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RESUMO  

O problema de p-dispersão consiste em selecionar p entre n pontos de modo a maximizar
distância mínima entre quaisquer dois pontos escolhidos. O problema tem muitas aplicações em 
localização de facilidades e em diversificação de amostras. Propomos um método em que uma 
sequencia de problemas de set packing de viabilidade é resolvida, em O(log n) iterações com o 
procedimento de busca binária. As experiências computacionais mostram que o algoritmo pode 
resolver muitas instâncias com tamanho de até n = 1.400. Este trabalho mostra que soluções exatas 
para o problema de p-dispersão podem ser obtidas de forma consistente para problemas 
moderadamente grandes, especialmente para o caso de distâncias geométricas ou geométricas 
ponderadas.
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ABSTRACT 

The p-dispersion problem consists in selecting p out of n points, such that the minimum
distance between any pair of chosen points is maximized. The problem has many applications in 
in facility location and in diversified sampling. We propose a method where a sequence of set 
packing feasibility problems are solved, in O(log n) iterations with a binary search procedure.
Computational experiments show that the algorithm may solve many instances of size up to 
n=1,400 in quite reasonable times. Overall, this work shows that exact solutions for the p-
dispersion problem may consistently be obtained for moderately large problems, especially for 
geometric and weighted geometric distances.
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1. Introduction

The p-dispersion problem (also known as max-min diversity problem) can be described 
as follows. Given a set of n objects and a matrix of distances between each pair of points, the 
objective is to choose p points in order to maximize the smallest distance between two chosen 
objects.

This problem has many applications in facility location, when one aims to scatter the 
selected facilities, putting them as apart from one another as possible. A classic example happens 
in military defense, when scattering helps to avoid the destruction of multiple facilities in a single 
enemy attack.  In telecommunications, when positioning cell phone antennas or when choosing 
frequencies, scattering is used to minimize interferences.  When selecting the location of franchise 
shops, scattering minimizes mutual concurrence. Gomes et al. (2014) used the scattering principle 
in cartographic labelling to minimize the overlap of labels. 

There are also applications where there are n objects described by multiple attributes and 
one desires to choose a sample of p objects as diversified as possible.  In those cases, the distances 
are calculated using some metric over the attributes. For example,  Erkut (Erkut, 1990) described 
a situation where different aspects of a product, such as price, quality, shape, appeal etc, are 
considered and the objective is having the maximum diversity in the portfolio of products offered 
to the market. 

The p-dispersion problem was first proposed by Moon and Chaudhry (1984). Erkut and 
Neuman (1988) studied the problem and proposed variants of the p-dispersion problem, based on 
different dispersion metrics. The four variants found in the literature are: the maxisum-sum seeks 
to maximize the sum of all distances among the selected points; the maximin-sum, maximizes the 
smallest sum of the distances from each select point to all the other selected points; the maxisum-
min which aims at maximizing the sum of the minimum distances from each selected point to its 
closest selected point and finally the maximin-min the most classical variation of the problem and 
the object of study of this paper. This last problem is sometimes addressed as max-min p-dispersion 
problem, as the max-min diversity problem or (as we doing) just as the p-dispersion problem

Erkut (1990) shows that the p-dispersion problem is NP-hard with the following
reduction to the max clique problem. In order to verify if a graph G=(V,E) with n vertices contains 
a clique of size p, one can construct a matrix of distances where d(i,j)=1 if (i,j) in E, d(i,j)=0 
otherwise, and solve the resulting p-dispersion instance. Ghosh (1996) proved that the problem is 
strongly NP-hard, even if the distances obeys the triangle inequality, by reducing the original 
problem to the vertex cover problem.

The previous work is described in section 2, and then our set packing feasibility 
formulation is introduced in section 3. Computational experiments are exposed in section 4 and the 
conclusion remarks are made in section 5.

2. Previous methods

Due to the difficulty of the problem, most of the methods proposed to solve the p-
dispersion are heuristics. Recent heuristics include  Della Croce, Grosso, and Locatelli (2009), that 
use the relation (pointed by Erkut (1990)) of the p-dispersion with the max-clique problem; the 
GRASP with path relinking by Resende, Martí, Gallego, and Duarte (2010); the tabu search by
Porumbel, Hao, and Glover (2011) ; and the Variable Neighborhood Search by Saboonchi, Hansen, 
and Perron (2015). All those articles include tests with a common group of instances. 
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2.1. Exact methods

This subsection presents an overview of the exact methods proposed so far. Kuby (1987) 
proposes a mixed integer formulation with a big M parameter. Using a facility location notation,
Kuby’s formulation is described below.

Maximize r

S.t.

Where:
r = the smallest separation distance between any pair of open facilities

n = number of potential facility sites
p = number of facilities to be opened
N = {1,…,n}
M = a sufficiently large number. Dmax, the maximum distance between two facilities can 

be used.
= distance between node i and node j

Erkut, (1990) proposes two formulations for the p-dispersion problem, the first is similar 
to the one proposed by Kuby(1987) as shown below.

Maximize r

S.t.

Where:
r = the minimum of the distances between the selected points.

Erkut (1990) also proposed another exact formulation, he defined the Boolean variables 
and the Boolean coefficient matrix where

He formulated the problem as follows:

Maximize 

S.t.
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Erkut (1990) proposes solving the model above by fixing r to different values. The related 
problem that arrises when r is fixed was named r-separation and he suggested two different models
to solve it. The two integer programming models for the r-separation are presented below.

Minimize  

S.t.

Since the problem has O(n2) constraints, Erkut (1990) defines the index set 
and adds the constraints over to get a single constraint, this model may be 

described as below.

Minimize  

S.t.

Erkut (1990) used both models to solve the r-separation, the first may have fewer 
constraints on a smaller , therefore the use of each model may be determined depending on the 
size of . Two Branch-and-Bound procedures have also been proposed to accelerate the 
convergence to an optimal solution. His method solved instances with n up to 40 and p = 16 to 
optimality.

Ghosh (1996) proposed an exact algorithm by solving the vertex packing problem 
repeatedly, also in a binary search scheme for finding the optimal value of r. Ghosh’s vertex 
packing 0-1 quadratic formulation is shown below.

Where,
F=

Ghosh (1996) solved instances with the same size as Erkut (1990), the instances with n=40 
and p=16, but in little less time.

Pisinger (2006) proposes the following 0-1 quadratic formulation:

Maximize r

S.t.

Afterward the p-dispersion problem is decomposed into a number of clique problems, 
leading to the dense subgraph problem formulation, shown below.  Again, those clique problems 
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are solved O(log n) times through a binary search scheme  to converge to an optimal solution for 
the p-dispersion problem.

Maximize 

S.t.

Where

The clique problem results in a dense subgraph formulation, to solve  it, Pisinger (2006) 
relies on a search of fast upper bounds, based on Lagrangian relaxation, semidefinite programming
and reformulations techniques. Afterwards, a branch-and-Bound is derived to compute at each 
branching node a reformulation-based upper bound. 

3. Proposed method

In this section, we propose a linear integer programming formulation to solve the p-
dispersion problem. The formulation starts by solving the set packing feasibility problem to identify 
whether, given a distance r, it is feasible to select p among the n available locations. The distance 
between each pair of selected facilities must be no smaller than r, the set packing feasibility problem
formulation for the p-dispersion problem is shown below:

Maximize 

S.t. such that

At first, this verification method might seem little helpful, given that when all possible 
distances are taken into account, there would be up to interactions, considering
. However, the solution of the set packing problem may be used to set upper and lower bounds to 
the p-dispersion problem. It is trivial to infer that by solving the set packing feasibility problem a
lower bound could be set, should the problem be feasible, likewise an upper bound could be set, 
should the problem be infeasible.  

Table 1
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The convergence to an exact solution is accelerated by a binary search to select the 
distance to be tested from the possible distances after they have been sorted. In this study a 
quicksort method is used. By resorting to binary search to select the distances to be tested, the 
number of maximum interactions is expressively reduced to the roundup of . By testing 
the actual distances, the solution is not only exact, but as accurate as it may possibly be.  Table 1 
illustrates how modest is the increase in  compared to the increase in n and
in .

Since the aim is to find the smallest distance between each pair of p selected locations, 
the initial upper bound may ignore the biggest distances, furthermore, since the goal is to 
maximize, the initial lower bound may also disregard the smallest distances. This may 
be applied to reduce the initial set of possible solutions, from { to 

reducing the set of solutions by .  The removal of occasional 
equivalent distances may help to reduce the set of solutions expressively depending on the time of 
instance. 

Figure 1 Figure 2

Figure 1 represents graphically a random generated instance of n = 400     , where the 
coordinates are known integers that vary from 0 to 100 in a bi-dimensional space.  Each square 
represents a candidate location. Figure 2 show the optimal solution for the instance of Figure 1 
where p = 30, the red squares represent the solution of the 30 selected locations. The blue line 
emphasizes the smallest distance, which has been maximized. 

On Figure 3 the same solution is presented but each of the selected facilities is involved 
by a circle with diameter equal to the smallest distance.  The circles of the 2 locations with the
smallest distance between them, obviously tangency one another. As no circle surpasses another,
we may graphically confirm that the given solution is in fact the smallest distance for this chosen 
subset of facilities.
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Figure 3

4. Computational experiments

This section shows the computational experiments performed to test the efficiency of the 
proposed formulation. The instances were created using the same generator implemented by 
Pisinger (2006) and are described below.

GEO: The geometrical problems reflects a typical location problem in the Euclidean space, as 
presented in Erkut [3].The n facilities are randomly located in a 100×100 rectangle, and 
dij is the Euclidean distance between facilities i and j.

WGEO: The weighted geometrical problems are constructed to illustrate the case where the 
facilities have different weights (e.g. the radio transmitters located at some positions have 
different effect). As previously, the n facilities are randomly located in a 100 × 100
rectangle, and each facility is assigned a weight wi in the interval [5 ... 10]. The distance 
dij is then found as wiwj times the Euclidean distance between facility i and j.

EXP: Instances with exponential distribution of the distances were presented in Kincaid [9] 
(class 2). These instances should investigate how the algorithms perform when the 
triangle inequality was not satisfied. Each dij with i<j is randomly drawn from an 
exponential distribution with mean value 50.We set dij =dji to ensure symmetry.

RAN: Instances with random distances are generated with dij randomly distributed in [1 ... 100]. 

DSUB: Finally dense subgraph instances reflect the unweighted case. Hence dij is set to 100 or 
0 with 50% probability each.

All the experiments were conducted on an Intel® CoreTM i7 computer running at 3.6 GHz 
with 3 GB of RAM.  The solver CPLEX 12.5.1 was called by the programming language Visual 
Basic for Applications (VBA) using the Dynamic Link Library UFFLP. A time limit of 20 minutes 
was assigned to each instance.
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Table 2
n GEO WGEO EXP RAN DSUB
10 0.03 0.04 0.02 0.04 0.00
20 0.05 0.05 0.03 0.04 0.00
30 0.03 0.05 0.06 0.05 0.01
40 0.04 0.05 0.05 0.07 0.01
50 0.04 0.06 0.09 0.09 0.01
60 0.05 0.06 0.14 0.13 0.01
70 0.04 0.06 0.11 0.26 0.03
80 0.04 0.06 0.08 0.22 0.02
90 0.06 0.08 0.49 0.43 0.04

100 0.05 0.11 0.39 0.59 0.05
150 0.08 0.13 0.06 7.11 0.52
200 0.10 0.16 49.59 105.91 0.12
250 0.14 0.33 240.10(2) 507.99(3) 0.13
300 0.24 0.23 148.89(1) 297.41(2) 4.91
350 0.15 0.32 483.45(4) 364.71(3) 0.37
400 0.12 0.28 360.26(3) 360.58(3) 0.39
450 0.28 0.62 352.94(2) 480.12(4) 1.00
500 0.81 0.21 360.10(3) 600.02(5) 120.84(1)
600 1.27 2.24 600.13(5) 360.21(3) 1.04
700 1.67 2.51 374.47(3) 241.63(2) 1.94
800 2.33 2.13 960.20(8) 480.34(4) 122.13(1)
900 108.13 2.27 482.83(4) 600.31(5) 123.21(1)

1000 2.13 8.12 602.91(4) 481.67(4) 36.41
1100 7.16 6.15 — 361.89(3) 123.62(1)
1200 6.90 8.17 — 604.10(5) 402.60(3)
1300 6.24 16.21 — — 132.67(1)
1400 7.86 21.91 — — 32.18

Solution time in seconds – average of 10 instances

Table 3
n GEO WGEO EXP RAN DSUB
10 0.00 0.00 0.00 0.00 0.00
20 0.00 0.01 0.01 0.00 0.00
30 0.02 0.03 0.02 0.02 0.00
40 0.24 0.13 0.06 0.05 0.01
50 2.05 2.15 0.22 0.49 0.01
60 15.41 14.04 1.53 6.1 0.03
70 650.55 398.8 17.83 28.47 0.05
80 — — 1151.4 314.15 0.08

100 — — — — 0.17
200 — — — — 2.73
300 — — — — 22.34
400 — — — — 50.38

Pisinger (2006) solution time in seconds - average of 10 instances
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For each class and each given value of n, 10 instances were generated with a random 
value for p.  A total of 1290 instances were studied, summing up to 270 instances generated per 
class.  Table 2 presents the average time for solving the 10 randomly generated instances for a 
given n and a given class. The number in parenthesis indicates the number of instances that could 
not be solved within the time limit. When the time limit was reached, the maximum of 1200 s was 
considered, therefore, the actual average would be greater than the reported if the experiment is run 
to optimality. The dash indicates that the sizes that were not tested. Table 3 shows the results of 
the work of Pisinger (2006) for comparison; here the dash indicates that it took more than 15 hours 
to solve the 10 instances.

The proposed exact method solved to optimality all the geometrical and weighted 
geometrical problems generated, with n up to 1400, within 20 minute.  For comparison, Pisinger
(2006), the state of art in exact methods for the p-dispersion problem, needed an expressively larger
average time to solve instances with n of at most 70, as shown in table 3.

On Table 2 we may note a deviation from the pattern of time for the resolution of the 
geometrical instances with n=900, one of the problems took about 17 minutes to be solved, while 
the other 9 had the average below 6 seconds.  We observed that the selection of was not the main 
reason for the great difference in time, an instance with p=80 took 17 minutes while another 
instance with little variation of p (p=87) took 5 seconds to be solved. 

The instances of exponential distributed and random distances were all solved to 
optimality for n ≤ 200, while Pisinger (2006) solved instances with n ≤ 80. The dense subgraph 
instance type, showed a less stable solution pattern, as an illustration, the instances of n = 500 were 
all solved with an average of less than a second, except for one instance that could not be solved 
within the 20 minutes time limit. The results showed similar behavior for some instances with 
higher values of n, however, the instances with the highest value of n (n=1400) were all solved to 
optimality with an average time of 32 seconds.

Although Pisinger (2006) performed his experiments on a AMD 64-bit, 2.4 GHz, his time 
limit used was of 15 hours for 10 instances, while our time limit was of 20 minutes per instance. 
The differences in the results are far too large to be explained by the use of a more modern machine. 
Actually, the exponential nature of both solution methods indicate that a small speedup in the 
processor makes limited difference on the maximum size of the instances that can be solved. As 
may be observed in Table 3, the increment of 10 units in , represents a significant increase in 
resolution time.  Therefore it is clear that the set packing feasibility resolution on a binary search 
scheme leads to significantly better solution times.

5. Conclusions

An overview of the previously proposed exact methods have been presented and an exact 
method have been proposed for the p-dispersion problem, relying on the repeated solution of set
packing feasibility problems. Although most of the previous authors of exact methods have also 
proposed binary search schemes, the simpler subproblem formulation led to clearly better results.

This work shows that exact solutions for the p-dispersion problem may consistently be 
obtained for moderately large problems, especially for geometric and weighted geometic distances.
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