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ABSTRACT
Hundreds of heuristics have been proposed to solve the problems of bandwidth and pro-

file reductions since the 1960s. Specifically, we found 131 heuristics applied to these problems.
Among them, 15 were selected in a way that no other simulation or comparison showed that these
algorithms could be superseded by any other algorithm in the articles analyzed, in terms of band-
width or profile reduction and also considering the computational costs of the heuristics. Therefore,
these 15 heuristics were selected as the potential best low-cost methods to solve these problems.
These 15 heuristics for bandwidth and profile reductions are compared here when solving linear
systems using the Jacobi-preconditioned conjugate gradient method.

KEYWORDS. Bandwidth reduction, profile reduction, combinatorial optimization, heuris-
tics, reordering algorithms, sparse matrices, renumbering, graph labeling, Conjugate Gradi-
ent Method.
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Introduction
In several science and engineering applications, a fundamental task is the resolution of

large sparse linear systems Ax = b, in which A is a sparse matrix. In general, this is the part of
the simulation that requires the highest computational cost. A large amount of memory and a high
processing cost are required to store and to solve these large-scale linear systems. For the low-cost
solution of large and sparse linear systems and to reduce the memory space required, an appropri-
ate vertex reordering is desirable to assure that the corresponding coefficient matrix A will have
narrow bandwidth and small profile. Thus, heuristics for bandwidth and profile reductions are used
to achieve low execution times and memory requirements for solving large sparse linear systems
[Gonzaga de Oliveira e Chagas, 2015]. Specifically, profile reduction is used to reduce storage
costs of applications that employ the skyline data structure [Felippa, 1975] to represent large-scale
matrices. Profile reductions have also been used in connection with other science and engineering
applications, such as archeology [Kendall, 1969], biology [Karp, 1993], and information retrieval
[Botafogo, 1993].

LetA = [aij ] be a symmetric matrix n×n. The bandwidth of line i is βi(A) = i−min(j :
(1 ≤ j < i) aij 6= 0). Bandwidth of A is defined as β(A) = max((1 ≤ i ≤ n) βi(A)) =
max((1 ≤ i ≤ n) (1 ≤ j < i) (i − j) | aij 6= 0). The profile of A is defined as profile(A) =∑n

i=1 βi(A). The bandwidth and profile minimization problems are hard [Papadimitriou, 1976;
Lin e Yuan, 1994] and, since the mid-1960s, several heuristics have been proposed to solve the
bandwidth and profile reduction problems.

When a matrix is symmetric and strictly diagonally dominant, a prominent algorithm for
solving large sparse linear systems is the Conjugate Gradient Method [Hestenes e Stiefel, 1952;
Lanczos, 1952]. One can achieve a computational cost reduction of this method by applying a local
ordering of the vertices [Duff e Meurant, 1989] of the corresponding graph of A in order to improve
cache hit rates [Gonzaga de Oliveira e Chagas, 2015]. It should be noted that it is also important to
have an ordering which does not lead to a large increase of the number of iterations of this method
when a preconditioner is applied. This local ordering can be reached by applying a heuristic for
bandwidth reduction [Burgess e Giles, 1997; Das et al., 1992].

The main objective of this work is to evaluate 15 potential state-of-the-art low-cost heuris-
tics for bandwidth and profile reductions with the intention of reducing the computational cost of
the Jacobi-preconditioned conjugate gradient method (JPCGM). These 15 heuristics were selected
from systematic reviews.

This paper is structured as follows. Section 2 describes the systematic reviews accom-
plished to identify the potential best low-cost heuristics for bandwidth and profile reductions. Sec-
tion 3 shows how the tests were conducted in this study. Section 4 presents the results. Finally,
section 5 addresses the conclusions.

Systematic reviews
In systematic reviews [Chagas e Gonzaga de Oliveira, 2015; Gonzaga de Oliveira e Cha-

gas, 2015; Bernardes e Gonzaga de Oliveira, 2015], 73 and 74 heuristics for bandwidth and profile
reductions, respectively, were identified that had been published in the period of time spanning the
1960s to the present. From the heuristics identified in the systematic reviews, 17 heuristics were
applied to both bandwidth and profile reductions. Thus, 130 heuristics for bandwidth and profile re-
ductions were identified. These systematic reviews describe eight heuristics in each case as the most
promising heuristics for bandwidth (Burgess e Lai [1986], WBRA [Esposito et al., 1998], FNCHC
[Lim et al., 2003, 2004, 2007], GGPS [Wang et al., 2009], VNS-band [Mladenovic et al., 2010],
hGPHH [Koohestani e Poli, 2011], CSS-band [Kaveh e Sharafi, 2012]) or profile reduction (Snay
[1976], RCM-GL-FL [Fenves e Law, 1983], Sloan [1989], MPG [Medeiros et al., 1993], NSloan
[Kumfert e Pothen, 1997], Sloan-MGPS [Reid e Scott, 1999], Hu e Scott [2001]). In addition, the
reverse Cuthill-McKee method with pseudo-peripheral vertex given by the George-Liu algorithm
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(RCM-GL) [George e Liu, 1981] was selected in both systematic reviews of heuristics for band-
width and profile reductions. It should be noted that these 15 heuristics were selected because no
other simulation or comparison showed that these 15 heuristics could be outperformed by any other
heuristics in the articles analyzed, in terms of bandwidth or profile reduction, when the computa-
tion costs of the given heuristic were also taken into account. In particular, several heuristics for
bandwidth or profile reduction have been designed through metaheuristics, but a few of them were
selected as the most promising heuristics to solve these problems. A reason for this was the high
execution times showed by the metaheuristic-based heuristics (see [Chagas e Gonzaga de Oliveira,
2015; Bernardes e Gonzaga de Oliveira, 2015]).

After we have published these systematic reviews, Torres-Jimenez et al. [2015] proposed
a heuristic for bandwidth reduction based on a dual-representation simulated annealing (DRSA-
band). The DRSA-band obtained results slightly better than results of the VNS-band heuristic
[Mladenovic et al., 2010]. However, the DRSA-band demonstrated higher computational costs
than the VNS-band in the results presented by Torres-Jimenez et al. [2015]. Thus, the DRSA-band
heuristic was not considered as potentially the best low-cost heuristic with significant bandwidth
reduction because its computational cost is higher than the computational cost of the VNS-band
heuristic; apart from significantly reducing the bandwidth, a heuristic must also present low com-
puting times when compared to other heuristics.

Despite not having been selected in the systematic reviews, the GPS heuristic [Gibbs
et al., 1976] was implemented and its results were compared to the other heuristics in this compu-
tational experiment because it is one of the most classic low-cost heuristics tested in the field for
both bandwidth and profile reductions. On the other hand, the RCM-GL-FL heuristic [Fenves e
Law, 1983], despite being selected in the systematic review of heuristics for profile reduction, was
not implemented in this work because it is simply a specific application of the RCM-GL method
[George e Liu, 1981] for finite element discretizations. Therefore, 15 heuristics were implemented
and tested in this work. Additionally, the exchange methods (EM) [Reid e Scott, 2002] (i.e., local
search algorithms) were tested in conjunction with several of these 15 heuristics.

Description of the tests, implementation of the heuristics, testing, and calibration
Regarding the simulations with the 15 heuristics for bandwidth and profile reductions that

were selected in systematic reviews, a 64-bit executable program of the VNS-band heuristic (which
was kindly provided by one of the heuristic’s authors) was used. This executable only runs with
instances up to 500,000 vertices.

The FNCHC-heuristic source code was also kindly provided by one of the heuristic’s au-
thors. With this, the source code was converted and implemented in this present work in the C++
programming language. We asked all the 13 other heuristics’ authors for the sources and/or exe-
cutables of their algorithms. However, some authors answered that they no longer had the source
code or executable, some authors did not respond, and others explained that the programs could not
be provided. Then, the 13 other heuristics were also implemented in the C++ programming lan-
guage so that the computational costs of the heuristics could be compared accordingly. Specifically,
the g++ version 4.8.2 compiler was used. In addition, the GNU Multiple Precision Floating-point
Computations with Correct-Rounding (MPFR) library with 512-bit precisions were employed to
make it possible to achieve high precision in the computations.

It should be observed that it was not our objective that the results of the C++ programming
language versions of the heuristics supersede all the results of the original implementations. Our
goal was to implement reasonably efficient implementations of the heuristics tested in order to make
it possible an appropriate comparison of the results of the 15 heuristics. On the other hand, we tested
and calibrated the C++ programming language of the heuristics performed in order to compare our
implementations with the codes used by the original proposers of the heuristics to ensure the codes
we implemented were comparable to the algorithms that were originally proposed. We compared
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the results of the C++ programming language versions of the heuristics with the results presented
in the original publications. It should be noted that these heuristics are simple to implement:

• the RCM-GL method [George e Liu, 1981],

• the heuristic of Snay [1976],

• the algorithm of Sloan [1989],

• the Medeiros-Pimenta-Goldenberg (MPG) heuristic [Medeiros et al., 1993],

• the Normalized Sloan (NSloan) heuristic [Kumfert e Pothen, 1997],

• Sloan’s algorithm with pseudo-peripheral vertex given by the modified GPS algorithm
(Sloan-MGPS) [Reid e Scott, 1999],

• the heuristic based on genetic programming hyper-heuristic (hGPHH) [Koohestani e Poli,
2011].

In particular, the RCM-GL method [George e Liu, 1981] is based on breadth-first search
procedure, the heuristic of Snay [1976] and the hGPHH heuristic [Koohestani e Poli, 2011] are
based on RCM method, and the MPG, NSloan, and Sloan-MGPS are based on Sloan’s algorithm.
Likewise other heuristics tested here, the hGPHH heuristic [Koohestani e Poli, 2011] is highly
dependent on the starting vertex. Since Koohestani e Poli [2011] provided no explanation about
the pseudo-peripheral vertex finder applied, the algorithm of George e Liu [1979] for computing a
pseudo-peripheral vertex was employed here; consequently, this method was termed hGPHH-GL,
i.e. it is an RCM-based heuristic designed through a genetic programming hyper-heuristic. Thus,
in both algorithms, the starting vertex is given here by the George-Liu algorithm. In short, the C++
programming language implementations of the RCM-GL and hGPHH-GL heuristics obtained sim-
ilar results to the results presented by Koohestani e Poli [2011] in relation to bandwidth reductions.

We closely observed the instructions provided by Lewis [1982] in a Fortran programming
language source code in order to implement the GPS algorithm [Gibbs et al., 1976] in the C++
programming language. The C++ programming language GPS algorithm achieved better bandwidth
results than the results presented by Lewis [1982].

The algorithm of Sloan [1989], NSloan [Kumfert e Pothen, 1997], Sloan-MGPS [Reid
e Scott, 1999], Hu e Scott [2001], and Charged System Search for bandwidth reduction (CSS-
band) [Kaveh e Sharafi, 2012] heuristics have important parameters that may affect the results.
Exploratory investigations were conducted in order to determine the parameters, but in general, the
better parameters are those suggested by the heuristics’ authors: w1 = 1 and w2 = 2 (associated
to global and local criteria corresponding to the distance of each vertex from the target end vertex
and the degree of each vertex, respectively) within the Sloan [1989], Sloan-MGPS [Reid e Scott,
1999], and Hu-Scott [Hu e Scott, 2001] heuristics; and w1 = 2 and w2 = 1 within the NSloan
heuristic [Kumfert e Pothen, 1997]. On the other hand, the other heuristics do not have parameters
that influence the results.

We meticulously observed the guidances given by Sloan [1989] and also the recommenda-
tions reported at http://www.hsl.rl.ac.uk/archive/specs/mc40.pdf [STFC Rutherford Appleton Lab-
oratory, 1963-2016] in a Fortran programming language source code in order to implement this
heuristic in the C++ programming language. Moreover, we studied the Fortran programming lan-
guage source code of the Sloan-MGPS available at http://www.hsl.rl.ac.uk/catalogue/mc60.html
[STFC Rutherford Appleton Laboratory, 1963-2016] in order to implement this heuristic in the
C++ programming language. The C++ programming language versions of the algorithm of Sloan
[1989] and the Sloan-MGPS heuristic [Reid e Scott, 1999] yielded better profile results than the
results of these heuristics presented by Reid e Scott [1999].
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The C++ programming language version of the NSloan heuristic achieved comparable re-
sults to the results of the original version [Kumfert e Pothen, 1997] in relation to profile reductions.
The C++ programming language version of the MPG heuristic achieved better profile results (in the
30 instances provided by Kumfert e Pothen [1997]) than the results of the original version [Kumfert
e Pothen, 1997].

The heuristic of Hu e Scott [2001] is more complicated to be implemented than the other
heuristics implemented here. We implemented this heuristic in the C++ programming language,
but our results are not comparable to the results shown by Hu e Scott [2001]. Our C++ program-
ming language of this heuristic is not a reasonably efficient implementation of this heuristic. In
spite of that, in exploratory investigations, we realized that this is a high-cost heuristic, mostly for
computing matrix multiplications, so that we did not make a greater programming effort to obtain a
better implementation of this heuristic because it cannot outperform the other heuristics tested here
when applied to reduce the computational cost of an iterative linear system solver. As described,
a reordering algorithm must significantly reduce the bandwidth or profile at low cost: it cannot be
expensive when compared to other algorithms. It should be noted that Hu e Scott [2001] showed no
computational cost of their proposed heuristic. It was selected as one of the potential best heuristic
for profile reduction because it showed promising profile results. However, when examining it to
be implemented, it was realized that the heuristic performs matrix multiplications at each iteration.

As far as we know, results of the heuristic of Snay [1976], Burgess e Lai [1986], Wonder
Bandwidth Reduction Algorithm (WBRA) [Esposito et al., 1998], Generic GPS (GGPS) [Wang
et al., 2009], and CSS-band [Kaveh e Sharafi, 2012] heuristics have only been presented in their
original papers and, unfortunately, we did not find the instances where these five heuristics were
tested. In spite of that, since an efficient implementation comes at a cost in programming effort, we
precisely followed the explanations of the algorithms provided by their authors in order to obtain
reasonably efficient implementations of these heuristics.

The workstations used in the execution of the simulations contained an Intel R© CoreTM

I3-550 (4MB Cache, CPU 3.20GHz × 4, 16GB of main memory DDR3 1333MHz) (Intel; Santa
Clara, CA, United States). The Ubuntu 14.04 LTS 64-bit operating system with Linux kernel-
version 3.13.0-39-generic was used.

Three sequential runs, with both a reordering algorithm and with the JPCGM, were per-
formed in each instance. More executions were not necessary as the standard deviation and co-
efficient of variation observed were small within these three sequential runs. Moreover, it should
be observed that we followed the recommendations given by Johnson [2002] for this experimen-
tal analysis of 15 low-cost heuristics for bandwidth and profile reductions aiming at reducing the
computational cost of the JPCGM.

Results and analysis
This section presents and analyzes the results obtained in simulations using the JPCGM

executed after reordering algorithms. Specifically, this section shows the results of the resolutions
of linear systems (containing symmetric matrices) arising from the discretization of the heat con-
duction equation by finite volumes with meshes generated by Voronoi diagrams (and Delaunay
triangulation) [Gonzaga de Oliveira et al., 2015].

Tables 1 and 2 show the dimension n of the respective coefficient matrix of the linear
system (or the number of vertices of the graph associated to the coefficient matrix), the sparsity
(%) of these instances, the name of the reordering algorithms applied, the bandwidth and profile
results, the average (in relation to the three sequential runs) results of the heuristics in relation
to the computational cost, in seconds (s), and the memory requirements, in mebibytes (MiB). In
addition, these tables provide the number of iterations and the total computational cost, in seconds,
of the JPCGM. Furthermore, in spite of the small number of executions for each heuristic in each
instance, Tables 1 and 2 show the standard deviation and coefficient of variation, referring to the
total computational cost of JPCGM. In the last column of these two tables, reduction by using a
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heuristic for bandwidth and profile reductions is shown in relation to the JPCGM runtimes without
reordering the graph vertices, i.e. computational costs without reordering are shown in the first
line in a corresponding test with each instance in these tables. The best speedup of the JPCGM is
highlighted in the last columns in Tables 1 and 2. Additionally, numbers in bold face are the best
results.

The Hu e Scott [2001] and adjacent exchange methods [Reid e Scott, 2002], in conjunction
with the other heuristics, were dominated by several heuristics when applied to the linear system
composed of 4846 unknowns (when considering the speedup of the JPCGM). Consequently, these
methods were not applied to larger linear systems.

The hGPHH-GL heuristic obtained the best results in reducing the computational cost
of the JPCGM when applied to the linear systems with up to 50,592 unknowns and to the linear
system composed of 232,052 unknonws. The RCM-GL method [George e Liu, 1981] obtained the
best results in reducing the computational cost of the JPCGM when applied to the linear system
composed of 108,683 unknowns. The MPG [Medeiros et al., 1993] obtained the best results in
reducing the computational cost of the JPCGM when applied to the linear systems composed of
492,853, and 965,545 unknowns.

Figures 1 and 2 (without the results of the heuristics that obtained the worst results in
this set of instances), built from a wide variety of references that were part of this work, show
the speedup of the JPCGM when applied to the linear systems described (line plots were used for
clarity). In particular, Figure 1 shows that the GPS [Gibbs et al., 1976], Burgess-Lai [Burgess e Lai,
1986], Hu-Scott [Hu e Scott, 2001], GGPS [Wang et al., 2009], CSS-band [Kaveh e Sharafi, 2012]
heuristics and several heuristics applied in conjunction with the adjacent exchange methods [Reid
e Scott, 2002] were dominated by the other heuristics evaluated. Figure 2 shows that the MPG
[Medeiros et al., 1993], hGPHH-GL [Koohestani e Poli, 2011], and RCM-GL [George e Liu, 1981]
heuristics obtained in general the best results in the instances tested.
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Figure 1: Speedup of the JPCGM obtained using several heuristics for bandwidth and profile reductions
(tests shown in Tables 1 and 2) to matrices that belong to linear systems that originate from the discretization
of the heat conduction equation by finite volumes.

Figure 3 shows the execution times, in seconds, of the six least expensive heuristics for
bandwidth and profile reductions tested with matrices originating from the discretization of the
heat conduction equation by finite volumes. In particular, Figure 3a shows that the Sloan-MGPS
heuristic [Reid e Scott, 1999] obtained largest execution times than the other five heuristics in the
instances tested. Figure 3b shows that the NSloan heuristic [Kumfert e Pothen, 1997] was the least
expensive heuristic evaluated.

Conclusions
The results of 15 heuristics for bandwidth and profile reductions when reducing the com-

putational cost of solving linear systems using the Jacobi-preconditioned conjugate gradient method
(JPCGM) have been presented. These 15 heuristics were selected in systematic reviews and may be
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Table 1: Resolution of linear systems (up to 50,592 unknowns and derived from the discretization of the heat
conduction equation by finite volumes) using the JPCGM and vertices labeled by reordering algorithms.

n Heuristic β profile Heuristic JPCGM
σ

Cv Speedup(%) t(s) m.(MiB) iter. t(s) (%)

48
46

(0
.1

4)

Without reordering 4769 9116750 - - 319 9.97 0.04 0.46 -
RCM-GL 161 468110 0.005 0 319 9.55 0.19 2.01 1.043
hGPHH-GL 161 518637 0.005 0 319 9.46 0.05 0.52 1.053
VNS-band 154 499797 1.054 44.51 319 10.06 0.15 1.50 0.897
FNCHC 121 437962 2.287 2.22 319 10.04 0.08 0.86 0.809
GPS 140 406081 0.166 0.32 319 9.83 0.19 1.90 0.997
GGPS 130 422281 0.273 0.56 319 9.83 0.22 2.31 0.987
Burgess-Lai 233 417653 0.545 0 319 10.27 0.05 0.48 0.922
CSS-band 4765 8596483 2.360 22.16 319 10.93 0.27 2.51 0.750
Snay 1047 352116 0.284 0 319 9.65 0.01 0.14 1.004
Sloan 774 297591 0.006 0 319 9.66 0.01 0.07 1.031
NSloan 608 472650 0.003 0 319 9.72 0.09 0.89 1.025
Sloan-MGPS 658 288047 0.023 0 319 9.61 0.02 0.18 1.035
MPG 1124 317356 0.006 0 319 9.49 0.01 0.11 1.050
Hu-Scott 3501 640372 317.169 100.46 319 9.73 0.02 0.22 0.030
RCM-GL+EM 476 358017 2.709 0 319 9.72 0.03 0.28 0.802
HGPHH+EM 377 391204 2.965 0 319 9.64 0.02 0.16 0.791
Snay-GL+EM 1088 384289 2.464 0.09 319 9.56 0.01 0.09 0.829
Sloan+EM 919 268663 2.350 0 319 9.54 0.04 0.39 0.839
NSloan+EM 601 348643 3.056 0.09 319 9.73 0.01 0.05 0.780
Sloan-MGPS+EM 635 256907 2.390 0 319 9.64 0.05 0.55 0.829
MPG+EM 1077 307725 2.374 0 319 9.47 0.01 0.09 0.842

10
72

8
(0

.0
6)

Without reordering 10626 45314579 - - 462 37.35 0.36 0.96 -
RCM-GL 270 1579179 0.02 0 462 34.19 0.06 0.17 1.092
hGPHH-GL 275 1768638 0.02 0 462 33.44 0.04 0.12 1.116
VNS-band 552 1746660 1.14 135.62 462 34.73 0.41 1.14 1.041
FNCHC 208 1637305 6.12 2.49 462 35.74 0.98 2.74 0.892
GPS 207 1358676 0.63 1.54 462 34.69 0.23 0.66 1.057
GGPS 226 1477595 1.00 1.38 462 35.35 0.63 1.79 1.028
Burgess-Lai 398 1365197 6.38 0 462 35.96 0.12 0.32 0.882
CSS-band 10625 42631422 4.71 79.92 462 42.81 0.78 1.82 0.786
Snay 1289 1064597 0.87 0.26 462 34.39 0.46 1.33 1.059
Sloan 1391 1012101 0.02 0 462 34.51 0.07 0.20 1.082
NSloan 890 1511606 0.01 0 462 36.41 0.05 0.13 1.026
Sloan-MGPS 1249 1023132 0.09 0 462 35.34 0.12 0.33 1.054
MPG 2282 1097773 0.02 0 462 34.06 0.13 0.37 1.096

23
36

7
(0

.0
3)

Without reordering 23167 216212086 - - 671 124.39 0.53 0.42 -
RCM-GL 313 4664523 0.07 0 671 110.69 2.01 0.82 1.123
hGPHH-GL 314 5129407 0.08 0 671 106.32 0.26 0.25 1.169
VNS-band 1564 8889127 1.54 371.12 671 113.53 1.74 1.53 1.081
FNCHC 333 5519183 15.64 2.96 671 111.14 0.64 0.57 0.981
GPS 293 4221479 3.57 3.34 671 112.56 3.52 3.12 1.071
GGPS 314 5007391 5.30 3.51 671 111.47 2.72 2.45 1.065
Burgess-Lai 465 4296542 11.20 0 671 116.66 0.29 0.25 0.973
CSS-band 23183 202741325 94.78 549.09 671 149.49 1.59 1.05 0.509
Snay 1824 3427644 2.96 0.69 671 110.43 1.94 1.76 1.097
Sloan 2565 3419063 0.07 0 671 110.67 0.06 0.05 1.123
NSloan 2057 5252921 0.05 0 671 117.18 0.05 0.05 1.061
Sloan-MGPS 2650 3614398 0.33 0 671 113.77 0.12 0.13 1.090
MPG 3988 3775704 0.06 0 671 109.85 0.26 0.24 1.132

50
59

2
(0

.0
1)

Without reordering 50461 1020411959 - - 970 391.19 0.13 0.03 -
RCM-GL 647 17502999 0.26 0 970 348.44 10.71 3.07 1.122
hGPHH-GL 640 19173913 0.26 0 970 335.17 0.48 0.14 1.166
VNS-band 7377 47268027 3.03 967.09 970 355.55 8.48 2.38 1.091
FNCHC 479 17779307 43.05 5.55 970 349.03 2.05 0.59 0.998
GPS 466 14149442 24.65 5.51 970 357.03 10.56 2.96 1.025
GGPS 499 15922368 55.64 7.72 970 341.25 2.13 0.63 0.986
Burgess-Lai 961 14447154 491.74 0 970 361.89 2.08 0.58 0.458
CSS-band 50287 951213645 954.92 2701 970 474.22 10.54 2.22 0.274
Snay 2941 10776787 10.80 1.29 970 339.83 0.37 0.11 1.116
Sloan 6025 11975091 0.23 0 970 345.52 0.31 0.09 1.131
NSloan 4314 16059399 0.09 0 970 367.24 0.25 0.07 1.065
Sloan-MGPS 3914 11784471 1.12 0 970 356.52 0.41 0.11 1.094
MPG 9026 12000823 0.15 0.09 970 342.95 0.39 0.11 1.140
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Table 2: Resolution of linear systems (ranging from 108,683 to 965,545 unknowns and derived from the
discretization of the heat conduction equation by finite volumes) using the JPCGM and vertices labeled by
heuristics for bandwidth and profile reductions.

n Heuristic β profile Heuristic JPCGM
σ

Cv Speedup(%) t(s) m.(MiB) iter. t(s) (%)

10
86

83
(0

.0
06

)

Without reordering 108216 4725435534 - - 1398 1238.76 29.02 2.34 -
RCM-GL 868 54290089 0.25 0 1398 1043.15 2.57 0.25 1.187
hGPHH-GL 868 59697870 0.26 0 1399 1062.85 5.69 0.53 1.165
VNS-band 16676 157588720 8.64 2293.76 1398 1067.87 2.34 0.22 1.151
FNCHC 738 55924986 116.36 11.63 1398 1045.24 4.70 0.45 1.066
GPS 642 48744729 139.22 12.62 1398 1070.03 5.69 0.53 1.024
GGPS 736 54051275 225.84 23.33 1398 1048.35 0.79 0.08 0.972
Burgess-Lai 1262 45836037 617.56 0 1398 1117.72 0.68 0.06 0.714
CSS-band 108390 99051906 369.55 586.52 1400 1479.53 11.81 0.80 0.670
Snay 4281 33664485 29.12 2.98 1398 1066.89 1.28 0.12 1.130
Sloan 10272 36886113 0.75 2.32 1398 1086.46 1.19 0.11 1.139
NSloan 7826 52122701 0.19 2.32 1398 1154.12 0.73 0.06 1.073
Sloan-MGPS 12656 38154730 4.18 2.32 1398 1121.04 0.35 0.03 1.101
MPG 15172 38512718 0.34 2.32 1399 1080.37 0.57 0.05 1.146

23
20

52
(0

.0
03

)

Without reordering 231672 21652820640 - - 2034 3814.37 0.33 0.01 -
RCM-GL 1471 183551861 0.58 0 2039 3370.62 5.59 0.17 1.131
hGPHH-GL 1471 200679371 0.61 0 2030 3352.42 20.39 0.61 1.138
VNS-band 17036 313594920 33.49 5048.32 2030 3379.31 33.09 0.98 1.118
FNCHC 1145 182638143 287.81 22.42 2031 3340.45 18.27 0.55 1.051
GPS 1104 148697458 585.48 25.42 2032 3422.30 2.65 0.08 0.952
GGPS 1243 170494162 1236.95 43.79 2031 3337.75 9.26 0.28 0.834
Burgess-Lai 2048 153659093 47604.01 0 2038 3589.31 1.11 0.03 0.075
CSS-band 231606 2857086021 1551.79 841.35 2039 4709.74 6.28 0.13 0.609
Snay 6212 102404593 94.28 6.19 2030 3301.87 4.88 0.15 1.123
Sloan 14640 119489765 2.46 4.13 2032 3372.41 5.53 0.16 1.130
NSloan 23577 174602136 0.44 4.13 2032 3582.52 6.59 0.18 1.065
Sloan-MGPS 26056 124108449 14.87 4.21 2032 3471.88 3.54 0.14 1.094
MPG 22919 118186600 0.88 4.13 2031 3354.02 8.77 0.26 1.137

49
28

53
(0

.0
02

)

Without reordering 492100 97893937993 - - 2927 11619.2 11.49 0.10 -
RCM-GL 1805 510308269 1.48 0 2925 10440.46 12.96 0.22 1.113
hGPHH-GL 1814 557734280 1.57 0 2932 10395.07 16.07 0.15 1.118
VNS-band 41845 1083304907 137.67 10844.16 2936 10580.39 11.12 0.11 1.084
FNCHC 1660 583349111 749.03 74.19 2932 10233.68 14.51 0.14 1.058
GPS 1454 460254575 2700.88 49.85 2932 10516.23 25.43 0.34 0.879
GGPS 1734 571294474 4759.91 107.57 2932 10297.02 16.08 0.16 0.772
Snay 10273 329516129 323.58 12.97 2935 10270.53 26.6 0.26 1.097
Sloan 44208 373429562 8.42 9.99 2934 10378.44 16.51 0.16 1.119
NSloan 28222 510609978 1.19 9.93 2932 11054.62 41.74 0.38 1.051
Sloan-MGPS 43022 391323009 54.07 9.99 2928 10727.11 13.94 0.13 1.078
MPG 55654 387601624 2.64 9.96 2932 10348.92 2.15 0.02 1.122

96
55

45
(0

.0
01

)

Without reordering 964827 377848438952 - - 4358 34061.44 11.67 0.03 -
RCM-GL 2201 1332260636 2.21 0 4346 31978.36 37.83 0.12 1.065
hGPHH-GL 2315 1495703784 2.37 0 4370 32392.77 15.64 0.05 1.051
FNCHC 2189 1562324154 1636.39 139.75 4365 32511.67 30.43 0.09 0.997
Snay 13292 950057407 1049.95 26.09 4341 30016.38 205.23 0.68 1.096
Sloan 42459 1007346790 22.79 16.98 4365 30453.62 41.81 0.14 1.118
NSloan 56571 1379371308 1.90 17.07 4362 32913.96 59.64 0.18 1.035
Sloan-MGPS 60821 1007161537 166.78 17.07 4361 31589.23 77.27 0.24 1.073
MPG 77152 982945106 6.02 17.24 4360 30154.23 60.63 0.22 1.129

seen as the potential state-of-the-art low-cost heuristics for bandwidth and profile reductions [Cha-
gas e Gonzaga de Oliveira, 2015; Bernardes e Gonzaga de Oliveira, 2015; Gonzaga de Oliveira e
Chagas, 2015]. Additionally, the adjacent exchange methods [Reid e Scott, 2002] were also eval-
uated in conjunction with several heuristics. The results of the implementations of these heuristics
for bandwidth and profile reductions reported here show their expected value accordingly to the
existing publications in the area. In particular, the results obtained here showed that the adjacent
exchange methods, in spite of reducing the profile of the instances, are not powerful enough for
reducing computational costs of the JPCGM.
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Figure 2: Speedup of the JPCGM obtained using 11 heuristics for bandwidth and profile reductions (tests
shown in Tables 1 and 2) to matrices that belong to linear systems that originate from the discretization of
the heat conduction equation by finite volumes.

4846 10728 23367 50592 108683 232052 492853 965545
0

50

100

150

200

RCM-GL
hGPHH-GL
Sloan
NSloan
Sloan-MGPS
MPG

Number of vertices

T
im

e 
(in

 s
ec

on
ds

)

(a)

4846 10728 23367 50592 108683 232052 492853 965545
0

1

2

3

4

5

6

7

RCM-GL
hGPHH-GL
NSloan
MPG

Number of vertices

T
im

e 
(in

 s
ec

on
ds

)

(b)

Figure 3: Execution times, in seconds, of [(a) 6; (b) 4] reordering algorithms.

In experiments using linear systems from the discretization of the heat conduction equa-
tions by finite volumes composed of instances comprised of almost 1,000,000 unknowns, the MPG
heuristic [Medeiros et al., 1993] performed best in the two largest instances tested when applied to
reduce the computational cost of the JPCGM. Moreover, the hGPHH-GL [Koohestani e Poli, 2011]
(based on the RCM method) and RCM-GL [George e Liu, 1981] methods were the easiest heuris-
tic to implement. These two low-cost algorithms obtained reasonable results in the eight instances
tested. In particular, the hGPHH-GL [Koohestani e Poli, 2011] and RCM-GL [George e Liu, 1981]
methods achieved the best results when applied to the six smallest instances tested.

On the other hand, one can attest that there is no a unique and optimal method that su-
persedes all the other heuristics in all instances: the choice of a heuristic for bandwidth or profile
reduction is highly dependent on the structure of the instance. Thus, the computational experiment
described in this paper does not assure dominance of an algorithm over the others with respect to

3074



Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

the reordering of graph vertices. In spite of this, evidence from the experiments described reveals
that a high-cost heuristic that significantly reduces the bandwidth or profile of the matrix may not be
better than a low-cost method that reduces reasonably the bandwidth or profile of the matrix, such
as is the case of the MPG [Medeiros et al., 1993], Sloan [1989], NSloan [Kumfert e Pothen, 1997],
Sloan-MGPS [Reid e Scott, 1999], RCM-GL [George e Liu, 1981], and hGPHH-GL [Koohestani e
Poli, 2011] heuristics, especially when linear systems are solved using the JPCGM.

In future works, we plan to implement and analyze the following preconditioners: Al-
gebraic Multigrid, ILUT, Successive Over-Relaxation (SOR), Symmetric SOR, and Gauss-Seidel.
In detail, we expect to investigate the efficiency of reordering algorithms in conjunction with the
computation of incomplete or approximate factorization based preconditioners as well approximate
inverse preconditioners. These preconditioners shall be employed as preconditioners of the Conju-
gate Gradient Method and the Generalized Minimal Residual (GMRES) method [Saad e Schultz,
1986] in order to analyze their computational performance in conjunction with heuristics for band-
width or profile reduction. Parallel strategies of the algorithms mentioned are also intended to be
studied.

A 512-bit extended precision was employed in this work. Certainly, this reduces rounding
errors, but it also increases the processing time by a large factor and it may not be performed
when solving many real-world applications. We plan to examine what occurs in double-precision
arithmetic in future studies.
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bourhood search for bandwidth reduction. European Journal of Operational Research, 200:
14–27.

Papadimitriou, C. H. (1976). The NP-completeness of bandwidth minimization problem. Comput-
ing Journal, 16:177–192.

Reid, J. K. e Scott, J. A. (1999). Ordering symmetric sparse matrices for small profile and wave-
front. International Journal for Numerical Methods in Engineering, 45(12):1737–1755.

Reid, J. K. e Scott, J. A. (2002). Implementing Hager’s exchange methods for matrix profile reduc-
tion. ACM Transactions on Mathematical Software, 28(4):377–391.

Saad, Y. e Schultz, M. H. (1986). Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7:856–869.

Sloan, S. W. (1989). A Fortran program for profile and wavefront reduction. International Journal
for Numerical Methods in Engineering, 28(11):2651–2679.

Snay, R. A. (1976). Reducing the profile of sparse symmetric matrices. Bulletin Geodésique, 50
(4):341–352.

STFC Rutherford Appleton Laboratory (1963-2016). The Science and Technology Facilities
Council. HSL. A collection of Fortran codes for large scale scientific computation. http:
//www.hsl.rl.ac.uk. Accessed: December, 2015.

Torres-Jimenez, J., Izquierdo-Marquez, I., Garcia-Robledo, A., Gonzalez-Gomez, A., Bernal, J., e
Kacker, R. N. (2015). A dual representation simulated annealing algorithm for the bandwidth
minimization problem on graphs. Information Sciences, 33:33–49.

Wang, Q., Guo, Y. C., e Shi, X. W. (2009). A generalized GPS algorithm for reducing the bandwidth
and profile of a sparse matrix. Progress in Electromagnetics Research, 90:121–136.

3077


