ∈
N , which are randomly selected in the interval [1, 100],

• i is the instance index.

The capacity of the knapsack c is randomly selected in the interval [50,
∑n

j=1wj ] and the

weight wj is randomly selected in the interval [1, 50], for each j ∈ N . The procedure used by

Cunha to generate the instances was based on other previous works (Billionnet and Calmels, 1996;

Caprara et al., 1999; Chaillou et al., 1989; Gallo et al., 1980; Michelon and Veilleux, 1996).

The aim of our experiments is to compare the upper bounds for the QKP that are obtained

with two relaxations from the literature, (HRW ) and (BC), and with different versions of our

cutting plane algorithm (CPA), where what differs in the versions is the maximum number of

SDP cuts that are added to the relaxation at each iteration, denoted in Figure 1 by KMAX . More

specifically, we compare the upper bounds obtained with the five following relaxations:

• The SDP relaxation (HRW ) strengthened by (3) and (2) (SDP).

• The LP relaxation (BC) (LP).

• The LP relaxation obtained with our CPA, considering KMAX = 1 (CPA1).

• The LP relaxation obtained with our CPA, considering KMAX = 5 (CPA5).

• The LP relaxation obtained with our CPA, considering KMAX = 10 (CPA10).
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The stopping criterion, identified in Figure 1 as StoppingCriterion, was chosen on these

preliminary numerical experiments with the goal of allowing a good analysis of the convergence of

the CPA. We run the tests with a time limit of 360 seconds or until the matrix variable Y becomes

positive semidefinite. In order to avoid a premature interruption of the runs due to lack of memory,

we check at each 5 iterations, which SDP cuts are not active, and eliminate them from the model.

Table 1 presents the results of our experiments. In the first column we specify the instance

considered. In the other columns we shows the relative gap between the upper bound (UBi)

obtained with the i-th relaxation, and the optimal solution value of the problem z∗, specifically

given by

Gap = UBi−z∗
z∗ × 100, for i = 1, . . . , 5.

Instance LP SDP CPA1 CPA5 CPA10
I100,25,1 0.25 0.16 0.25 0.25 0.25

I100,50,1 1.11 0.04 0.37 0.16 0.17

I100,75,1 6.01 0.49 0.50 0.49 0.49

I100,100,1 3.46 0 0 0 0

I100,25,2 5.77 0.76 1.42 1.21 1.31

I100,50,2 2.82 0.43 0.48 0.48 0.47

I100,75,2 1.67 0.20 0.23 0.22 0.23

I100,100,2 2.51 0.46 0.46 0.46 0.46

I100,25,4 1.05 0.12 1.05 0.55 0.57

I100,50,4 3.96 0.19 0.76 0.70 0.65

I100,75,4 2.55 0.10 0.20 0.13 0.14

I100,100,4 4.32 0.13 0.13 0.13 0.13

I200,25,1 0.16 - 0.16 0.16 0.16

I200,50,1 0.16 - 0.16 0.16 0.16

I200,75,1 16.83 - 0.51 0.48 0.48

I200,100,1 0.06 - 0.03 0.03 0.03

Mean 3.29 0.26 0.42 0.35 0.36

Table 1: Gaps obtained with different relaxations for the QKP

We first note that the time limit of 360 seconds is longer than the time required to solve

SDP, whenever SDP can be solved, i.e. whenever n = 100. The maximum time required to solve

SDP when n = 100 is 210 seconds. Nevertheless, SDP cannot be solved for any instance with

n = 200, due to lack of memory or numerical problems, which confirms the well known difficulty

in solving strong SDP relaxations as the number of variables increases. The time required to solve

LP for all instances is very small, up to 0.6 seconds, however, the bounds given by this relaxation

sometimes are very weak. Our next goal on our research, is to define a stopping criterion for the

CPAs, such that they can obtain in average a better bound than LP, but in a shorter time than SDP. In

these preliminary tests, however, we allowed the CPAs to run for a longer time than SDP, in order

to analyze their convergence behavior. We also note that for CPA5 and CPA10, several runs were

interrupted for lack of memory. For all others the stopping criterion was the the time limit of 360

seconds. On no run of the CPAs, we obtained a positive semidefinite matrix Y .

From the results in Table 1, we see that CPA1 finds a better bound than LP for 12 out of 16

instances, and the other two CPAs find a better bound than LP for 13 out of 16 instances. Also CPA1

obtains the same bound as SDP for 3 instances, while the other two CPAs obtain the same bound as

SDP for 4 instances. It’s also worth to mention that for the 2 out of 4 instances for which SDP fails,
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the CPAs obtain better bounds than LP. The most impressive result was for instance I200,75,1, as

the gap obtained by LP is 16.83%, while the gaps obtained by the CPAs are very good, 0.51% and

0.48%. Finally, we point out that for the only instance for which SDP obtains the optimal solution

value, i.e., gap equal to 0%, the three CPAs also obtain it. For this same instance (I100,100,1), LP

finds a gap of 3.46%. The average gaps presented in the last row of Table 1 show how close to the

SDP bounds, the CPAs can get in 360 seconds, and with the amount of memory available.

Figure 2 shows the behavior of the three cutting plane algorithms during the iterations,

for four instances. The horizontal and vertical axes on the graphics correspond, respectively, to the

number of iterations and the relative gap. The two horizontal lines on the graphics indicate to the

bounds given by the relaxations (LP) and (SDP).
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Figure 2: Bounds during the execution of the CPAs

In Figure 2 we see that as we increase the number of cuts added to the LP relaxations

at each iteration of the CPA algorithm, better bounds are computed in less iterations. This result

indicates that the cuts added are being really effective. It is clear that the convergence of CPA1

is much slower than of the other two CPAs. Together with the average results from Table 1, this

rules out the CPA1 algorithm from our future research, leaving CPA5 and CPA10 as better options.

Furthermore, we see that it is common to get basically the same bounds with these two last CPAs

in 360 seconds, so it is important now to have a better analysis of the time spent at each iteration of

these algorithms to identify the best limit on the number of cuts to be added. Finally, Figure 2 shows

that the bounds given by the CPAs are always between the ones given by LP and SDP. Furthermore,

at each iteration, the CPAs’ bounds get closer to the SDP bounds and become more distant from the

LP bounds.

5. Conclusion
Several works have proposed different relaxations to the quadratic knapsack problem

(QKP). The analysis of the trade-off between the quality of the bounds and the computational
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effort required to compute them has been done in the literature and is an important tool for the

development of successful branch-and-bound algorithms for the QKP. In this work we propose

the application of a cutting plane algorithm that iteratively solves stronger linear programming

relaxations of the problem, adding valid inequalities well known in the literature as RLT inequalities

and SDP cuts. Similar ideas have been proposed for more general nonconvex quadratic problems in

the literature. Here, we specialize the ideas to better fit the QKP, and compare, through numerical

experiments, different versions of the cutting plane algorithm. We conclude that the methodology

proposed gives promising results for the QKP, the bounds computed for some instances are much

better than the ones given by a simpler linear programming relaxation, and can be computed more

efficiently than a stronger SDP relaxation, when the number of variables increases. We note that

the computational time of the cutting plane algorithm is still large, when compared to other linear

programming relaxations. However, in future work we plan to apply some well known techniques

to reduce it, as for example, to consider the RLT inequalities to be added to the original relaxation,

also with a separation algorithm, as it is done for the SDP cuts. Procedures to eliminate from the

relaxation inactive RLT constraints at its optimal solution, at each iteration of the cutting plane

algorithm, can also be investigated. Finally, the sparsification of the SDP cuts has been studied in

(Qualizza et al., 2011) and successfully applied to quadratically constrained quadratic programs, in

order to reduce the computational time of a similar cutting plane algorithm. The authors mention

in the paper that the usual high density of the SDP cuts, in general leads to a slow cutting plane

algorithm, and propose a procedure that generate sparse SDP cuts. The same procedure can be

applied to the QKP, and is part of our future research, to investigate it as well.
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