
De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

FLOWSHOP SCHEDULING WITH DELIVERY DATES AND
CUMULATIVE PAYOFFS

Safia Kedad-Sidhoum
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

F-75005, Paris, France

safia.kedad-sidhoum@lip6.fr

Luciana Pessoa
Department of Industrial Engineering, Pontifı́cia Universidade

Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225,

Gávea - 22453-900 Rio de Janeiro, RJ, Brasil

lucianapessoa@esp.puc-rio.br

Yasmina Seddik
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

F-75005, Paris, France

yasmina.seddik@lip6.fr

ABSTRACT
In this paper, we address a new permutation flowshop problem with job release dates and

a stepwise job cost function. A mathematical model is proposed. We tackle this strongly NP-hard

problem with several heuristic methods: four constructive heuristics, three of them found in the

literature, and a new one; as well as some local search methods. Besides, we present two heuris-

tics based on metaheuristics - a GRASP and an ILS. As we are dealing with a new problem, we

developed a benchmark with 150 instances. The experimental results show the merit of the devel-

oped greedy constructive heuristic, which is competitive to the classical NEH heuristic for flowshop

scheduling problems, by finding similar solution quality while presenting greater complexity and

running times. Furthermore, we found out that ILS approach outperforms GRASP.

KEYWORDS. Flowshop Scheduling. Heuristics. Metaheuristics.

Main Area: Scheduling, Metaheuristics, Mathematical Programming

1839

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

1. Introduction

In the flowshop scheduling problem with delivery dates and cumulative payoffs a set of

n jobs J = {J1, J2, . . . , Jn} must be sequentially processed without preemption on m machines.

Each job Ji must first be processed on machine 1, then on machine 2 and so on until machine

m, i = 1, . . . , n. In this work, we deal with a permutation flowshop, i.e. a flowshop where jobs

are processed in the same order on every machine. Each job Jj ∈ J has a release date rj ≥ 0
and a processing time pj,l on machine l, l = 1, . . . ,m. Moreover, a set of K delivery dates D =
{D1, D2, . . . , DK} is given, where 0 < D1 < . . . < DK . All parameters are integer.

A schedule S is defined as a vector of starting times of the jobs on each machine: S =
(s1,1, . . . , s1,m, s2,1, . . . , s2,m, . . . , sn,1, . . . , sn,m), where sj,l is the starting time of job j on ma-

chine l in schedule S. Given a schedule S, we denote by Cj,l(S) (Cj,l for short) the completion

time of job j on machine l: Cj,l = sj,l + pj,l. For shortness, let us denote Cj,m by Cj .

The objective value of a given schedule S is equal to
∑n

j=1F(Cj(S)), where F(t) is the

number of delivery dates that are greater than or equal to t, for any time instant t. Extending the

three-field notation of Graham et al. (1979), the problem addressed in this paper can be defined as

F |rj , perm|∑n
j=1F(Cj). The flowshop scheduling problem with delivery dates and cumulative

payoffs consists in finding a maximum payoff scheduling S∗.

Figure 1 illustrates a schedule for a permutation flowshop whose instance is defined as

follows:

• 3 machines, 4 jobs, 3 delivery dates

• r1 = 2, r2 = 7, r3 = 9, r4 = 12

• p1 = (1, 2, 2); p2 = (3, 2, 2); p3 = (3, 6, 2); p4 = (5, 1, 4)

• D1 = 16, D2 = 21, D3 = 26

Figure 1: A schedule for a permutation flowshop.

Note that
∑n

j=1F(Cj) is a regular criterion, i.e. left-shifted schedules are dominant.

Hence, a schedule can be represented simply by a sequence of jobs. For instance, the schedule of

Figure 1 is a left-shifted schedule that can be represented by the sequence (J2, J4, J1, J3), of payoff

4.

This problem is a generalization of the related single machine problem, whose application

is in book digitization (Seddik et al. (2013)). The book digitization process is linear and includes

several steps (although two main ones: digitization and segmentation). While the single machine

problem can model a bottleneck machine, a flowshop problem models more accurately the real

machine configuration.

1840

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Complexity and mathematical formulation F |rj , perm|∑n
j=1F(Cj) is strongly NP-hard, since the

single-machine problem 1|rj |
∑n

j=1F(Cj), defined by Seddik et al. (2013), is strongly NP-

hard. The special case with two machines, no release dates and a common delivery date F2|Di =
D, perm|∑n

j=1F(Cj), equivalent to problem F2|perm|∑Cj , is already NP-hard, as shown by

Della Croce et al. (2011).

We propose a Mixed Integer Linear Program (MILP) for this problem, formulated with

positional variables. According to Della Croce et al. (2011), this formulation is superior to other

models based on disjunctive variables and constraints, for F2|perm|∑Cj . The mathematical

formulation of F |rj , perm|∑n
j=1F(Cj) is the following, where the binary decision variable Xi,j

is equal to 1 if job Ji is the j-th job of the sequence and Xi,j = 0 otherwise. Variable Cpos
j,l denotes

the completion time of the job on the j-th position on machine l, j = 1, . . . , n, l = 1, . . . ,m. Cpos
j

denotes Cpos
j,m.

max
n∑

j=1

F(Cpos
j) (1)

s.t.
n∑

i=1

Xij = 1, j = 1, . . . , n, (2)

n∑
j=1

Xij = 1, i = 1, . . . , n, (3)

Cpos
j,1 ≥

n∑
i=1

(pi,1 + ri)Xi,j , j = 1, . . . , n, (4)

Cpos
j,l ≥ Cpos

j−1,l +

n∑
i=1

pi,lXi,j , j = 2, . . . , n, l = 1, . . . ,m, (5)

Cpos
j,l+1 ≥ Cpos

j,l +

n∑
i=1

pi,l+1Xi,j , j = 1, . . . , n, l = 1, . . . ,m− 1, (6)

Cpos
j,l ≥ 0, j = 1, . . . , n, l = 1, . . . ,m. (7)

Xi,j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n. (8)

The objective function is stated in (1) where:

F(Cpos
j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if DK < Cpos
j

1 if DK−1 < Cpos
j ≤ DK

...

K if 0 < Cpos
j ≤ D1

Constraints (2) and (3) ensure that each position is attributed to one job and each job is

processed exactly once. Constraints (4) ensure that on the first machine job j cannot start before

its release date. Constraints (5) forbid the overlapping of a job and its predecessor on a machine.

Constraints (6) establish that a job cannot be processed on a machine before its completion on the

preceding machine. Constraints (7) and (8) give the domain definition of the variables.

Related work To the best of our knowledge, no flowshop problem with stepwise job cost func-

tions has been studied yet. Indeed, such objective function was only studied on single machine

(Seddik et al. (2013), Detienne et al. (2012)) and parallel machines (Detienne et al. (2011), Curry

1841

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

and Peters (2005)). However, the algorithms for single and parallel machines can not be easily

adapted to flowshop because they often rely on structural properties that do not apply any more.

The most closely related problems are flowshops with release dates and regular sum ob-

jective functions
∑n

i=1 fi(Ci). Rakrouki and Ladhari (2009) consider F2|ri|
∑

Ci, for which they

propose some Branch and Bound methods, solving instances with up to 100 jobs for some classes

of instances and 30 jobs for the hardest class of instances. Ladhari and Rakrouki (2009) consider

the problem F2|ri, perm|∑Ci, for which they develop lower bounds, heuristics and a genetic

algorithm. Other related problems are flowshop problems with regular sum objective functions∑n
i=1 fi(Ci), but without release dates. Della Croce et al. (2011) propose a matheuristic for solv-

ing the two machine flowshop problem F2||∑Ci; Della Croce et al. (2000) solve F2|di = d|∑Ui

with a Branch and Bound method; and Vallada et al. (2008) compare several heuristics for solving

F ||∑Ti.

In the remaining of this paper, we propose heuristic methods for the flowshop scheduling

problem with delivery dates and cumulative payoffs. Section 2 is devoted to constructive methods.

Local search operators are presented in Section 3. Section 4 shows computational experiments on

constructive and local search methods. Results are used to customize GRASP and ILS heuristics,

described in Sections 5 and 6 respectively, for the problem tackled in this paper. Then, a compar-

ative evaluation of GRASP, ILS and a solving method based on the commercial CPLEX solver is

presented in Section7, and concluding remarks are provided in Section 8.

2. Constructive Heuristics
In this section, we describe four constructive heuristics for the flowshop scheduling with

delivery dates and cumulative payoffs: three of them found in the literature, and a new one.

R (Release dates) This heuristic produces a left-shifted schedule where jobs are ordered by in-

creasing order of their release dates. This O(n log n) method was first described by Potts (1985)

for the two-machine permutation flow-shop problem of minimizing the maximum completion

time.

ECT (Earliest Completion Time) This heuristic produces a left-shifted schedule where jobs are

ordered w.r.t. their earliest possible completion time Ei = ri +
∑m

l=1 pil. This O(n log n)
algorithm was proposed by Ladhari and Rakrouki (2009) for the minimization of the total

completion time on a two-machine flowshop problem with release dates.

NEH (Nawaz, Enscore and Ham) The steps of the NEH-based algorithm (Nawaz et al. (1983))

are the following:

1. Sort the jobs in the increasing order of Ei = ri +
∑m

l=1 pil

2. Consider the two jobs Ji1 , Ji2 with the smallest values of Ei. Among the two left-shifted

partial schedules corresponding to sequences (Ji1 , Ji2) and (Ji2 , Ji1), choose the one

with the greatest payoff as the current schedule.

3. Repeat until all jobs are scheduled: Let Je be the unscheduled job with the smallest

value of Ei. Update the current schedule, by inserting Je, in the position that maximizes

the payoff, while keeping a left-shifted partial schedule.

Step 3 concentrates the largest computational effort of the algorithm. For each tentative

position, the method evaluates the solution cost in O(nm) steps. As each job can be inserted

in O(n) positions, the complexity of NEH heuristic for the problem under consideration is

O(n3m).

The NEH heuristic, originally proposed by Nawaz et al. (1983) for a flowshop problem with-

out release dates, was modified by Ladhari and Rakrouki (2009) by considering the sorting

1842

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

criterion described above. The method described in Ladhari and Rakrouki (2009) is easily

adapted for the addressed problem by simply changing the payoff evaluation.

IECT (Iterated Earliest Completion Time) Following the ideas of NEH and ECT methods, we

developed a new iterative construction method. A jobs sequence is built from scratch and the

first added job is that with the smallest value of Ej , as defined for the ECT method. After that,

at each iteration, the earliest possible completion time of all jobs that are not in the partial

schedule are reevaluated by considering the completion time, on each machine, of the last job

added in the schedule. Algorithm 1 describes this O(n2m) method.

The schedule (solution) S and the list L of jobs indices are initialized at lines 2 and 3, re-

spectively. The earliest possible completion time is computed at lines 4 to 6 for all jobs. The

index j∗ of the job with the earliest possible completion time is identified at line 7. Then, the

corresponding job Jj∗ is inserted in the sequence at line 8, where S.Jj∗ denotes the concate-

nation of job Jj∗ at the end of S. Index j∗ is, then, removed from the job list at line 9. The

loop at lines 10 to 20 adds one job at a time to the sequence, until all jobs are scheduled. The

loop at lines 11 to 16 calculates the earliest possible completion time of all jobs indexed in L.

Line 12 considers the first machine and calculates the earliest possible completion time Ej1

of job Jj by adding its processing time to the maximum value between its release date and the

completion time on machine 1 of the last job in the schedule. Remaining machines are treated

by the loop at lines 13 to 15. Line 14 calculates the earliest possible completion time of job

Jj on machine l by adding its processing time to the maximum value between its predecessor

on the machine under consideration and its own completion time on the preceding machine.

At lines 17 to 20, respectively, the job with the smallest possible completion time in the last

machine is identified, concatenated to the partial schedule, and its index is removed from L.

ConstructiveHeuristicIECT1

S ← ∅;2

L ← {1, · · · , n};3

forall j ∈ L do4

Ej = rj +
∑m

l=1 pjl;5

end6

j∗ ← argmin{Ej : j ∈ L};7

S ← S.Jj∗ ;8

L ← L \ {j∗};9

while L �= ∅ do10

forall j ∈ L do11

Ej1 ← max{rj , Cj∗,1}+ pj1;12

for l = 2, . . . ,m do13

Ejl ← max{Cj∗,l, Ej,l−1}+ pjl;14

end15

end16

j∗ ← argmin{Ejm : j ∈ L};17

S ← S.Jj∗ ;18

L ← L \ {j∗};19

end20
Algorithm 1: Constructive Heuristic IECT

1843

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

3. Local Search Methods
Local search methods attempt to find cost-improving solutions by exploring the neighbor-

hood of an initial solution. If none is found, then the search returns the initial solution as a local

minimum. Otherwise, if an improving solution is found, it is made the new initial solution, and the

procedure repeats itself (Talbi (2009)). We use here the best improvement strategy: the new initial

solution is the best one in the neighborhood of the previous solution.

The neighborhoods explored in this work are based on those standard ones studied by Den

Besten and Stützle (2011) for scheduling problems. In the interchange neighborhood, a neighbor

solution is obtained by swapping two jobs Ji and Jj at the ith and jth positions, resulting in a

neighborhood size of n(n − 1)/2. The insert neighborhood attempts to move a job Ji to a new

position that improves the solution cost. For each job, n− 1 positions can be verified, therefore the

whole neighborhood contains n(n − 1) solutions. For both methods, the cost of each solution is

verified in nm steps which make the local search a O(n3m) method.

Neighborhoods can be combined in order to better explore the solution space. Variable

Neighborhood Descent (VND) establishes an order in which the local search neighborhoods will

be explored. Starting from a solution generated by the constructive algorithm, a VND exploits the

first neighborhood until a local optimum is found. This solution becomes the initial solution to the

next neighborhood, and the sequence continues until the last neighborhood is reached. If, during

the investigation in the local search algorithm, an improving solution is found, then the procedure

returns to the first neighborhood.

4. Computational experiments on constructive and local search methods
In this section, we present an experimental evaluation of the described heuristics, and we

compare them to the results obtained by solving the ILP formulation.

The ILP formulation was solved with IBM ILOG CPLEX solver and the function STEP

embedded in the OPL language was used to implement the objective function. CPLEX was executed

on a 3.33 GHz Intel Core2-Duo processor running Ubuntu and stopped when an optimal integer

solution is found, or when the CPU time limit of 6 hours is reached. Heuristics were implemented

in C++ and the experiments were performed on a 3.40 GHz Intel Core i7 processor running Ubuntu.

4.1. Instances generation
We randomly generated 150 test instances for the problem addressed in this work. Each

instance contains 100 jobs which must be processed on 2 machines. Processing times are random

integers from a uniform distribution in the interval [1, 100]. The number of delivery dates varies in

{1, 2, 3, 5, 7, 10}. Delivery dates for each instance are defined as follows. Let C be the makespan

of a schedule obtained by using Johnson’s rule (Brucker (2007)), while ignoring release dates. The

first delivery date D1 = �(α × C)/K	, where α is a parameter, α ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The

other delivery dates are computed as: Dk = k ×D1, 1 < k ≤ K. Following Seddik et al. (2013),

the release date of each job is picked randomly in one of the intervals rk = [Dk, Dk + R × Dk),
with D0 = 0 and k = 1, . . . ,K. R is a parameter taking values in {0.1, 0.3, 0.5, 0.7, 1.0}. The

choice of the interval is also random (each with probability 1/K).

4.2. Comparative metrics
We used the following metrics to compare the heuristics:

• BestValue: for each instance, BestValue is the best solution value obtained over all executions

of the methods considered.

• Dev: for each method, Dev is the relative deviation in percentage between CPLEX solution

(Vc) and BestValue (Vb). Dev = 100 ∗ (Vb − Vc)/Vc. Therefore, Dev can be negative if

BestValue is worse (lower) than the CPLEX solution.

• AvgDev: average value of Dev over all instances of a method.

1844

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

• #Imp: for each method, this metric gives the number of instances whose solution value is

better than CPLEX solutions. In our experiments, CPLEX was able to find 8 optimal solutions

out of 150 instances.

• Time: for each method, this metric gives the average computation time (in seconds) over all

instances.

4.3. Numerical results
Table 1 displays a summary of the results obtained by the constructive methods defined in

Section 2. The results show that methods R and ECT, which builds a solution by just following some

sorting criterion, yield the worst average relative deviation (-26.15% and -19.30%, respectively)

although their average processing times are less than 1 ms. The quality of the solutions obtained

by NEH and IECT methods are similar. Their AvgDev difference is less than 1, however the NEH

complexity makes its average processing time to reach 0.34 seconds while IECT average processing

time is less than 1 ms. Note that negative AvgDev values mean that, in average, the method finds

worse solutions in comparison with CPLEX solutions. Regarding the total number of improved

solutions, NEH gets the best result by improving 42 solutions, while the other methods improve

about 25 solutions.

Table 1: Summary of the constructive methods

Method AvgDev(%) # Imp Time

R -26.15 24 0.00

ECT -19.30 25 0.00

NEH -6.25 42 0.34

IECT -7.05 27 0.00

Table 2 displays a summary of the results obtained by the local search methods defined in

Section 3. Since heuristics NEH and IECT present the best and similar quality results, we use these

two heuristics to compute initial solutions for local search methods. AvgDev results for Interchange

local search (Itc) application are similar, around -3.7%, for both constructive methods. Insertion

local search (Ist) combined with NEH was the least effective method. Its quality results are almost

one percentage point worse than those obtained by the use of the Interchange method. Note that

these three schemes obtained negative AvgDev values, which means that, in general, they found

worse solutions than CPLEX solutions as confirmed by #Imp metric. The most effective results

were obtained by applying the Insertion local search on the IECT solutions, despite consuming

longer running times. This scheme was the only one to reach a positive AvgDev metric and it was

able to find better solutions than CPLEX for 87 instances. Besides, by comparing these results with

those displayed in Table 1, we note that Insertion local search was able to improve by more than 12

percentage points the solutions obtained by the IECT constructive methods.

Table 2: Summary of the local search methods

Method AvgDev(%) # Imp Time

NEH Itc -3.70 50 0.59

NEH Ist -4.99 43 4.71

IECT Itc -3.76 36 0.49

IECT Ist 4.93 87 11.13

In the next experiment, we combine Interchange and Insertion neighborhoods in a VND

method, so that two VND variants are considered by changing the order of the Interchange and

Insertion neighborhoods. The initial solution is computed with IECT, since this method shows

1845

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

the best results in the previous experiments. Table 3 shows that the order in which local search

operators are applied does not affect the solution quality. Besides, by comparing these results with

those showed in Table 2, we note only a small improvement on the solutions quality.

Table 3: Summary of the VND methods applied to IECT solutions

Method AvgDev(%) # Imp Time

IECT Itc+Ist 5.06 85 12.06

IECT Ist+Itc 5.18 87 13.02

5. GRASP
The Greedy Randomized Adaptive Search Procedures (GRASP) is a multi-start meta-

heuristic which consists of applying local search to feasible starting solutions generated with a

greedy randomized construction heuristic. A recent review of GRASP can be found in Resende and

Ribeiro (2010).

In this section, we specialize GRASP into a heuristic for the flowshop scheduling with

delivery dates and cumulative payoffs.

The construction phase of GRASP is a randomized variant of the IECT greedy algorithm.

At each iteration, the jobs not in the solution are still evaluated by the greedy function Ej , as

defined above. However, instead of choosing the job with the earliest possible completion time,

the randomized algorithm first identifies the minimum (E−) and maximum (E+) greedy function

values of the candidate elements. Then, a restricted candidate list (RCL), formed by all candidate

elements whose greedy function value is less than or equal to E− + α(E+ − E−), is built. A

job index jr is chosen at random from the RCL and the corresponding job Jjr is inserted in the

scheduling. Parameter α used in the GRASP construction phase was set to 0.1 since we observed

in preliminary experiments that this value led to the best results.

Solutions built with the randomized greedy algorithm are not guaranteed to be locally

optimal, even with respect to simple neighborhood structures. Therefore, the application of local

search to such a solution usually results in an improved locally optimal solution.

In the GRASP local search, the method Insertion is followed by the Interchange in a VND

strategy. As described in the previous section, this approach led to the best average solution.

6. Iterated Local Search
Iterated Local Search (ILS) is a metaheuristic which builds a sequence of solutions by

iteratively applying perturbations and local search methods from an initial solution. Lourenço et
al. (2003) review some applications of ILS and describe the main parts of this method. Applications

of ILS for flowshop problems can be found in Den Besten et al.(2001), Dong et al.(2009) and Stützle

(1998).

According to Den Besten et al. (2001), a basic ILS algorithm is built with four compo-

nents: (1) a method to generate an initial solution, (2) a perturbation method, to allow the ILS to

escape local optima, (3) a local search procedure, and (4) an acceptance criterion, to decide if a

solution will replace the current one to the next iteration.

The method to generate an initial solution can be either a randomized method or a greedy

constructive heuristic. Both can be combined with a local search. Once an initial solution is cre-

ated, the method execute steps (2), (3) and (4) in a loop until a stopping condition is reached.

Perturbations are applied to the current local minimum and modify a number of solution elements.

The higher the number of modified elements, the greater the strength of the perturbation, which

must be carefully studied in order to avoid random restarts or falling back into previous solutions

just visited. The perturbation method together with the local search brings a new solution that re-

places the current one to the next loop iteration if an acceptance criterion is met. This component

1846

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

may range between a strong intensification criterion, by only accepting improving solutions, and a

strong diversification, by accepting any new solution, not taken its cost into consideration.

An ILS heuristic for the flowshop scheduling with delivery dates and cumulative payoffs

has the following components:

(1) the IECT constructive heuristic is used to generate the initial solution,

(2) the perturbation method consists of applying eight swap moves. We alternate a move

that swaps two neighbor jobs (Ji, Ji+1) and another move that swaps a no neighbor pair of jobs

(Ji, Jj), at the ith and jth random positions.

(3) it uses the method Insertion followed by Interchange in a VND strategy, for the local

search.

(4) the acceptance criterion allow only better solutions to replace the current one.

7. Comparative evaluation of GRASP, ILS and CPLEX

In this section, we compare the solution quality obtained by CPLEX with the results of

the ILS and GRASP algorithms. The experimental framework is identical to the one described in

Section 4. To evaluate GRASP and ILS, eight runs were carried out for each instance, varying the

initial seed given to the random number generator. The algorithms stop when it reaches 10 minutes

of CPU time.

Table 4 brings the results of GRASP heuristic, which also can be compared to the ILS

heuristic. Comparing the results of AvgDev(%) and #Imp metrics with that ones presented in Ta-

ble 3, we note that GRASP performed similarly to the algorithm based on a greedy construction

although is more time consuming. Metrics MinDev(%) and MaxDev(%) in Table 4 give the max-

imum and minimum value of Dev over all instances of a method. In the worst case, ILS found a

solution 5.13% inferior than the CPLEX solution while the GRASP worst solution is 6.94% worse

than CPLEX. MaxDev(%) show that the best improvement over all instances was obtained by ILS

that was able to find a solution 47,90% better than the CPLEX solution.

Table 4: Summary of the GRASP and ILS results in comparison with CPLEX solutions

Method AvgDev(%) MinDev(%) MaxDev(%) # Imp

GRASP 5.37 -6.94 44.75 87

ILS 7.21 -5.13 47.90 95

As mentioned before, CPLEX ran 6 hours and it was able to find 8 optimal solutions out

of 150 instances. For those solutions whose optimality was not proven, primal-dual gaps vary up

to 527%. Table 5 shows the top 10 and bottom 10 instances, regarding their CPLEX percentage

gaps. In the first column, the instance name brings the details about its generation as explained in

Section 4. For example, instance k2n100a0.1r0.7 has k = 2 delivery dates, n = 100 jobs, parameter

α, used to give the first delivery date, is a = 0.1 and r = 0.7, which is the same parameter R used

to define the release date of each job. Columns 2 and 3 give, respectively, the best value and the

percentual primal-dual gap found by CPLEX for each instance. Finally, columns 4 and 5 show

the percentual relative deviation from the solutions found, respectively, by GRASP and ILS to the

solutions found by CPLEX.

We noted that ILS was more effective than GRASP in finding better solutions than CPLEX,

for those instances whose optimal solution is not known. Besides, ILS was able to find solutions

known as optimal, but GRASP did not find any optimal solution.

It is worth to mention that when the deviation is positive, CPLEX could not provide the

optimal solution within the CPU time limit. Some experiments are currently driven to assess the

quality of the solution provided by the heuristics by comparing the solution values to upper bounds.

1847

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 5: Detailed results of GRASP and ILS comparison with CPLEX for 20 instances

Instance CPLEX Best value CPLEX % gap GRASP % Dev ILS% Dev

k2n100a0.1r0.5 30 0.00 -6.67 -3.33

k2n100a0.1r0.7 30 0.00 -3.33 0.00

k3n100a0.1r0.1 40 0.00 -2.50 0.00

k3n100a0.1r0.3 35 0.00 -5.71 0.00

k3n100a0.1r0.5 39 0.00 -5.13 -5.13

k3n100a0.1r0.7 40 0.00 -2.50 -2.50

k7n100a0.1r0.5 84 0.00 -1.19 0.00

k7n100a0.1r0.7 77 0.00 -2.60 0.00

k5n100a0.1r0.1 55 0.01 -3.64 0.00

k10n100a0.1r0.1 111 0.01 -1.80 0.00

k5n100a0.1r0.5 69 265.21 0.00 1.45

k1n100a0.1r0.3 22 268.18 0.00 0.00

k10n100a0.1r0.5 118 289.22 0.85 3.39

k7n100a0.3r0.1 161 290.02 4.97 7.45

k5n100a0.3r1.0 112 296.43 15.18 17.86

k1n100a0.1r0.7 18 311.11 0.00 0.00

k5n100a0.3r0.7 108 312.04 11.11 12.96

k10n100a0.3r0.7 194 326.21 15.46 15.98

k10n100a0.3r0.3 209 355.86 12.44 12.44

k7n100a0.1r0.3 87 527.42 8.05 9.20

8. Concluding remarks
In this paper, we introduced a new permutation flowshop problem with a stepwise job

cost function as well as its mathematical model. A new greedy constructive heuristic for flowshop

was described. Experiments showed that the proposed method is competitive to the classical NEH

heuristic for flowshop, by finding similar solution quality while presenting greater complexity and

running times, in particular when combined to local search operators.

Two algorithms based on GRASP and ILS metaheuristics were developed. We would like

to point out that these methods deserve further investigation, and thus that the results presented

here are intended as preliminary results. However, computational experiments showed ILS is a

promising approach since it was able to find better solutions than GRASP.

Another research avenue to enhance the current work on the permutation flowshop is to

attempt to identify structural properties, and especially designing good upper bounds (for more than

two machines) in order to better evaluate the heuristic methods.

1848

De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

9. Acknowledgements
This study was partially supported by PNPD/Capes (PNPD20131046-31005012014P4)

and FUI project Dem@tFactory, financed by DGCIS, Conseil général de Seine-et-Marne, Conseil

général de Seine-Saint-Denis, Ville de Paris, Pôle de compétitivité Cap Digital.

References
Brucker, P. Scheduling algorithms, Berlin: Springer, 2007.

Curry, J., and Peters, B. (2005). Rescheduling parallel machines with stepwise increasing tardiness and

machine assignment stability objectives. International Journal of Production Research, 43(15), 3231-3246.

Della Croce, F., Grosso, A. and Salassa, F. (2011). A matheuristic approach for the total completion time

two-machines permutation flow shop problem. In Evolu- tionary Computation in Combinatorial Optimiza-

tion, LNCS, 38-47.

Della Croce, F., Gupta, J.N.D., and Tadei, R. (2000). Minimizing tardy jobs in a flowshop with common

due date. European Journal of Operational Research, 120(2), 375-381.

Den Besten, M. and Stützle, T. (2011), Neighborhoods revisited: An experimental investigation into the

effectiveness of variable neighborhood descent for scheduling, Proceedings of The Fourth Metaheuristics
International Conference (MIC2001), 545-549.

Den Besten, M., Stützle, T., and Dorigo, M. (2001), Design of iterated local search algorithms, Applications
of Evolutionary Computing, 441-451.

Detienne, B., Dauzère-Pérès, S., and Yugma, C. (2011), Scheduling jobs on parallel machines to minimize

a regular step total cost function. Journal of Scheduling, 14(6), 523-538.

Detienne, B., Dauzère-Pérès, S., and Yugma, C. (2012), An exact approach for scheduling jobs with regular

step cost functions on a single machine. Computers & Operations Research, 39(5), 1033-1043.

Dong, X., Huang, H., and Chen, P. (2009), An iterated local search algorithm for the permutation flowshop

problem with total flowtime criterion, Computers & Operations Research, 36(5), 1664-1669.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G., Optimization and approximation

in deterministic sequencing and scheduling: a survey, in Hammer, P.L., Johnson, E.L., and Korte, B.H. (Eds.),

Annals of Discrete Mathematics, 5, Elsevier, 287-326, 1979.

Ladhari, T. and Rakrouki, M. A. (2009), Heuristics and lower bounds for minimizing the total completion

time in a two-machine flowshop, International Journal of Production Economics, 122(2), 678-691.

Lourenço, H. R., Martin, O. C., and Stützle, T., Iterated local search, Springer, USA, 2003.

Nawaz, M., Enscore Jr, E.E. and Ham, I. (1983), A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem, Omega, 11(1), 91-95.

Potts, C. N. (1985), Analysis of heuristics for two-machine ow-shop sequencing subject to release dates,

Mathematics of Operations Research, 10(4), 576-584.

Rakrouki, M. A., and Ladhari, T. (2009), A branch-and-bound algorithm for minimizing the total comple-

tion time in two-machine flowshop problem subject to release dates. International Conference on Computers
& Industrial Engineering, IEEE, 80-85.

Resende, M. G. C. and Ribeiro, C. C.(2010). Greedy randomized adaptive search procedures: advances

and applications. In Gendreau, M., Potvin, J.-Y.,(Eds.) Handbook of Metaheuristics (2nd edn). Springer

Science and Business Media, New York, 281-317.

Seddik, Y., Gonzales, C. and Kedad-Sidhoum, S. (2013). Single machine scheduling with delivery dates

and cumulative payoffs. Journal of Scheduling, 16(3), 313-329.

Stützle, T. Applying iterated local search to the permutation flow shop problem, FG Intellektik, TU Darm-

stadt, 1998.

Talbi, E.-G., Metaheuristics - from design to implementation, Wiley, 2009.

Vallada, E., Ruiz, R. and Minella, G. (2008), Minimising total tardiness in the m-machine flowshop prob-

lem: A review and evaluation of heuristics and metaheuristics, Computers & Operations Research, 35(4),

769-780.

1849

