
De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Evolutionary Algorithm and Ant Colony Optimization
for a Container Stowage Problem

Marcelo Pinheiro Leite Benedito
Universidade Federal de Viçosa

Viçosa - MG - Brasil

marcelo.benedito@ufv.br

André Gustavo dos Santos
Universidade Federal de Viçosa

Viçosa - MG - Brasil

andre@dpi.ufv.br

ABSTRACT
In the Container Stowage Problem, a container-ship must visit a sequence of ports,

transporting containers. At each port there are containers destined to other ports visited ahead.

Upon arrival at a port, the containers with destination to that port must be unloaded. If there are

containers on top of them, they must be unloaded and reloaded again. The unloading and loading

operations are very costly, so the problem aims to find a solution which minimizes the total number

of undesirable movements. A heuristic that have never been used in this problem is presented,

along with one that already has been. We show that an integer linear programming formulation of

the problem is now able to solve real-sized instances, but not enough for all the cases. We follow

the representation by rules presented in the literature, proposing new ones, more effective, that lead

to better solutions for all the instances.

KEYWORDS. Container Stowage. Combinatorial Optimization. Evolutionary Algorithm.
Ant Colony Optimization.

Main Area: MH - Metaheuristics; OC - Combinatorial Optimization

1803



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

1. Introduction
Marine shipping, used for centuries, has as one of its principal activities the transportation

of goods. Speed, safety and efficiency during the displacement of large loads are determining factors

for a good deal, therefore, this type of transport is the subject of studies that aims to improve these

activities, in order to increase profitability.

In this paper, we deal with the Container Stowage Problem, a marine shipping method

consisting in transporting goods in containers. We must define a plan to stowage containers in

a ship during a predefined route of ports, knowing the numbers of containers to be loaded and

unloaded at each port. The balance of the ship is not taken into account, so there could be stacks on

just one of the sides of the ship without compromising it. The plan must minimize the number of

shifts during the loading/unloading operations, which is the number of containers unloaded before

their destination port because of blocking other containers. These containers must be reloaded and

this is a costly operation that should be avoided as much as possible.

In section 2 we formally define the problem as it was introduced by Avriel & Penn (1993),

and discuss the results of the heuristics that have been proposed since then. The most successful

heuristics use a representation by rules, which define for each port one of predefined schemes for

loading and unloading containers. The rules already proposed are detailed in section 3; at the end

of the section we describe the new rules we are proposing. Then, in section 4 we describe the

Genetic Algorithm (GA) and the Ant Colony Optimization (ACO) heuristics we propose to solve

the problem; both heuristics use a representation by rules. In section 5 we show the results of

computational experiments of our heuristics and the one we found in the literature that yielded

the best results so far; the results show that our heuristics substantially outperform the literature;

besides that we show that an ILP formulation constantly used in several papers only to formalize

the problem, is able nowadays to prove optimal solutions for instances with up to 25 ports when

the destination of the containers are in average at a short distance from the origin port. Finally, we

conclude this work at section 6.

2. Problem definition
The Container Stowage Problem studied here was introduced by Avriel & Penn (1993). It

was shown to be NP-hard by Avriel, Penn, & Shpirer (2000), and since then several heuristics were

proposed. The problem is defined as follows.

There is a container ship consisting of a regular bay for container stowage, and it is as-

sumed that all containers are of the same standard size. The bay may support at most C stacks

of containers, each one with at most R containers, so the bay may contain simultaneously at most

R × C containers. The container ship must travel through a fixed route departing from port 1 and

visiting sequentially ports 2, . . . , N − 1 and finally reach port N . The ship starts empty at port 1
and finishes empty after visiting port N . At each port i = 1, . . . , N − 1 containers with destination

to ports j = i + 1, . . . , N can be loaded. A container may be loaded only at the top of a stack

of containers, or on the bay ground (on an empty stack). When visiting a port, all containers with

destination to that port must be unloaded and do not come back to the ship again. Containers with

destination to a future port may be unloaded and loaded again for rearrangement. Particularly, con-

tainers that are blocking the containers for that port (i.e., if they are on top of them) are forced to be

unloaded and then reloaded. The operation of unloading and reloading a container is called a shift.

This is an expensive operation and the objective of the problem is to minimize the number of shifts.

The input is the number N of ports, and the transportation matrix T , which is a (N − 1)× (N − 1)
matrix whose entry Tij is the number of containers at port i that must be transported to port j (as-

suming Tij = 0, ∀j ≤ i). The transportation matrix is an input for the problem, i.e., it is known

before the trip starts, and the output is a container stowage planning: which containers are loaded

and unloaded at each port, and where in the bay each container must be loaded. As mentioned, the

container stowage planning should minimize the number of shifts.

1804



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Avriel & Penn (1993) defined the problem and also proposed an integer linear program-

ming (ILP) formulation to solve it. The proposed model uses a 5-index binary variable xrcijk to state

that a container with origin i to destination j positioned at row r of stack c is unloaded on port v.

An auxiliary variable binary yrci is used to control if upon departure from port i the row r of column

c is occupied by a container.

They show a solution for a 5-ports 19-containers instance, considering a (2×5)-container

ship (i.e., a ship with 2 stacks with up to 5 containers each). This instance is of course a toy

instance, used for illustration purposes. However, at that time, ILP solvers could not solve larger

instances, then they proposed a heuristic method to decompose the transportation matrix of a given

instance into smaller sub-matrices, which are solved by the ILP model. The heuristic is called

Whole Column Heuristic Procedure, and its the main idea is to build stacks filled with containers

of same origin at destination. The containers of those stacks can be loaded at the origin port and

unloaded at the destination port with no shift at any intermediary port. These stacks can be loaded

anywhere in the bay, then only the stowage planning of the remaining containers must be solved by

the ILP. They show a solution for a 5-ports 162-containers instance, considering a (15× 5)-ship.

The proposed ILP model was repeated in Avriel et al. (1998), Azevedo, Ribeiro, & Deus

(2010), Ribeiro & Azevedo (2010) and Carraro et al. (2013), but not used in any of them. In

this paper, we show that nowadays solvers are able to solve the model for larger instances. The

10-ports ≈ 1000-containers 6× 50-ship instances from a benchmark set were solved to optimality

in seconds. Some larger instances whose origin and destination for most of the containers are not

far apart could also be solved in short computational time. However, only a few of the 15-ports

instances without that characteristic could be solved. For most of the larger instances, not even a

feasible solution was found within 1 hour. Then, heuristics should still be considered.

2.1. Heuristics from the literature
Avriel et al. (1998) proposed a heuristic called Suspensory Heuristic Procedure (SH).

The heuristic uses function rules to decide for voluntary shifts in order to reduce the total number

of shifts. The main idea is to rearrange some containers of some stacks with voluntary shifts (non

necessary shift at that port) in order to avoid costlier shifts (i.e., involving more containers) in future

ports. They compare the number of voluntary and necessary shifts and show the influence of the

number of ports, the size of the ship and other characteristic of the instances, but do not compare

the results with other methods.

Azevedo, Ribeiro, & Deus (2010) and Ribeiro & Azevedo (2010) proposed heuristics

based respectively on Genetic Algorithm (GA) and Beam Search (BS), both using a novel solution

representation: instead of working with each container or stack of the bay individually, there is a

set rules for loading/unloading the containers from/to each port. These rules are chosen in advance

and are also an input to the algorithm. What the algorithm has to decide is which loading and which

unloading rule should be applied in each port. This leads to a compact representation, as it can be

represented by a sequence of N − 1 rules, one for each port (no rule is needed for the last port, as

the ship is emptied at that port). The drawback is that the optimal solution may be complex and not

reachable by the set of rules, if they are too simple. They use the benchmark set of instances now

publicly available by Azevedo (2012), but do not not compare their results. They conclude that the

representation by rules is a good technique to speed up the solution of this problem and may lead

to better results, however more elaborate rules are needed for larger instances. The next section

describes their proposed loading/unloading rules and new ones proposed in more recent works.

The representation by rules was also used in Azevedo et al. (2011). They proposed a

heuristic based on Simulated Annealing (SA) using 12 combination of rules: the 4 loading rules

and the 2 unloading rules proposed by Ribeiro & Azevedo (2010) and 1 new unloading rule. The

results are compared to the BS of Ribeiro & Azevedo (2010). For the same benchmark, the proposed

SA outperforms the BS, reaching better results in 30 out of 45 instances, and the same result on the

remaining instances.

1805



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Carraro et al. (2013) propose some new rules and two heuristics, one based on GA and

other based on Artificial Bee Colony algorithm (ABC). For calibration purposes, the results of both

heuristics for the 3 smallest instances were compared to each other and to the results of the GA

proposed by Azevedo, Ribeiro, & Deus (2010). They report the solutions to only 6 out of the 45

instances of the benchmark and compare their GA and ABC but not compare the results to those of

the literature. The results found by the GA were better or equal to the ones found by ABC.

The following section details the loading and unloading rules proposed in the cited papers

from the literature, and the new rules we are proposing in this work.

3. Solution representation by rules
In this section we present all the loading and unloading rules found in the literature for

the Container Stowage Problem. As mentioned in the previous section, the representation by rule

leads to a compact representation and reduces considerable the search space. The drawback is

that this representation does not map all possible real solutions into feasible candidates, because

the loading and unloading is done only be means of the rules, which are decided per port, not per

container. The search space is reduced substantially, with the cost of not including all feasible

solutions, which means that the optimal solution may be missing. Nevertheless, they also facilitates

to incorporate knowledge from experts because new rules may be created based on their experience,

so it is expected to get better results if one has a better set of rules.

Firstly, we present the rules found in the literature and then propose a set of new rules.

Using our proposed rules we could reach better solutions, including optimal solutions not found

before.

3.1. Rules from Azevedo, Ribeiro, & Deus (2010) and Ribeiro & Azevedo (2010)
The first set of rules was proposed by Azevedo, Ribeiro, & Deus (2010) and Ribeiro &

Azevedo (2010). Although from the same group of researchers, they are independent papers, with

a slightly different set of rules. As they are similar, we describe them together.

Loading rules

• L1: This rule fills the occupation matrix row by row, from left to right. Containers are

inserted in decreasing order of destination, so that containers with destination to nearest ports

are positioned on top.

• L2: This rule fills the occupation matrix column by column, from left to right, until row θp is

reached. The value θp is computed for each port, by the following equation, which determines

the number of rows needed to accommodate all containers loaded on the ship when departing

from port p. As in the previous rule, containers are inserted in decreasing order of destination.

θp =

⌈∑p
i=1

∑n
j=p+1 Tij

C

⌉
(1)

• L3: same as L1, but from right to left (used in Ribeiro & Azevedo (2010))

• L4: same as L2, but from right to left. (used in Ribeiro & Azevedo (2010))

Unloading rules

• U1: Upon arrival at port p, all containers with destination to that port are unloaded, together

with the containers blocking them in the stacks, i.e., all containers with destination p and

those on top of them. Then, the blocking containers are reloaded together with the containers

from that port.

1806



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

• U2: All containers are unloaded. i.e. the ship is fully emptied, which allows a rearrangement

of the containers. The containers not destined to that port are then reloaded together with the

containers coming from that port.(only in Azevedo, Ribeiro, & Deus (2010))

• U ′
2: All containers with destination to that port are unloaded, together with the containers

of their stacks. i.e. all stacks with containers to port p are fully unloaded, which allows

a rearrangement of the stacks. The containers not destined to that port are then reloaded

together with the containers coming from that port.(only in Ribeiro & Azevedo (2010))

The SA from Azevedo et al. (2011) uses all the rules above.

3.2. Carraro et al 2013 rules
Carraro et al. (2013) proposed 2 new loading rules and modify the previous unloading

rules.

Loading rules

• L3: same as L1, but from right to left (already proposed by Ribeiro & Azevedo (2010))

• L4: same as L2, but from right to left (already proposed by Ribeiro & Azevedo (2010))

• L5: This rule fills the occupation matrix column by column, from left to right, as rule L1, but

until column βp is reached, similar to rule L2. The value βp is computed for each port by the

following equation. As in the previous rules, containers are inserted in decreasing order of

destination.

βp =

⌈∑p
i=1

∑n
j=p+1 Tij

R

⌉
(2)

• L6: same as L5, but from right to left.

Unloading rules

• U ′
1: as in unloading rule U1, containers with destination to the current port are unloaded, and

the containers blocking them. Instead of reloading the blocking containers together with the

containers from that port using the chosen loading rule, they are loaded using rule L1, i.e.,

row by row, from left to right.

• U ′
2: as in unloading rule U2, all containers are unloaded. As in unloading rule U ′

1 they are

reloaded using rule L1, before the containers from that port.

• U ′
3: as unloading rule U ′

1, but the blocking containers are reloaded as in rule L2, column by

column, left to right, filling the empty spots until the top, without a row limit θp.

3.3. New rules
The rules proposed in the literature are simple and provide good results. However, none

of them uses the valuable information of the stowage planning on the last visited port. We propose

three new loading rules, described in the following. The first one load the containers based on the

number of containers currently on the stacks, the second is based on the destination port of the

containers currently at the top of the stacks, and the third combines information from the stacks and

the destination of the loaded container.

The experimental results on Section 5 shows that these new rules contributes significantly

to reduce the number of shifts in the final solution.

1807



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

New loading rules

• L7: Let ηc be the number of containers currently at column c. Load containers column by

column, until the top, in increasing order of ηc. As in other rules, containers are inserted in

decreasing order of destination.

• L8: Let δc be the destination of the container on top of column c (with δc = ∞ if c is

empty). Load containers in decreasing order of destination, column by column, until the top,

in decreasing order of δc.

• L9: Load containers in decreasing order of destination. The column chosen to load each

container is the one that minimizes δc − d, where d is the destination of the loaded container,

i.e., load the container on the column whose top container remains less time after the container

is unloaded. If no such column exists, then the container is loaded on the column with

minimum δc.

3.4. Combinations of rules
To simplify the assignment of a loading and an unloading rule to a given port we represent

every unique combination of the two types in a single variable; by doing that we facilitate some

sections of the solution algorithms.

4. Proposed heuristics
Since the Container Stowage Problem is an NP-hard optimization problem (Avriel, Penn,

& Shpirer (2000)), it generally is computationally hard to find exact solutions for big instances.

When facing such problems we usually use heuristics, procedures capable of generating a suffi-

ciently good solution that solves the problem without spending all the available resources. In the

next sections we introduce the Genetic Algorithm and the Ant Colony Optimization, two heuristics

that are widely used in the optimization field.

4.1. Genetic Algorithm
The Genetic Algorithm (GA) was designed to mimic the natural selection process, as the-

orized by Charles Darwin, by performing an adaptive search from a population of initially random

solutions, attempting to find good ones. In the GA nomenclature, the solutions are called individu-

als and these are selected from the population, then reproduced, generating children that have some

of its parents’ features. Besides, the children can also mutate, that is, have a slight change on one

of its features.

Initially, the random population is evaluated by a fitness function, which classifies the

individuals by its fitness value. Then, the population is selected using an operator, by taking in-

dividuals and usually selecting the fitter one. The crossover combines individuals from the new

population, creating a child with some of its features. The last step in a cycle is the mutation that

has a chance to modify a feature in a child, according to an operator. After, a new cycle unfolds,

exposing the new population to the same steps, until reaching a stop criteria. A pseudocode of the

whole algorithm is shown in Algorithm 1. In our algorithm a solution is represented by a sequence

of N values, representing the loading/unloading combination to be used on each port.

Next, we have the chosen values of the parameters. The size of the population is fixed in

80 individuals and the maximum number of cycles is 1200. The selection operator is the tournament

selection (Mitchell (1996)), which selects two random individuals and picks the fitter with a 75%

probability. The crossover operator is the uniform crossover (Michalewicz (1996)), which two

individuals are selected to build the child’s features, randomly choosing one of them with the same

probability to give the feature. The mutation operator is the uniform mutation (Mitchell (1996)),

which chooses a feature of an individual, with a probability of 35%, and change its value.

1808



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Algorithm 1 Genetic Algorithm

1: procedure GA()

2: P ← initialPopulation() � Build a set of Npop random individuals

3: repeat Ngen times
4: R ← ∅
5: repeat Npop/2 times
6: parent1 ← selection(P)

7: parent2 ← selection(P)

8: child1, child2 ← crossover(parent1, parent2)

9: mutation(child1)
10: mutation(child2)
11: R ← R ∪ {child1} ∪ {child2}
12: end repeat
13: P ← best(P ∪R) � Select the best Npop individuals

14: end repeat

4.2. Ant Colony Optimization
As the previous heuristic, Ant Colony Optimization (ACO) is inspired by nature phe-

nomenon: the ant’s trail system. Some species of ants lay pheromone from its colony to a possible

place with food. If indeed there is food in that place, more ants are likely to go there and increase

the pheromone trail, since the first returned with food; if there is not, the trail will evaporate over

time until becoming unnoticeable. This idea is used to build solutions based on the paths taken by

the previous ones in the problem’s graph, where the paths that originated better solutions are more

probable to be chosen. The evaporation is also applicable since a better path can be discovered and

have its pheromone increased, whilst the old one decays for not being so used anymore.

The graph we propose for the Container Stowage Problem is dependent on the quantity

of ports and the number of combinations of rules. Each port is represented in a node. Each node

is linked to its successors node and the number of links to each one is equal to the number of

combinations of rules. A link between a node i and a node j contains the combination of rule that

will be used in node i, so the first node ignores its unloading rule whilst the last node ignores its

loading rule. In this way, we can represent all the possibilities of any set of combinations to be used.

A representation of this graph is given in Figure 1.

Figure 1: Representation of the graph used in ACO with N ports and k combinations of rules

Initially, every arc has the same probability to be chosen, so their pheromone values are

the same. Then, a fixed number of ants are released in the graph, on the first node, walking on the

graph until the last node, building solutions based on the arc’s probabilities. When all the solutions

are built, a fitness function evaluates them and increases the pheromone of the arcs that the best

ones went through. Before beginning a new cycle, the pheromone on the arcs evaporates at a fixed

rate. The whole procedure is shown in Algorithm 2.

Next, we have the chosen values of the parameters. The number of ants is 120 and the

1809



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

number of cycles is 800. The nodes have an initial pheromone value of 5, while the increase value

in the arc is 40. The number of solutions that have its path’s pheromone updated is 2 and, in the end

of each cycle, 1% of an arc’s pheromone value is evaporated.

Algorithm 2 Ant Colony Optimization

1: procedure ACO()

2: G ← createGraph() � Creates the graph describing the problem

3: repeat Ngen times
4: S ← buildSolutions()
5: rewardSolutions(S)
6: updatePheromone(G,S)
7: end repeat

5. Computational experiments
As defined in Avriel et al. (1998), there are three types of instances of the problem that

are related to the average period of time of a container on board:

1. Mixed Distance: containers are assigned random time periods

2. Long Distance: containers have long time periods

3. Short Distance: containers have short time periods

Besides being separated by the permanency of the container in the ship, the instances have

also different number of ports, ranging from 10 to 30. The instances of the problem provided by

Azevedo (2012) have ships with different sizes, that is, with different number of rows and columns.

In the first analysis, the instances chosen were those with 6 columns and 50 rows, the same config-

uration used by Carraro et al. (2013). The proposed solution methods were compared to an integer

linear programming (ILP) formulation of the problem (Avriel et al. (1998)) and to a Genetic Al-

gorithm based on Carraro et al. (2013). These paper’s algorithms were implemented in an Intel(R)

Core(TM) i7 CPU 2.83GHz, 8.0 GB of RAM, Windows 7 operating system with C++ programming

language.

Table 1 in the following summarizes the results of all solution methods, where ILP93 is

the ILP formulation solved by CPLEX 12.4, with a one-hour time constraint; GA 18 is the Genetic

Algorithm based on Carraro et al. (2013), therefore, with 18 combinations of rules; GA 45 is

the Genetic Algorithm with 45 combinations of rules here proposed and ACO is the Ant Colony

Optimization, with all the combinations as well:

Noticeably, the ILP formulation is capable of finding optimal results for some instances,

but in the bigger ones it runs out of time. The model usually finds a solution to the instances of type

3 because it is the short distance transportation matrix type, so it is easier to manage the containers

through the process. Though a solution was found to various short-distance kind of instances, it

failed to find one for the 30 ports case, so the use of heuristics is well justified.

Comparing both Genetic Algorithms, we can see that the new set of rules has unarguably

increased the quality of solutions without taking much longer. These rules examine the current

state of the ship and take advantage on it to load containers, instead of placing them blindly. This

examination process is the major time-consuming task in the algorithm, so it is efficiency is indis-

pensable. Another performance improving technique is the use of generic unloading rules: it is far

better than applying a specific rule to reload the containers, as in Carraro et al. (2013); instead of

that, all loading rules can be applied in any reload procedure.

The difference between GA 45 and ACO is very tenuous, since their differences are not

big, but, generally, ACO has found solutions with lower number of shifts in less time. Trying to

1810



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 1: Results of 6x50 instances: time (in seconds), average number of shifts for 30 runs and standard

deviation
ILP93 GA 18 GA 45 ACO

ID Time(s) Shifts Time(s) Shifts (σ) Time(s) Shifts (σ) Time(s) Shifts (σ)
10/1 12 0 8 8,2 (1,8) 0 0,0 (0) 0 0,0 (0)

10/2 10 0 6 5,1 (0,7) 10 3,1 (0,3) 10 3,1 (0,3)

10/3 1 0 0 0,0 (0) 0 0,0 (0) 0 0,0 (0)

15/1 82 0 11 21,9 (4,4) 1 0,1 (0,7) 1 0,0 (0)

15/2 1921 0 8 9,9 (2,3) 13 1,3 (0,5) 13 1,0 (0)

15/3 1 0 0 0,0 (0) 0 0,0 (0) 0 0,0 (0)

20/1 1155 0 15 30,6 (6) 24 4,6 (2,5) 25 3,4 (1,1)

20/2 † - 11 21,3 (4,6) 17 8,9 (1,9) 18 7,3 (1,4)

20/3 1 0 0 0,0 (0) 0 0,0 (0) 0 0,0 (0)

25/1 † - 16 24,5 (7,9) 25 11,0 (2,3) 25 8,8 (1,8)

25/2 † - 13 17,1 (7,3) 19 2,0 (1,6) 15 1,0 (1)

25/3 2 0 0 0,0 (0) 0 0,0 (0) 1 0,0 (0)

30/1 † - 22 41,1 (11,1) 33 8,7 (2,5) 32 8,7 (2,4)

30/2 † - 17 41,8 (7,9) 26 12,0 (3,3) 26 14,7 (1,9)

30/3 † - 0 0,0 (0) 0 0,0 (0) 0 0,0 (0)

Average time & total shifts 8,5 221,4 11,2 51,8 11,1 48,0

† No solution within 1 hour.

Table 2: Total number of shifts per instance type

ILP93 GA 18 GA 45 ACO

1 - Mixed distance - 126 24 21

2 - Long distance - 95 27 27

3 - Short distance - 0 0 0

Total of best solutions 9 5 8 13

find the best algorithm, we ran tests for the instances with 6 rows by 100 columns and 6 rows by

150 columns; their results are in tables 3 and 4.

In the instances with higher number of rows and columns, GA 45 and ACO still reaches

with similar results. The average time to find a solution increased, since we now have bigger ships

therefore more containers to manage. Comparing the sets of instances, the results of the 6x50-

instances tend to have small amounts of shifts in every instance, whereas the 6x100 and 6x150 have

found more optimal solutions. It can be explained by the size of the ships: the more you have, the

easier the management; on the other hand, if the number of containers in the instance is close to the

viable maximum, any shift may have a large impact in the total value.

The line chart of Figure 2 shows the total number of each loading rule used in the current

solution of the GA population at each iteration, for two different instances. At the beginning each

rule is used about the same number of times, since the initial population is generated randomly.

During the process, the loading rules L7, L8 and L9 tends to be more frequent in the population.

In fact, for these instances the rules L7 and L9 end up to be the most frequent rules in the last

iterations. This show that, at least in these instances, the new rules we introduce in this paper tends

to be frequently used by the best solutions.

1811



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 3: Results of 6x100 instances: time (in seconds), average number of shifts for 10 runs and standard

deviation

GA 45 ACO

ID Time(s) Shifts (σ) Time(s) Shifts (σ)
10/1 0 0,0 (0) 0 0,0 (0)

10/2 17 4,0 (0) 17 4,2 (0,6)

10/3 0 0,0 (0) 0 0,0 (0)

15/1 0 0,0 (0) 1 0,0 (0)

15/2 29 5,1 (1,4) 30 4,8 (1,1)

15/3 0 0,0 (0) 0 0,0 (0)

20/1 1 0,0 (0) 5 0,0 (0)

20/2 37 10,0 (1,3) 37 8,8 (0,4)

20/3 0 0,0 (0) 1 0,0 (0)

25/1 61 10,5 (0,8) 58 9,9 (1,3)

25/2 54 2,5 (0,8) 49 3,1 (1,7)

25/3 1 0,0 (0) 2 0,0 (0)

30/1 64 1,7 (1,7) 65 2,7 (2,5)

30/2 57 7,1 (6,2) 53 8,6 (2,5)

30/3 1 0,0 (0) 3 0,0 (0)

Average time &
21,6 40,9 21,4 42,1

total shifts

Figure 2: Line chart of the total number of each loading rule used over time by GA for 6 × 50 instances

20/2 and 30/1

For a complete view regarding the loading rule usage, the pie chart of Figure 3 represents

the average number of each loading rule at the end of the execution of instances. The instances of

type 3 were ignored in this comparison since they can be solved within a few cycles, so the quality

of the rules does not apply as much as the ones that take the entire cycle. Representing almost 50%

of the total, the proposed rules take a big part in building better solutions, showing their importance

in the quality of the results found.

1812



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Table 4: Results of 6x150 instances: time (in seconds), average number of shifts for 10 runs and standard

deviation

GA 45 ACO

ID Time(s) Shifts (σ) Time(s) Shifts (σ)
10/1 0 0,0 (0) 0 0,0 (0)

10/2 0 0,0 (0) 0 0,0 (0)

10/3 0 0,0 (0) 0 0,0 (0)

15/1 1 0,0 (0) 2 0,0 (0)

15/2 39 1,0 (0) 37 1,0 (0)

15/3 0 0,0 (0) 0 0,0 (0)

20/1 3 0,0 (0) 7 0,0 (0)

20/2 62 4,3 (2,8) 61 3,3 (2,3)

20/3 1 0,0 (0) 2 0,0 (0)

25/1 10 0,0 (0) 27 0,0 (0)

25/2 29 0,4 (1) 36 0,0 (0)

25/3 2 0,0 (0) 3 0,0 (0)

30/1 112 5,5 (0,5) 95 7,4 (1,8)

30/2 66 5,7 (1,4) 68 4,4 (1)

30/3 2 0,0 (0) 8 0,0 (0)

Average time &
21,9 16,9 23,1 16,1

total shifts

Figure 3: Pie chart showing average number of each loading rule used

6. Conclusions
In this paper, we discussed the Container Stowage Problem, modeling a situation where a

container-ship must visit a sequence of ports, carrying containers from their initial ports to a final

destination. The objective is to minimize the amount of unnecessary displacement of containers,

a costly operation. Our contributions improves the methods of solution seen in the literature so

far, which gives us more profitable, less time-consuming processes in the daily routine of a marine

shipping environment. The new rules presented are capable of analysing the ship’s state and direct

the search towards a better solution. Though these rules cause the algorithm to run slower, its gains

are incomparable, since our heuristics substantially outperform the literature.

We show that the integer linear programming formulation of the problem is now practi-

cable to solve larger instances than before, which suggests that an exact approach could be taken to

find even better solutions.

1813



De 25 a 28 de Agosto de 2015.
Porto de Galinhas, Pernambuco-PEXLVII

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

The implementation of the Ant Colony Optimization algorithm opened up a new range

of possibilities, showing that there is an alternative to the previously tried heuristics, for the results

found are comparable both in quality and time.

Acknowledgement
The first author worked on this project funded by CNPq. The authors also thank to CAPES

and FAPEMIG for the partial financing of the project.

Avriel M., Penn M., Exact and approximate solutions of the Container Ship Stowage problem,

Computers and Industrial Engineering, 1993.

Avriel M., Penn M., Shpirer N., Witteboon S., Stowage Planning for Container Ships to Reduce

Number of Shifts, Annals of Operations Research, 1998.

Avriel, M., Penn, M., Shpirer, N., Container ship stowage problem: complexity and connection to

the coloring of circle graphs, Discrete Applied Mathematics, 103, 271– 279, 2000.

Azevedo, A. T., Problemas & Dados, Instâncias empregadas nos artigos do SIMPEP 2009, Univer-

sidade Estadual Paulista, (https://sites.google.com/site/projetonavio/programas-dados), 2009.

Azevedo, A. T., Ribeiro, C. M. e Deus, N. M. R. , Resolução do Problema de Carregamento e

Descarregamento de Contêineres em Terminais Portuários via Algoritmo Genético, Revista Inger-
pro – Inovação, Gestão e Produção, 2, 38-51, 2010.

Azevedo, A. T., Sena, G. J., Chaves, A. A., Ribeiro, C. M., O problema de carregamento e

descarregamento de contêineres em terminais portuários: uma abordagem via Simulated Annealing,

Simpósio Brasileiro de Pesquisa Operacional, 2011.

Carraro, L. F., Chiwiacowsky, L. D., Gómez, A. T., Oliveira, A. C. M., Uma aplicação das

metaheurı́sticas Algoritmo Genético e Colônia Artificial de Abelhas através da codificação por re-

gras para resolver o Problema de Carregamento de Navios-Contêineres, Simpósio Brasileiro de
Pesquisa Operacional, 2013.

Michalewicz, Z., Genetic Algorithms + data structures = evolution programs, Springer-Verlag,

Berlin, 1996.

Mitchell, M., An introduction to genetic algorithms, MIT Press, Cambridge, 1996.

Ribeiro, C. M., Azevedo, A. T.,, Resolução do problema de carregamento e descarregamento de

contêineres em terminais portuários via Beam Search, Simpósio Brasileiro de Pesquisa Opera-
cional, 2010.

1814


