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ABSTRACT
We propose a new numerical finite difference method to replace the classical finite dif-

ference schemes of financial engineering used to solving PDEs (see e.g. Tavella (2002) and Duffy

(2004)). The motivation for doing so stems from the fact that spurious oscillation solutions occur

when volatilities are low (i.e., when the Peclet number is high) and serious collateral matters appear

in the attempts to correct the problem. Actually, low volatilities are the range that we observe in the

interest rate markets and, unlike the classical schemes, our method covers the whole spectrum of

volatilities in the interest rate dynamics. The method we developed is reliable and highly compet-

itive. It straightforwardly adapts to other interest rate derivative securities than the IDI (Interbank

Deposit Rate Index) option, e.g., bond options, swaptions and caps. Via minor changes the method

fits other types of path-dependent options, as well as Coupon bonds, bond options and callable

bonds.

KEYWORDS. Interest Rates Derivatives, IDI Option, PDE Option Pricing.

Main Area: GF - Financial Management, MP - Probabilistic Models, SIM - Simulation

1310



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

1. Introduction
We propose a new numerical finite difference method to replace the classical finite differ-

ence schemes of financial engineering used to solving PDEs (see e.g. Tavella (2002), Duffy (2004)

and Burden & Faires (2010)). The motivation for doing so stems from the fact that spurious oscil-

lation solutions occur when volatilities are low (i.e., when the Peclet number is high) and serious

collateral matters appear in the attempts to correct the problem. Actually, low volatilities are the

range that we observe in the interest rate markets and, unlike the classical schemes, our method

covers the whole spectrum of volatilities in the interest rate dynamics.

Our method is devised as a version of the full implicit method (see, e.g., Tavella (2002),

Wilmott (2006)), and extended to provide hedges along with prices. One of the modifications we

introduced is inspired in a technique that appears in Milev & Tagliani (2013). It is worth reminding

that the method of Milev & Tagliani (2013) adapts to the Black-Scholes dynamics, while ours fits

the interest rate derivatives with Vasicek (1977), CIR (Cox et al. (1986)) and other types of short-

rate models. Our numerical scheme is second order accurate in space, consistent, and stable under

mild conditions. We shall name it Modified Full Implicit (Interest Rate) Method.

We attest the good performance of the method, pricing a zero-coupon bond and another

type of interest rate derivative security named IDI (Interbank Deposit Rate Index) option, both in

the Vasicek dynamic. Namely, a convergence analysis was done, as we consider both continuously

compounding and daily compounding rate of interest to model the money market account and the

updating of the IDI path.

Remark The IDI option is a financial option of Asian type and, as such, the payoff depends on the

path followed by the short term interest rate. It presents cheaper prices than the standard options

and it is less sensitive to extreme market conditions that may prevail close to the expiration day -

due to random crashes or outright manipulation. So, it is commonly used by corporations to manage

interest rate risk. Actually, it is a standardized derivative product traded at the Securities and Futures

Exchange in the Brazilian fixed income market.

The ID index updating is built up discretely based on the overnight DI rate, which is an

annualized rate over one day period. It is calculated and published daily, and represents the average

rate of the inter-bank overnight transactions (Brace (2008)). Based on a Martingale approach, closed

form solutions to price an IDI contract are available in the literature, assuming for mathematical

tractability reasons that the updating of the IDI is continuous in time. In this scenario, one-factor

models were developed in Vieira & Pereira (2000) and Barbachan & Ornelas (2003) to price the IDI

Option via the short rate dynamics as given in Vasicek (1977) and Cox et al. (1986), respectively. A

Multi-factor Gaussian model was developed in Almeida & Vicente (2012) to price the IDI Option

and Bond prices. Also, Genaro & Avellaneda (2013) proposed to incorporate the potential changes

in the targeting rates via pure jump process.

Carrying on the evaluation of our finite difference scheme, we acknowledge its advantages

considering the following approaches on a pricing problem of an IDI call option with the Vasicek

dynamic.

• we obtain the estimates of the prices (and hedges) according to the Modified Full Implicit

method, and consider updating the IDI path discretely. This updating rule allow us to track

realistically the evolution of the index and to achieve the exact pay-off representation.

• we obtain the prices via the closed form expressions given in Vieira & Pereira (2000), as-

suming a continuously compounding rate of interest, which is actually an idealization for

mathematical tractability.

So, our approach corresponds to obtaining approximate prices for the exact problem (with respect

to the payoff) while that of Vieira & Pereira (2000) corresponds to obtaining an exact price for the
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approximate problem. The results this analysis provides are interesting and corroborate the Tankov

and Cont Tankov & Cont (2003) conjecture, which asserts that, typically, the former scenario yields

better results than the latter.

Indeed, via numerical simulations, we observed meaningful relative discrepancies in the

prices for some prescribed examples whose parameters are good representatives of the market. So,

using one or other method plays a difference. Now, neither prices represent a benchmark - which

should correspond to a framework that models the IDI discretely and provides the exact solution for

the price. However, the Modified Full Implicit Method can be refined approaching the benchmark.

On the other hand, any short rate model which adopts the IDI continuously compounded hypoth-

esis (as in Vieira & Pereira (2000), Barbachan & Ornelas (2003), Almeida & Vicente (2012) and

Genaro & Avellaneda (2013)) are obviously inconsistent with refinements with respect to the index

updating, so they cannot approach the benchmark.

Reminding that the continuously updating procedure for calls boils down to a more expen-

sive payoff than the discretely updating one, it is reasonable to expect prices to be more expensive

in the former than the latter procedure. The simulations have ascertained more that this in fact.

They showed that, starting with a reasonable refined mesh, our call prices are cheaper than those

of the continuously updating case of Vieira & Pereira (2000) and, as the mesh is refined, our prices

move further downwards approaching the benchmark - and away from the prices of Vieira & Pereira

(2000). Analogous conclusions are also obtained with put options.

The study carried out in this paper, in conjunction with the numerical simulations per-

formed with the above derivatives, indicate, in fact, that the method we developed is reliable and

highly competitive - not to say exceeding among other interest rate methods. It straightforwardly

adapts to other interest rate derivative securities, e.g., bond options, swaptions, caps and floors, ad-

justing the appropriate terminal condition. Via minor changes at the functions assigned to the jump

conditions, the method fits other types of path-dependent options, as well as Coupon bonds, Coupon

bond option and callable bonds. The study immediately suggests that the realistic discretely com-

pounding scheme (associated with the Modified Full Implicit Method to obtain price estimates) give

best results in the interest rate scenario, in detriment of the continuously compounding scheme.

We organize the article as follows: In Section 2 we present the motivation of the discretely

daily monitoring approach. In section 3 we present the partial differential equation that will be used

in pricing the IDI call option and justify a coordinate transformation for the PDE. In Section 4 we

propose a scheme that is consistent and stable to convective dominant parabolic equations. Section

5 presents the results and Section 6 concludes the article.

2. Problem statement (versus the problem of Vieira & Pereira (2000))
We consider the problem of pricing and IDI option, assuming that the ID index y accu-

mulates discretely according to

y(tn) = y(t0)

n∏
i=1

(1 +DI(ti−1))
1

252 , n = 1, ..., N, (1)

where ti denotes the end of day i and DI(·) assigns the DI rate, i.e., the average of the interbank

rate of a one-day-period, calculated daily and expressed as the effective rate per annum. A detailed

definition of the DI rate can be found in Brace (2008). This procedure is consistent whith the

BM&FBovespa protocols. Correspondingly, the discretely monitored pay-off for the call option

with maturity in T = tN is given by

max (y(tN )−K, 0) . (2)

We also suppose that the instantaneous short-term interest rate r−which shapes the DI rate, evolves

according to Vasicek model (see Vasicek (1977))

dr(t) = a(b− r(t))dt+ σdWt. (3)
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This Ornstein-Uhlenbeck stochastic process pulls the short rate to a level b at a rate a against with

a normally distributed random term σdW , where dW is a standard Brownian Motion.

For the sake of comparison, the usual setup found in the literature assumes that the IDI

index accumulates continuously according to

y(T ) = y(t)e
∫ T
t rudu, (4)

instead of (1). Correspondingly, the continuously monitored pay-off for the call option with matu-

rity in T is given by

max(y(T )−K, 0), (5)

which stands as the counterpart of (2). Hence, concerning this important aspect, our framework

is more realistic than that usually found in the literature. Under this continuously compounded

hypothesis, Vieira & Pereira (2000) developed a closed-form solution for the price of an ID call

option with maturity in T , where the short rate also follows the Vasicek model.

Under the above hypothesis, zero-coupon bond prices are very similar to the daily com-

pounded interest rates. However this is not the case when dealing with assets as Asian interest

rate options. Hence, a main question in this paper is how good or bad are both models in pricing

theoretical IDI Options.

For later use, the price of an IDI call option with maturity in T at time t, in the con-

tinuously compounded hypothesis, is given by Vieira & Pereira (2000). The price at time t of a

zero-coupon bond that pays 1 at time T is presented by Vasicek (1977).

3. PDE formulation
Our aim is pricing a contract u that is a function of three variables, say the time t, the

random shocks of the interest rates r and the ID index that accumulates daily payments y. We

assume that u(t, r(t), y(t)) ∈ C1,2,0(R×R×R). Following the steps of Bollen (1997) and applying

Ito’s lemma (see e.g. Oksendal (2007)), we set up a portfolio π containing two similar contracts

with different maturities, obtaining

dπt =
∂u1
∂t

dt+
∂u1
∂r

dr +
σ2

2

∂2u1
∂r2

dt−Δ

(
∂u2
∂t

dt+
∂u2
∂r

dr(t) +
σ2

2

∂2u2
∂r2

dt

)
(6)

In spite of the fact that we are modeling a path-dependent option, the portfolio (6) exhibits

a classical shape. This is so because the stochastic differential equation for the IDI degenerates, in

the sense that dy = 0. We remind that the quantity given by (1) changes only at a set of discrete

jump times Ω = (t1, ..., tN ) that represents the end of the trading days.

Let the market price of risk be λ = 0. The usual no-arbitrage argument implies that the

price of the IDI option u = u(t, r, y) at time t /∈ Ω, i.e., when the IDI remains constant, is given by

∂u

∂t
+ a(b− r(t))

∂u

∂r
+

σ2

2

∂2u

∂r2
= r(t)u. (7)

Across each tn ∈ Ω, absence of arbitrage ensure that the price of the option is continuous (Wilmott

(2006), Zvan et al. (1999)). This is mathematically represented by the following jump condition:

u(tn − ε, r, y−) = u(tn + ε, r, y+), (8)

where y+ = y−[(1 + r)
1

252 ], and 0 < ε � 1. We could alternatively derive the PDE (7) by using

the Discounted Feynman-Kac Theorem (Oksendal (2007)).

To ensure uniqueness of solution we prescribed arbitrary functions to describe how the

PDE must behave at the extremes of the domain. In the case of the IDI Option we chose homoge-

neous Neumann boundary condition. We know that the dynamics (3) allows negative and positive
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infinite values for r with non-zero probabilities. Hence, this conditions ensures that an infinitesimal

change in r at the boundaries does not change the value of the option. This is intuitive because

the IDI Option price is actually insensitive to changes in extreme negative or positive values of r.

This fact can also be verified in the closed-form formula of Vieira & Pereira (2000). The terminal

condition is the pay-off of the call option is

u(T, r, y) = max(y −K, 0), (9)

where K is the strike price and y is viewed as (2).

As it occurs with the Stock-Asian-Parisian Options (Zvan et al. (1999)), we have that

away from monitored times the PDE (7) has no y dependence. The terminal condition (9) implies

that a set of independent one-dimensional PDEs must be solved. The IDI Option price is calculated

via (7) backwards in time from the terminal condition (9) up to the first tn ∈ Ω. We apply, in the

sequel, the jump condition to find the option value at t−n . Using these values as the new terminal

condition we repeat the process N +1 times to meet the current value of the option, where N is the

cardinality of the set (Ω).

3.1. Coordinate transforms
Finding a solution to (7) is a well-known problem in physics and in finance. Numerically

speaking, it is inconvenient if the sign of the convective term changes and the volatility is very

low, which are common facts in interest rate derivatives. Financially speaking, it is undesirable to

have the same precision for all points in the grid, because we are pricing a product based on the

current interest rate. So, in the same lines as in Tavella (2002), we first propose a change of variable

that allows us to retrieve the solution in a nonuniform grid in r, which becomes thinner in some

desirable or needed region. Then we appropriately modify a finite difference scheme to overcome

the drawbacks of a convective dominant PDE.

The ”proximity” of the nonzero probability left boundary to the actual level of interest

rates suggests that small errors at the left boundary lead to inaccurate results near the strike price,

where a sharp gradient occurs in conditional derivatives. So we specified a new variable x =
ln(rd+ c), where c and d > 0 are constants such that c > |min(r)|d.

So, we get the transformed PDE in the new coordinate x

∂u

∂t
+

[
a(db− ex + c)

ex
− σ2d2

2e2x

]
∂u

∂x
+

(
σ2d2

2e2x

)
∂2u

∂x2
=

(
ex − c

d

)
u. (10)

The terminal condition does not depend on r directly and remains the same. The new

jump condition is obtained substituting the value of r in the new coordinate.

4. Modified Full-Implicit Method
We now address the above problems via finite difference methods. This class of methods

consists in the discretization of the x domain over some finite interval [xmin, xmax] with J points

and in approximating the derivatives of the PDE by its incremental ratio Δx, which converges to

the derivative as Δx → 0. The method consists in replacing the derivatives in (11) by its numerical

values in a finite number of points (Tavella (2002) and Iserles (2009)). To overcome the stability

restrictions of the classical finite difference methods, we introduce an appropriately chosen function

f = f(σ, b, a, c, x,Δr) in the Full-Implicit scheme, given by

f =
1

2δ

(
a(b+ c+ 1)

ex
+

d2σ2

2e2x
+ 1

)
, (11)

which, in conjunction with a new reaction term prescribed as

Gj =

(
exj − c

d

)
un+1
j + 4fju

n+1
j − 2fj(u

n+1
j−1 + un+1

j+1 ), (12)
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yields the modified version of the full-implicit discretization, namely

∂−
t u

n+1
j + μj∂

0
xu

n+1
j + Sj∂

+
x ∂

−
x u

n+1
j = Gj (13)

and the corresponding system of equations

un+1 =
1

Δt
P̄−1un. (14)

In this case P̄ = (p̄ij) turns out to be such that

p̄j,j−1 ≤ 0, (15)

p̄j,j > 0 and (16)

p̄j,j+1 ≤ 0. (17)

Moreover,

p̄j,j >
∑
j �=i

|p̄i,j |, (18)

so that P̄ becomes an M-matrix.

A similar idea has been suggested in Milev & Tagliani (2013) for the stock-options case.

The following proposition shows that the modified version of the Full-Implicit scheme is in fact

spurious oscillation free.

Theorem 1 The matrix P̄ is in compliance with inequalities (16), (17) and (18) and is strictly
diagonally dominant.

Proof Relying on the modified version of the Full-Implicit method associated with PDE (11), and

bearing in mind that μ and S are given by

μ =

(
a(db− ex + c)

ex
− σ2d2

2e2x

)
(19)

and

S =

(
σ2d2

2e2x

)
, (20)

it follows that

0 ≥
[

μj

2Δx
− Sj

Δx2
− 2fj

]
, (21)

0 <

[
1

Δt
+

2Sj

Δx2
+

exj − c

d
+ 4fj

]
and (22)

0 ≥
[
− μj

2Δx
− Sj

Δx2
− 2fj

]
; (23)

for any choice of a, b, σ ≥ 0, − c
d < r and some δ � 1.

From the definition of M-matrices (Plemmons (1977)), P̄ is an M-matrix, so that P̄−1 ≥ 0. So, the

solution u provided by the finite difference scheme (14) is positivity-preserving: negative prices are

precluded.
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4.1. Stability
The next propositions show that u is stable and a non-increasing function in t ∈ [0, T ].

Firstly, let us state an auxiliary lemma.

Lemma 1 Assume that Q is diagonally dominant by rows and set α = mink(|qkk| −
∑

j �=k |qkj |).
Then ‖Q−1‖∞ < 1

α .

Proof See Varah (1975).

Proposition 1 Under the (very) mild condition

1

Δt

1∣∣∣ 1
Δt +

2S
Δx2 + ex−c

d + 4f − μ
Δx

∣∣∣ < 1 (24)

the solution u is stable. So, it is spurious oscillations free and we say that u is conditional stable.

Proof The left side of (25) is an upper bound for the spectral radius of the iteration matrix
(

1
Δt P̄

−1
)
.

Proposition 2 The solution of (15) satisfies the maximum principle.

Proof Applying the sup-norm ‖ · ‖∞, using Lemma 1 and the conditional stability property of u,

we have

‖un+1‖∞ =
1

Δt
‖P̄−1un‖∞

≤ 1

Δt

1∣∣∣ 1
Δt +

2S
Δx2 + ex−c

d + 4f − μ
Δx

∣∣∣‖u
n‖∞

≤ ‖un‖∞

4.2. Consistency and Convergence
Theorem 2 The modified full-implicit method associated with PDE (14) is of order of accuracy
O(Δt,Δx2).

Proof The Taylor series for (13) boils down to

(exj − c)

d
u(tn, xj) +

(exj − c)

d
Δt

∂u

∂t
(ξt, x)− f(Δx)2

(
∂2u

∂x2
(t, ξ′x) +

∂2u

∂x2
(t, ξ′′x)

)
,

where tn ≤ ξt ≤ tn+Δt, xj ≤ ξ′x ≤ xj+Δx and xj−Δx ≤ ξ′′x ≤ xj . It follows that (13) has order of

accuracy O(Δt,Δx2). By its turn, relying on the definitions of ∂−
t u

n+1
j , ∂0

xu
n+1
j and ∂−

x ∂
+
x u

n+1
j ,

it follows that the left hand side of (14) also has order of accuracy O(Δt,Δx2).

The Lax Theorem states that if a finite difference scheme is consistent (e.g., in the sense

of proposition 2) and stable, then it is convergent (Tavella (2002)).

5. Numerical results
In this section, we shall address two pricing problems in the Vasicek dynamic. The for-

mer aims to attest the good performance and the properties of the Modified Full-Implicit method

as described in Section 4, addressing a zero-coupon bond and the IDI option. The latter aims a

comparative analysis addressing the prices of the IDI option according to our approach and that of

Vieira & Pereira (2000).
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5.1. Convergence study
Assuming the continuously compounding rate of interest, we calculate the discrepancy

between the price P (rj , 0, T ) of the bond given by the closed-form expression of Vasicek (1977)

and the price u0j given by the Modified Full-implicit method with the prescribed terminal condition

of a zero-coupon bond. The error measure we adopt is

ε =

√√√√ 1

N

N∑
j=1

(u0j − P (rj , 0, T ))2, (25)

where the subscript j assigns the spatial grid of the interest rates.

In the simulations we use Δt = 0, 00099206 (four time-steps per day). Table 1 illustrates

discrepancies for solutions with 200, 400, 600 and 800 spatial grid points and parameters set as

a = 0.1, b = 0.1 and σ = 0.02 in a 1-year zero-coupon bond price problem. The columns 2 and 3

show that if ε → 0 then Δx → 0.

To numerically estimate the order of convergence of the method, let us find q such that

ε ≤ CΔxq, (26)

for constant C. The table 1 shows that q = 2.03 in the domain of interest r ∈ (−0.1, 0.5). We also

tested the convergence rate of the method using the IDI option assuming a daily updating. Since,

in this case, the limit value of the price is not available, we look at ratios of differences between u0J
computed for different J’s, given by

q = log2

⎡
⎣ u0J − u0J

2

u0J
2

− u0J
4

⎤
⎦ . (27)

For rj = 0.1 and starting with J = 1600 grid points we obtained q = 2.02. To confirm the

performance of the method for the case where the limit value of the price is not available, we

replicated the above procedure for the zero-coupon bond. Again, a consistent rate was obtained,

namely q = 1.997. All the results above corroborate the early consistency analysis and the good

performance of the method.

As a start-up to the next section, where our main results appear, we consider two zero-

coupon bond pricing problems, where the sole difference between them is adopting, in one prob-

lem, a daily compounding interest rates and, in the other, a continuously compounding interest

rates. Again the Modified Full-implicit method is applied, now in conjunction with the algorithm

described at the end of section 3. In this particular example, the relative discrepancy (defined in

the same lines as in equation (29) below) did not exceed 10% in the whole interest rate domain.

In contrast to this, we shall see that the prices in the IDI case differ significantly if one adopts the

continuously or the discretely updating.

The small discrepancies we found here are in fact a well known result when interest rates

are deterministic. However, we believe this is the first time this result is observed for stochastic

interest rates following the Vasicek dynamic.

We remind that, in the zero-coupon bond case, the discretely compounding yields can be

straightforwardly obtained from the continuously compounding case. However, this technique can

be helpful to price complex types of interest rate derivatives with discrete compounding, such as

callable bonds.

5.2. Pricing
We compare the prices of IDI call options under the Vasicek model, considering the fol-

lowing approaches:

1317



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 1: Modified full-implicit method spatial convergence rate

N Δx ε − log(Δx) − log(ε)

200 0.02482 0.01295 1.60509 1.88770

400 0.01244 0.00327 1.90504 2.48572

600 0.00830 0.00142 2.08078 2.84924

800 0.00623 0.00078 2.20553 3.10777

• we obtain the estimates of the prices according to the Modified Full Implicit method and the

coordinate transformation afore mentioned, and consider updating the IDI path discretely.

This updating rule allow us to track realistically the evolution of the index and to achieve the

exact pay-off representation.

• we solve the closed form expressions given in Vieira & Pereira (2000) for the prices, as-

suming a continuously compounding rate of interest, which is actually an idealization for

mathematical tractability.

The numerical results of cases I and II are summarized in figures 1 and 2, respectively,

where we set a = 0.1265, b = 0.0802 and σ = 0.0218 in the Vasicek model. This calibration

stemmed from the Brazilian overnight interest rate data from 2002 to 2014 and was produced via

the General Method of Moments (Chan et al. (1992)). The initial value of the IDI is 100.000 points.

The Modified Full Implicit method is used with 800 grid points for the ID index and a spatial mesh

of 400 grid points for the interest rate. We use 5 steps per day with a daily jump condition at the

last step, which satisfy the mild stability conditions required. Cases I and II refers to a call option.

Case I (resp. II) have maturity in 252 days (resp. 504 days) and strike K=109.550 points (resp.

K=122.000 points). Case III is summarized in figure 3, where we set a = 0.2, b = 0.1 and σ = 0.1
in the Vasicek model and a short maturity of 20 days. We set several refinements in this case for

spatial mesh sizes with 50; 150; 250; 400 and 600 points.

First thing to notice from the numerical data is that, unlike the zero-coupon scenario

previously mentioned, the relative discrepancy between prices obtained from the approaches under

concern are not negligible at all, even with low volatilities (cases I - II) and short maturities (case

III). The relative discrepancy between prices is here defined as

θj =
(η(rj , 0, T )− u0j )

u0j
, (28)

where η stands for C or Π. So, for rj = 10%, we have θj = 45.88% and θj = 50.96%, for

cases I and II. We recall that in the zero-coupon scenario, such relative difference did not exceed

10%. So, using one or other method plays a difference. Notice that neither prices represent a

benchmark - which should correspond to a framework that models the IDI discretely and provides

the exact solution for the price. However, the Modified Full Implicit method can be refined ap-

proaching the benchmark. On the other hand, any short rate modeling framework which adopts

the IDI continuously compounded hypothesis - which is the case of Vieira & Pereira (2000), are

obviously inconsistent with refinements with respect to the index updating, so they cannot approach

the benchmark.

Reminding that the discretely updating procedure for calls boils down to a cheaper payoff

than the continuously updating one, we expect prices to be cheaper in the former than the latter

procedure, for a reasonable mesh refinement. Figures 1 to 3 show this indeed. In Figure 3 we may

observe the downward movement of the prices as the spatial mesh sizes are refined in a sequence of

100, 150, 250, 400 and 600 points, leading the solutions towards cheaper call option prices, which

actually represent the benchmark. So, even with reasonable refined meshes, our call prices are
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cheaper than those of the continuously updating case of Vieira & Pereira (2000). As the mesh

is refined, our prices move further downwards, approaching the benchmark and, simultaneously,

moving further away from the prices of Vieira & Pereira (2000).
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Figure 1: 1 year Call
Option Prices
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5.3. Hedging results
In order to investigate the effect of the continuous updating hypothesis in the hedging

process we now provide the delta of the IDI call option. By the fact that the IDI is an index and not

a physical asset which we can buy and sell, we will evaluate the infinitesimal changes in the price of

the option (given by Vieira & Pereira (2000)) with respect to a change in the whole term-structure.

This is to use the asset P (t, T ) to replicate the IDI path.

It can be shown that deriving C with respect to P (t, T ), gives

∂C

∂P (t, T )
= −KΦ(h− k). (29)

We also develop a version of (30) to be used numerically independent of a known closed-

form formula for the price. Let us suppose the price of an IDI call option C(y(t), P (t, T )) depends

on the actual level of the index y(t) and the price of a bond with maturity equal to the option’s

maturity. So

∂C

∂r
=

∂C

∂y(t)

∂y(t)

∂r
+

∂C

∂P (t, T )

∂P (t, T )

∂r
. (30)

Using the zero-coupon bond P (t, T ) to hedge the IDI call option position, the Δ is calculated as

Δ(t) =

∂C
∂r − ∂C

∂y(t)
∂y(t)
∂r

∂P (t,T )
∂r

. (31)

The left panel of the figure 4 shows the portfolio values and the call option prices evolu-

tion through time adopting the continuous updating hypothesis. It is observed an almost perfectly

replication strategy. The delta values of the right panel is calculated as in equation (30). The delta

in the negative field means that we must to sell a quantity equal to P (t, T ) times |Δ| and deposit

the proceeds in a bank account earning the risk-free rate.

If all these operations were performed continuously the difference between P (t, T ) times

Δ and the issuer’s bank account will be equal the difference between the index and the strike at

maturity and the hedging error is zero. Henceforward we call hedging error the final cost of the

hedging process, that is, the difference between the portfolio and the option price.

In figure 5 is shown the hedging errors with 10000 simulation paths for the two IDI up-

dating methodologies using the above Vasicek delta closed-form formula: the former panel shows

the results regarding continuously compounded index which results in a zero mean relative hedging
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Figure 4: Replicating strategy and delta values
IDI(0) = 100000, Strike= 109500, a = 0.1265 b = 0.0802, σ = 0.0218, T = 252 days

error, the middle panel shows a relative hedging error that is in accordance with the experiments

of the last section, say 41%, while the latter shows the analytical and numerical deltas with respect

to the short-term rate at time t. The former delta stands for the delta derived from the continuous

update approach of the IDI index and the latter is the delta calculated from the numerical result de-

veloped to price the discrete updating case. The numerical delta is able to perfectly daily replicate

the IDI option price in the discrete updating approach. A central finite difference scheme was used

to obtain the numerical derivatives to approximate equation (32).

These last results assure the need to treat IDI index realistically when pricing and hedging

options. Both strategies results in approximately normal distributed absolute hedging errors. We

see that using the continuous updating approach to daily hedge the position in a call or put IDI

option in a world where the index accumulates discretely leads to relative hedging errors as high as

the order of the pricing errors.
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Figure 5: Hedging IDI call option with discrete and continuous IDI updating
IDI(0) = 100000, Strike= 109500, a = 0.1265 b = 0.0802, σ = 0.0218, T = 252 days

6. Conclusion and Final Discussions
We addressed the IDI Option Pricing and Hedging problem using the discretely com-

pounded ID index hypothesis in lieu of the continuously compounded version. This models the

problem realistically, according to the BMF&Bovespa standards. On the other hand we obtain an

approximate value for the option price, using PDE techniques, which have its own challenges. So,

comparing with the existing literature, we obtain the approximate price for the exact problem in-

stead of obtaining the exact price for the approximate problem. However, our method can be refined

approaching the benchmark, which means obtaining the exact price for exact problem.

An equally important result is that we developed a numerical scheme that is free from

spurious oscillation, for any choice of drift and volatility parameters. We emphasize the fact that
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the Modified Full-Implicit Finite Difference Scheme we developed is IDI-independent, thus can be

extended to any interest rate derivative.
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