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E-mail: sergio.camiz@uniroma1.it
Gastão Coelho Gomes

Departamento de Métodos Estat́ısticos, Universidade Federal do Rio de Janeiro
E-mail: gastao@im.ufrj.br

Abstract

In this work Simple Correspondence Analysis, the exploratory method that aims at a graph-
ical representation of the structure of a contingency table, based on L2 Euclidean metrics,
is compared to Taxicab Correspondence Analysis, aiming at the same purpose but based on
both L1 (Manhattan, Taxicab) and L∞ metrics. Theoretical differences are outlined and two
examples are proposed, in which Taxicab method seems suboptimal but appears to reduce
the Guttman effect due to the studied data structure.
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1 Introduction

The aim of this work is to compare both theoretically and in practice two exploratory methods
whose aim is apparently the same, applied to a qualitative data: to represent character levels
on the same graphical (reduced dimensional) space, in order to help interpretability. As inter-
pretability we mean that the relations that underly the table structure may be seen graphically
in terms of both absolute and relative position of the points-levels. The compared methods are
Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983) and Taxicab Corre-
spondence Analysis (TCA, Choulakian, 2006) for two characters crossing in a 2-way contingency
table. Note that the extension to several characters crossing in multiple tables of both method
exist (Benzécri et al., 1973-82; Greenacre, 1983; Choulakian, 2008).

Indeed, a major difference exists between the two methods, since they are based on two
different metrics: SCA is based on the L2 Euclidean distance, whereas TSCA is based on the
L1 Taxicab, a.k.a. Manhattan, distance. In practice, this means that, whereas the coordinates
along corresponding factors may be comparable as well as the items distances along a factor, the
distances in higher-dimensional spaces are larger in L1, since they are obtained by the sum of
those computed along each dimension, than in L2, in which the measure along the straight line
joining two items is by no means lower. Thus, we may say that the two methods address two
different kinds of applications, depending on which way distances between items are considered
in the different frameworks.

In the following, let N = (nij) an r × c contingency table, with n = n.. its grand total,
that is the number of units, P = (pij) = (nij/n) the corresponding matrix of relative frequen-
cies, r = (p1., ..., pr.)

′ the vector of row marginal profile c = (p.1, ..., p.c)
′ the vector of column
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marginal profile, and Dr = diag(r), Dc = diag(c) the corresponding diagonal matrices. We
concentrate on matrix P , since n, the number of units, in all formulas is a scale factor and is
relevant only in the statistical tests. It is well known that the matrix rc′ represents the matrix
of independence among the crossing characters, so that we may be only interested to study, and
thus to graphically represent, the matrix of deviations from independence D = P − rc′.

For this purpose, we must get pairs of unit vectors of coordinates (cαr , c
α
c ), for the levels of the

characters by row and column, respectively, with α = 1, . . . , q the rank of P , q ≤ min(r, c)− 1,
with the requirement of orthogonality. As the graphical representation aims at outlining these
deviations, we may wish that these coordinates represent deviations and for that the additive
model of data reconstruction is adopted, that is

dij = pij − pi.p.j = pi.p.j

q∑
α=1

ιαcr
α
i cc

α
j
′ (1)

with the conditions ∑
ij

(pij − pi.p.j) = 0

∑
i

pi.cr
α
i =

∑
j

p.jcc
α
j = 0 ∀α

∑
ik

pi.pk.cr
α
i cr

α
k =

∑
jh

p.jp.hcc
α
j cc

α
h = δij ∀α

(2)

The (2) are ordinary identification conditions on the deviations from expectation and on stan-
dardized coordinates. Essentially, the rationale of additive models is to decompose the table into
independent additive unit-rank components, P = rc′ +

∑
α Lα that here will be named layers,

each layer representing
Lα = ια rc

′cαr c
α
c
′

an independent component of the deviation from the independence of the original table. Should
the coordinates of both rows and columns be correlated with some other character, one may
imagine to attribute to its influence the different levels of the characters crossed in the table
(Orlóci, 1978).

2 The two methods

The two methods under examination adopt two different metrics in their spaces of representation.
Consider two points A and B, whose coordinates are A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn),
and a vector v, whose components are v = (v1, v2, . . . , vn). We define the following metrics:

• L2 metrics, also known as Euclidean, in which the distance between two points A and
B is given by d2(A,B) =

√∑n
i=1(ai − bi)2 and the induced L2 norm is thus ‖ v ‖2=√∑n

i=1(vi)
2;

• L1 metrics, also known as Manhattan, City block, or Taxicab, in which the distance between
two points A and B is given by d1(A,B) =

∑n
i=1 |ai − bi| and the induced norm is thus

‖ v ‖1=
∑n

i=1 |vi|;

• L∞ metrics, in which the distance between two points A and B is given by d∞(A,B) =
maxi∈(1,n) |ai − bi| and the induced norm is thus ‖ v ‖∞= maxi∈(1,n) |vi|.
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According to the first two metrics, two Correspondence Analyses are defined, in order to study
a contingency data table:

1. Simple Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983), based
on L2 metrics and the Singular Value Decomposition (SVD Greenacre, 1983; Abdi, 2007);

2. Taxicab Correspondence Analysis (TCA, Choulakian, 2006), based on both L1 and L∞
metrics, and the Taxicab Singular Value Decomposition (TSVD, Choulakian, 2004).

2.1 Singular Value Decompositions

We may ground our further discussion on the well known Singular Value Decomposition (SVD,
Greenacre, 1983; Abdi, 2007) theorem, that states

Theorem 1 (Singular Value Decomposition). Any real matrix X may be decomposed as X =
UΛ1/2V ′, with Λ the diagonal matrix of the real non-negative eigenvalues of XX ′, U the orthog-
onal matrix of the corresponding eigenvectors, and V the matrix of eigenvectors of X ′X (with
the same eigenvalues), with both constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of a q-rank matrix

xij =

q∑
α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:

Theorem 2 (Eckart and Young). The s-rank reconstruction of any real matrix X, with s < q,
the rank of X, once its singular values are sorted in decreasing order,

xij ≈
s∑

α=1

√
λα uiα vjα (3)

is the best one in the least-squares sense.

Choulakian (2004) proposes to build the SVD solution through a recursive optimization
process. Indeed, it consists in finding the first vectors u1 and v1 principal component of a
matrix X as the solution of the equivalent optimization problems

max ‖ Xu ‖2, subject to ‖ u ‖2= 1;

max ‖ X ′v ‖2, subject to ‖ v ‖2= 1.

The solution gives

λ1 = max
u

‖ Xu ‖2
‖ u ‖2

= max
v

‖ X ′v ‖2
‖ v ‖2

= max
u,v

v′Xu

‖ u ‖2‖ v ‖2

which is the largest singular value of X. The complete solution results by recursively applying
the optimization problem on the residuals. Thus, the reconstruction formula holds:

X =

q∑
α=1

λαvαu
′
α

and it results ∑
α

λ2α = Tr(X ′X).
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Note that, if we consider the principal coordinates

fα = Xuα, with v′αfα =‖ fα ‖2= λα

gα = X ′vα, with u′αgα =‖ gα ‖2= λα

the reconstruction formula becomes

X =

q∑
α=1

1

λα
fαg

′
α

Taxicab Singular Value Decomposition In analogy with what proposed for SV D,
Choulakian (2004) proposes a recursive method in the Taxicab metrics too. The first vectors
are the solution of the equivalent optimization problems

max ‖ Xu ‖1, subject to ‖ u ‖∞= 1;
max ‖ X ′v ‖1, subject to ‖ v ‖∞= 1.

using both L1 and L∞ norms: the latter is used since this way both u and v are vectors of signs,
say only contain 1 and -1s. The solution

λ1 = max
u

‖ Xu ‖1
‖ u ‖∞

= max
v

‖ X ′v ‖1
‖ v ‖∞

= max
u,v

v′Xu

‖ u ‖∞‖ v ‖∞

is a combinatorial problem Choulakian (2004). The complete solution results by recursively
applying the optimization problem on the residuals, but it may be seen as a TSVD, Taxicab
Singular Value Decomposition. The corresponding principal coordinates are

fα = Xuα, with v′αfα =‖ fα ‖1= λα

gα = X ′vα, with u′αgα =‖ gα ‖1= λα

In this case, since both uα and vα are vectors of signs (uα = sgn(gα) and vα = sgn(fα)),
the reconstruction formula becomes:

X =

q∑
α=1

1

λα
fαg

′
α

Note that in L1 metrics, the total inertia should be the sum of each layer’s ones.

2.2 Simple Correspondence Analysis

Correspondence Analysis may be formulated according to different points of view. We try to
ground it on SVD. We know that the relations between rows and columns ofN are summarized by
the χ2 statistics, that measures the departure from the independence between rows and columns.
Since the independence is estimated by N0 = nP0 = nrc′, the departure from independence is
estimated by

χ2 = n φ2 = n
∑
i

∑
j

(pij − pi.p.j)2

pi.p.j
= n

∑
i

∑
j

d2ij
pi.p.j

(4)

with (r− 1)× (c− 1) degrees of freedom. Note that N and its grand total n are interesting only
to evaluate the chi-square significance, so that interest may be concentrated most on the matrix

P . Setting Ṡ = D
−1/2
r DD

−1/2
c =

(
dij√
pi.p.j

)
, (4) may be written as

n φ2 = n trace(Ṡ′Ṡ) = n trace

((
dij√
pi.p.j

)′( dij√
pi.p.j

))
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that is, in matrix form, simplifying:

φ2 = trace
(
D−1/2c D′D−1r DD−1/2c

)
(5)

Our problem is to reduce the rank of P (and consequently of N) without losing relevant
information. Indeed, we may formalize the problem, considering a suitable reduced rank matrix
P̂ that best approximates P in the sense of the weighed least squares, that is minimizing the
residuals:

R = n
r∑
i=1

c∑
j=1

(pij − p̂ij)2

pi.p.j
= n trace

(
D−1/2c (P − P̂ )′D−1r (P − P̂ )D−1/2c

)
(6)

where the weights are the inverse of the expected frequencies. Note that this formulation allows
to check for significance of the residuals, since Ghomari (1983) showed that R is asintotically
chi-square distributed. As the way the estimate was done does not matter, the test may be
adopted for both SCA and TSCA: given a cell value n̂s,ij issued by a s-dimensional partial
reconstruction, the residuals

Rs =
∑
ij

(nij − n̂s,ij)2

nricj

may be tested for significance as a chi-square with (r − s− 1) × (c− s− 1) degrees of freedom
(Malinvaud, 1987).

Indeed, in the case of SCA,

R = χ2 −
s∑

α=1

χ2
α = n

q∑
β=s+1

λβ,

thus the test is quickly performed.

For our purpose, we may apply the SV D to Ṡ = D
−1/2
r DD

−1/2
c = UΛ1/2V ′, with U ′U = I,

V ′V = I, as it is known that the singular values Λ1/2 are the square roots of the eigenvalues

Λ of Ṡ′Ṡ. By setting the principal coordinates F = D
−1/2
r UΛ1/2 and G = D

−1/2
c V Λ1/2, we get

FDrF
′ = Λ and GDcG

′ = Λ, we get the reconstruction formula

nD = n(P − rc′) = UΛ1/2V ′ = nDrFΛ−1/2G′Dc. (7)

Now, as Ṡ is centered, it has a zero singular value, thus its rank is q ≤ min(r, c) − 2, and, by
shifting rc′, for the elements of N (7) becomes

nij = npij = n ricj

(
1 +

q∑
α=1

1√
λα

fiα gjα

)
.

Thus, based on the Eckart-Young theorem, once sorted the λs in decreasing order: for any s ≤ q
the partial s-rank reconstruction formula (3) becomes:

nij ≈ n̂ij,s = n p̂ij,s = n pi.p.j

(
1 +

s∑
α=1

1√
λα

fiα gjα

)
, (8)

whose residuals may be tested for nullity as said through the Malinvaud (1987) test.
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2.3 Taxicab Correspondence Analysis

Taxicab Correspondence Analysis is defined as the Taxicab Singular Value Decomposition of the
data table D = P − rc′, taking into account the table’s profiles, respectively R = D−1r D for the
rows and C = D−1c D for the columns. Unlike SCA, the solution is recursive, considering at each
step the residuals from the previous factors. This leads to the reconstruction formula

P = prp
′
c +

q∑
α=2

1

λα
Fα G′α.

since the first factor is shown to correspond to the independence, with λα the L1-measure of
dispersion along the α-th factor (note that λ1 = 1). Expressed elementwise the formula becomes:

pij = pi.p.j +

q∑
α=2

1

λα
Fiα Gjα.

Now, if we transform the coordinates fiα = Fiα
pi.

and gjα = Gjα
p.j

we get

nij = n ricj

(
1 +

q∑
α=2

1

λα
fiα gjα

)
. (9)

just as for SCA.

3 Examples

3.1 the Snee data

As a simple example, we take the Snee (1978) data table that crosses 592 students of the
University of Delaware according to the color of the eyes and of the hair, both with 4 levels.
The table N is thus:

Hair

Eyes Black Brown Red Blond Total

Dark Brown 68 119 26 7 220

Light Brown 15 54 14 10 93

Green 5 29 14 16 64

Blue 20 84 17 94 215

Total 108 286 71 127 592

The table’s chi-square equals 138.28984 = 592 × 0.233598 with 9 degrees of freedom and is
thus highly significant. We may apply CA from the R package FactoMineR, thus obtaining 3
eigenvalues, whose statistics are reported in the following table: on the first row, the φ2, that
is the table’s inertia, its chi-square, the degrees of freedom, the chi-square statistics p-value, a
test-value (that is, its corresponding quantile in a standardized normal distribution), and the
L1-inertia, that is the sum of cells absolute values weighed by their expected values.

N Iner % Cum% CnCor ResL2 df p-val v-test ResL1

Ind 0.23360 138.28984 9 0.0000 Inf 6.4352

1 0.20877 0.89 0.89 0.4569 14.69643 4 0.0054 2.5508 2.9353

2 0.02223 0.10 0.99 0.1491 1.53828 1 0.2149 0.7896 0.8568

3 0.00260 0.01 1.00 0.0510 0.00000
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It results that the residual of the one-dimensional solution is significant, whereas the following
is not. Thus, a two-dimensional solution is suitable. Note also that the first factor canonical
correlation is .45, a medium value. In the table below, the coordinates, contributions and
quality of representation of levels of both rows and columns are reported, as well as the sum of
the qualities on both axes, a cumulate quality of representation:

Rows | Dim.1 ctr cos2 | Dim.2 ctr cos2 | cum

Dark Brown | -0.492 43.116 0.967 | -0.088 13.042 0.031 | 0.998

Light Brown | -0.213 3.401 0.542 | 0.167 19.804 0.336 | 0.878

Green | 0.162 1.355 0.176 | 0.339 55.910 0.773 | 0.949

Blue | 0.547 52.128 0.977 | -0.083 11.244 0.022 | 0.999

Columns | Dim.1 ctr cos2 | Dim.2 ctr cos2 | cum

Black | -0.505 22.246 0.838 | -0.215 37.877 0.152 | 0.980

Brown | -0.148 5.086 0.864 | 0.033 2.319 0.042 | 0.906

Red | -0.130 0.964 0.133 | 0.320 55.131 0.812 | 0.945

Blond | 0.835 71.704 0.993 | -0.070 4.673 0.007 | 1.000

The first axis shows the opposition between brown and blue eyes as well as the one between
black and blond hair : the medium value of canonical correlation lets imagine that these may
be related. The second axis outlines the positions of both green eyes and red hair in respect
to the said levels; in this case, a lower canonical correlation may prevent the interpretation in
terms of a common factor, and suggest a possible Guttman effect. Based on the said results and
applying the reconstruction formula (8) we get the partial 1-dimensional reconstruction and the
corresponding residuals:

Black Brown Red Blond Black Brown Red Blond

Dark Brown 62 123 30 5 Dark Brown 6 -4 -4 2

Light Brown 21 48 12 12 Light Brown -6 6 2 -2

Green 10 29 7 18 Green -5 0 7 -2

Blue 16 85 22 92 Blue 4 -1 -5 2

and the partial 2-dimensional reconstruction and the corresponding residuals:

Black Brown Red Blond Black Brown Red Blond

Dark Brown 67 121 25 7 Dark Brown 1 -2 1 0

Light Brown 17 50 16 11 Light Brown -2 4 -2 -1

Green 4 32 13 16 Green 1 -3 1 0

Blue 20 84 17 94 Blue 0 0 0 0

Indeed, an improvement results in the reconstruction in the 2-dimensional reconstruction, in
particular in what concerns green eyes and red hair, but also all others.

Now, if we apply the TCA through the R package TCA to the same table, we obtain the
decomposition of the inertia along each dimension as shown in the following table, with its per-
centage and cumulate percentage, the residual table chi-square statistics, with the corresponding
p-value and test-values, and the said L1-inertia:

N Iner % Cum% ResL2 df p-val v-test ResL1

Ind 0.45913 138.28984 9 0.0000 Inf 6.4352

1 0.33883 0.74 0.74 16.06151 4 0.0029 2.7547 2.7858

2 0.08519 0.18 0.92 2.49843 1 0.1140 1.2057 0.9618

3 0.03510 0.08 1.00 0.00000

Since no statistical test is available for TCA, we adopted the same Malinvaud (1987) test on
the residuals: here we see that the first two dimension explain 92% of the total inertia instead
of 99% of SCA, with a lower concentration along the first axis and a higher along the second.
This is put in evidence by the little higher residual of both solutions, while the significance of
the residuals of the 2-dimensional solution remains above the 5% threshold. In the table below,
the coordinates on the first two dimensions are reported for both rows and columns:
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Axe_1 Axe_2 Axe_1 Axe_2

Dark Brown -0.365 -0.065 Black -0.480 -0.233

Light Brown -0.214 0.153 Brown -0.152 0.027

Green 0.071 0.172 Red -0.069 0.248

Blue 0.445 -0.051 Blond 0.790 0.000

and we may see that the oppositions are the same as before. As well, we apply here the re-
construction formula (9) and we obtain the partial 1-dimensional reconstruction and the corre-
sponding residuals:

Black Brown Red Blond Black Brown Red Blond

Dark Brown 61 124 28 7 Dark Brown 7 -5 -2 0

Light Brown 22 49 12 10 Light Brown -7 5 2 0

Green 11 30 8 16 Green -6 -1 6 0

Blue 14 83 23 94 Blue 6 1 -6 0

as well as the 2-dimensional ones. It is interesting to observe that here blond hair are perfectly
reconstructed in the 1-dimensional solution, whereas brown hair are settled in the following one.
whereas both brown and red hair remain with some residual of equal weight:

Black Brown Red Blond Black Brown Red Blond

Dark Brown 68 122 23 7 Dark Brown 0 -3 3 0

Light Brown 15 51 17 10 Light Brown 0 3 -3 0

Green 5 32 11 16 Green 0 -3 3 0

Blue 20 81 20 94 Blue 0 3 -3 0

Figure 1: The scatter plot of both hair and eye colours, from Snee (1978), on the first factor plane
issued by SCA correspondence analysis method (left) and that issued by TCA taxicab method
(right). Below, each character levels are tied with segments showing a tentative unidimensional
ordering (Guttman effect).
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In Figure 1 are shown the scatter plots of both characters labels on the planes spanned by
the first two factors of SCA (Figure 1 left and right, respectively).

In the graphics below, segments are drawn, in order to show a possible 1-dimensional ordering
of levels, due to a Guttman effect. Note that on the TCA graphics the segments are drawn
according to the L1 metrics, thus as paths parallel to the axes. It seems that the arch effect is
reduced in the TCA representation in respect to SCA.

3.2 Ellenberg’s data

As an example of the application of the polar coordinates method, we consider the Ellenberg
grassland vegetation data table, taken from Müller-Dombois and Ellenberg (1974) and also used
by Camiz (1994, 2005) where the whole table is reported. It concerns the presence/absence
of 76 plant species in 25 rélevés, in which three types of plant communities were observed,
namely Bromus-Arrhenatherum, Geum-Arrhenatherum, and Cirsium-Arrhenatherum. Previous
analyses showed the existence of a main one-dimensional gradient, that appeared in the analyses
in an arch-pattern according to the Guttman effect (Guttman, 1953; Camiz, 2005). We drop here
showing all results, limiting attention to the pattern of rélevés: in Figure 2 they are represented
on the plane spanned by the first two factors issued by both analyses. It is evident that the

Figure 2: The scatter plot of Ellenberg’s data, from Müller-Dombois and Ellenberg (1974), on
the first factor plane issued by both SCA correspondence analysis (left) and TCA taxicab (right)
methods.

Guttman effect, highly visible in the graphic issued by the classical SCA (Fig. 2 left) is somehow
reduced in the one issued by the TCA (Fig. 2 right).
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Orlóci, L. (1978). Multivariate Analysis in Vegetation Research, 2nd ed.. Den Haag: Junk.
Snee, R. D. (1974). “Graphical display of two-way contingency tables”. The American Statisti-

cian, 28: pp. 9–12.

1050


