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ABSTRACT

In 1999, Philippe Galinier and Jin-Kao Hao developed the widely praised Hybrid Coloring

Algorithm (HCA) to solve the Graph Coloring Problem (GCP), which is a complex computational

problem that focuses in coloring all vertices of a given graph with a minimum number of colors, with

the constraint that adjacent vertices can not receive the same color. Since then, powerful computer

infrastructures have emerged, with considerable benefits to software developers and applications.

Thus, the objective of this paper is to analyze in detail the current HCA and propose a modern

version with improvements that take advantage of recent computer infrastructures. The expected

contribution at the conclusion of this work is to encourage developers to take advantage of modern

architectures to solve complex computational problems.

KEYWORDS. Hybrid Coloring Algorithm, Graph Coloring Problem, Modern Computer

Architecture.

RESUMO

Em 1999, Philippe Galinier e Jin-Kao Hao desenvolveram o Algoritmo Hı́brido de Colora-

ção (HCA), o qual é amplamente elogiado para resolver o Problema de Coloração de Grafos (GCP).

O GCP é um problema computacional complexo que concentra-se na coloração de todos os vértices

de um determinado grafo com um número mı́nimo de cores, restringindo que os vértices adjacentes

não recebam a mesma cor. Desde então, poderosas infra-estruturas informáticas têm surgido com

benefı́cios consideráveis para desenvolvedores e aplicações. Assim, o objetivo deste trabalho é

analisar em detalhe o HCA atual e propor uma versão moderna que aproveite todos os recursos

computacionais disponı́veis. A contribuição esperada na conclusão deste trabalho é promover as

arquiteturas recentes de computadores para resolver problemas computacionais complexos.

PALAVRAS CHAVE. Algoritmo Hı́brido de Coloração, Problema de Coloração de Grafo,

Arquitetura Moderna de Computadores.
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1. Introduction

Computer architectures have evolved tremendously over the last few years, with advance-

ments such as multi-core processors, hyperthreading, or parallel programming emerging as huge

benefits for software developers and applications. Recently, programmers have started to embed

such technologies into their systems for the following reasons: (1) gain speed and efficiency, (2)

take advantage of all hardware resources, (3) and reduce work-load.

Several types of algorithms have improved considerably due to utilizing modern computer

infrastructures, such as Metaheuristics, which its goal is to search for good solutions in a given

problem. One problem in particular, regarded important in Computer Science as well as in other

areas, is Graph Coloring, which consists in coloring vertices with a minimum number of colors in

a given graph, restricting adjacent vertices from receiving the same color.

Various projects have been proposed and implemented to solve the Graph Coloring Prob-

lem (GCP) (Abbasian e Mouhoub [2013]; Becirspahic et al. [2013]; Dabrowski e Kubale [2008];

Dawson e Stewart [2013]; Eblen et al. [2012]; Evstigneev e Tursunbay kyzy [2011]; Lukasik et al.

[2008]). However, such works have not focused in improving or updating the Hybrid Coloring Al-

gorithm (HCA), which is widely considered to be one of the most successful and finest algorithms

to solve such problem, to modern standards.

Thus, the purpose of this paper is to analyze in detail the HCA and propose a modern

version to explore architectural advances, thereby solving the GCP more efficiently and rapidly,

which the former (efficiently) relates to the amount of utilized resources and the latter (rapidly)

refers to the response time of the proposed algorithm.

The specific objectives of this work are the following: (1) analyze in detail the current

HCA in order to determine areas of improvement, (2) propose and implement a modern version

that takes advantage of all hardware resources, (3) and highlight the importance of updating classic

algorithms to modern standards for solving combinatorial optimizations.

The model that was implemented to update the HCA is called the Island Model, which

basically consists in sub-populations with capabilities to exchange individuals, and thus, improve

convergence (Kokosiński et al. [2004]).

The graph coloring instances utilized to evaluate both versions of the HCA belong to

the DIMACS benchmark, which is widely used for the GCP (Alahmadi et al. [2014]; Consoli et al.

[2013]; Djelloul et al. [2014]; Lintzmayer et al. [2011]; Myszkowski [2005]; Salari e Eshghi [2005];

Yesil et al. [2011]).

The results obtained in the evaluations prove that the proposed version of the HCA is an

improvement over the original, due to achieving values more proximate to the best outcomes in the

literature, as well as reducing work-load.

2. Related Works

Metaheuristics have proven to be successful in terms of finding optimal or sub-optimal

solutions, however, there are problems that require a considerable amount of time and effort. As

discussed before, a technique to overcome this obstacle is to take advantage of all hardware re-

sources in order to gain speed and reduce work-load.

Lintzmayer et al. [2011], Tomar et al. [2013], and Markid et al. [2015] proposed bio-inspired

algorithms to solve the GCP. The enhancements consisted in either: (1) utilizing a specific scheme

for local search, (2) modifying the initialization phase, or (3) embedding a mechanism to gather

data about high quality solutions.
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Lukasik et al. [2008], Evstigneev e Tursunbay kyzy [2011], and Eblen et al. [2012] im-

plemented modern algorithms to solve the GCP more efficiently. The developers incorporated

techniques that consisted in dividing the problem in various tasks, utilizing neighboring vertices

for local data transfers or the Master Slave-Model. These projects were developed in order to solve

complex computational problems while taking advantage of modern infrastructures.

3. Modern Hybrid Coloring Algorithm

The Hybrid Evolutionary Algorithm (HEA) is a metaheuristic that combines parts of Ge-

netic Algorithms (GAs) with a local search operator (Glass e Prügel-Bennett [2003]). In addition,

the HEA applies a highly specialized crossover operation in order to create potentially interesting

configurations and then improve them with local search (Galinier e Hao [1999]).

Basically, the HEA contains a set of configurations, called a population, and modifies

them a fixed number of times. Such alterations are done with the crossover operator, which has to

be carefully configured for each type of problem.

Each individual represents a possible solution for the GCP, and a conflict refers to adjacent

vertices with the same color.

The HEA pertains the idea to specialize a metaheuristic for a given problem and thus,

the Hybrid Coloring Algorithm (HCA) was developed (Galinier e Hao [1999]) by applying HEA to

GCP.

The HCA has been tested extensively in benchmark graphs and ranks as one of the best

methods to solve the GCP (Glass e Prügel-Bennett [2003]), achieving competitive results, such as

better chromatic numbers, than previous outcomes in the literature.

Such algorithm consists of 5 main phases, which are the following:

1. Creates the population with |P | individuals using the greedy saturation algorithm (Brélaz

[1979]).

2. After the population is built, it randomly chooses two individuals, which are the parents for

that specific iteration.

3. Applies the crossover operator to the parents in each iteration and consequently produces an

offspring.

4. Applies the Tabu Search (TS). Such metaheuristic is employed to the offspring and consists

in a set of practices in order to solve combinatorial optimization problems, thus functioning

as an aid mechanism for local search. This procedure is characterized by the use of a Tabu-

List (TL), which stores search history information. The HCA was proposed in 1999 utilizing

a dynamic scheme for TS, which depends on the current solution and movement, as such, no

prior information is known. The tabu tenure remains consistent throughout such process.

5. Replaces the worst parent for the offspring, consequently updating the population and leaving

the best element untouched.

Such process is repeated until a certain stop criteria has been satisfied, which are the

following (Galinier e Hao [1999]): (1) a specific number of iterations is reached, (2) population

diversity is minimal, (3) the best solution is found, or (4) time elapsed without finding an optimal

solution.
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3.1. The Modern Model

Nowadays, multi-core processors are the standard and have allowed for significant hard-

ware and software advancements. Modern infrastructures have permitted applications to utilize all

machine resources and thus, improving time and memory consumption.

In this work, we propose a distributed model, which is able to adapt to the current hard-

ware infrastructure. This means that such model automatically creates F execution flows, based

on the number of CPUs provided by the hardware infrastructure. Thus, various instances of the

HCA are executed, each one in a different execution flow. The Figure 1 displays a diagram of the

distributed model.

Figure 1: Distributed Model of the HCA.

The synchronization process between execution flows begins with a parameter I , which

defines how many iterations will occur in an execution flow i, and the best individual of the respec-

tive i flow is sent to (i + 1)%F . Afterwards, the flow i receives the individual sent by |i − 1|%F
and the former substitutes its worst individual for the given element.

Each HCA creates its own population in different search points, and thus, providing a

higher probability for the algorithm to direct its exploration to the best solution. The finest result of

the entire execution is shared between all flows after F ∗ I iterations.

The stop criterion for the modern algorithm are: (1) number of iterations, (2) execution

time, (3) population diversity, (4) maximum number of cycles without convergence and (5) finding

the best solution. When the algorithm obtains the finest result (a graph colored without conflicting

vertices), the execution halts because the solution can no longer be improved.

If a stop criteria is reached by a single flow, it sends a signal to the other execution flows,

requesting to end the execution. However, the Modern HCA only halts if all flows have called for it.

If all execution flows demand to stop the operation, every flow will terminate in the next iteration.

The structure of the Modern HCA (MHCA) can be viewed in Algorithm 1.
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Algorithm 1: Modern HCA

Input: Graph G, Integer k, Flow id id
Output: the best configuration found

P = create population(|P |);
counter ← 0;

while true do

choose parents(P )
Randomly choose two parents s1 and s2 from the population;

return s1 and s2;

crossover(s1, s2)
for l (1 ≤ l ≤ k) do

if l is odd A← 1 else A← 2;

choose i such that V A
i

has a maximum cardinality;

Vl ← V A
i

;

remove the vertices of Vl from s1 and s2;

Assign randomly the vertices of V − (V1 ∪ ... ∪ Vk);
return offspring;

tabu search(offspring)
s← generate initial solution(P );
initialize tabu lists(TL);
while Terminate conditions not met do

Na(s)← {s′ ∈ N (s)|s′ /∈ TL or s′ satisfies at least one aspiration criteria };
s′ ← argmin{f(s′′)|s′′ ∈ Na(s)};
update tabu lists(TL, s, s′);
// update process depends on whether the dynamic or reactive scheme is

activated.

s← s′;

return offspring;

P = substitute worst(P, s1, s2, offspring);
synchronization (P , counter, id)

c← c+ 1;

if c < I then

c← 0;

b← Best solution of P ;

send b to Flow (i+ 1) ≡ T ;

b′ ← Solution sent by Flow |i− 1| ≡ T ;

Replace the worst individual of P by b′;

terminate← terminate conditions();
Flow end control (P , terminate)

if terminate then

ask for execution end;

if All flows asked for end then

send the best element of P to main flow;

Terminate this flow;

else

Continue executing;
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4. Evaluating the Modern Hybrid Coloring Algorithm

The experiments were executed in a machine with an Intel(R) Xeon(R) CPU E5-2630 0

@ 2.30GHz with 12 cores; hyperthreading; 32GB of RAM; and running Ubuntu 12.10.

To evaluate the original HCA and its modern counterpart, 47 GCP instances were utilized

for the experiment and they are the following:

• dsjc125.1, dsjc125.5, dsjc125.9, dsjc250.1, dsjc250.5, dsjc250.9, dsjc500.1, dsjc500.5, dsjc500.9,

dsjc1000.1, dsjc1000.5, dsjc1000.9: random graphs dsjcn.d, where n is the number of ver-

tices and d the probability that two vertices are adjacent.

• dsjr500.1, dsjr500.1c, dsjr500.5: geometric graphs dsjrn.d that are generated by selecting

randomly and consistently n vertices in a square and defining the edges between them with

a distance less than d. The c at the end of the name means that the instance is a complement

graph.

• flat300 20 0, flat300 26 0, flat300 28 0, flat1000 50 0, flat1000 60 0, flat1000 76 0: flatn χ 0

are generated by partitioning n vertices in χ classes of almost the same size and later select-

ing edges between different class vertices. Finding the best coloring is equivalent to restoring

the initial partition and thus, the chromatic number of the graph is χ.

• le450 5a, le450 5b, le450 5c, le450 5d, le450 15a, le450 15b, le450 15c, le450 15d, le450 25a,

le450 25b, le450 25c, le450 25d: le450 χ graphs with 450 vertices and a chromatic number

of χ.

• latin square, qg.order30, qg.order40, qg.order60, qg.order100: graphs based on the Latin

Square problem, where there exists a n by n matrix with n different symbols that appear only

once in each row or column. The graph has 900 vertices, with an independent set no greater

than 10 vertices. χ is the chromatic number in the name qg.orderχ.

• r125.1, r125.1c, r125.5, r250.1, r250.1c, r250.5, r1000.1, r1000.1c, r1000.5: similar to the

dsjrn.d, they are geometric graphs rn.d generated by selecting randomly and consistently n
vertices in a square and defining the edges between them with a distance less than d. The c at

the end of the name means that the instance is a complement graph.

For each instance, a parameter k was established, which is the best result found in the

literature to color the graph. In case the algorithm does not find an optimal solution with a value of k
, k = k+1 will be executed until the algorithm solves the problem with zero conflicts. Furthermore,

for each instance and k value, the algorithm was executed 50 times. The stop criterion for the

classic and Modern HCA (MHCA) in this experiment were the following: (1) 4,000 iterations for

the dynamic local search scheme, (2) population diversity is minimal, (3) the algorithm reached the

total number of cycles, (4) the algorithm solves the GCP with zero conflicts. It terms of the MHCA,

the number of iterations before the synchronization procedure is 100 cycles.

4.1. Results

The results can be classified in the following categories: (1) distance to best k, (2) number

of conflicts in the resulting graph and (3) cycles per execution flow during the search process. Each

category has its own measurements and represents a unique perspective of the results. Distance to
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best k is related to the quality of the successful results, number of conflicts represents the quality of

unsuccessful results and cycles per execution flow displays the effort performed by the algorithm

during the search process.

Figure 2 compares the distance to best k, per instance class, between the classic HCA

and the MHCA. Based on the experiments, the MHCA achieved more proximate values to the best

coloring result in the literature, therefore, confirming the efficiency of the algorithm in searching

for optimal solutions. Nearly all the distances reached by the MHCA are lower or at least equal to

its classic counterpart. In just one instance, dsjc1000.1, the MHCA achieved a larger distance than

the HCA, resulting in a difference of only 1.

MHCA HCA
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t k
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le450
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general average
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Figure 2: HCA’s and MHCA’s distance to the best k

The general average indicated in Figure 2 belongs to the HCA and MHCA, for all 47

instances in 50 executions, and the classes average is a straightforward average between the 6

instance classes utilized. In terms of the general average, the distance achieved by the MHCA

was 38,8% better than the HCA and 37,04% considering the classes average.

The improvement in the r instance classes is the best when compared to the HCA, reaching

53,6%, dsjc and dsjr classes obtained 45% and 45,5%, le450 acquired 33,3% of improvement, and

latin and flat got lower values of enhancement, but still significant, 18,2% and 9,9%, respectively.

Figure 3 exhibits, for each instance class, the average number of conflicts in each distance

to the best k from the 50 executions. In these graphs, when a line hits zero, there are no conflicts,

and the algorithm was successful in coloring every instance for the respective class. These graphs

can be analysed by viewing unfavorable results until the number of conflicts is zero, resulting in a

successful coloring process .

Relatively, the best scenario for the MHCA occurs in the r instances, where the difference

begins with 43,4%, and grows rapidly in each increment, going to 61,1%, 81,8%, 92% and 98,5%.

Furthermore, the average number of conflicts obtained by the MHCA is zero when best k + 5,

notably better than HCA, which obtained zero only when best k + 11.

Additionally, satisfying results belonging to the MHCA were acquired for the latin in-

stances, achieving 32,8% better results than the HCA using the best k colors. The difference is

accentuated with more colors, with the HCA obtaining zero in best k + 11, while the MHCA

reached zero in best k + 6.

In regards to the dsjr instances, there is a significant difference (starting with 34,5%) in

the average number of conflicts between the HCA and MHCA executions, and such element is

maintained using larger color values. The MHCA hits zero in best k + 4, while the HCA achieves

such number only in best k + 7.

In the dsjc instance classes, the number of conflicts of the MHCA is nearly identical to
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Figure 3: Number of conflicts of the HCA and MHCA for each class and k provided.

its counterpart when trying to color with the best k, resulting in a difference of 7,7%. However, the

dissimilarity expands when incrementing the parameter, reaching 79,9% of difference in best k + 4.

The MHCA hits zero in best k + 5, while the classic HCA achieves such value in best k + 9.

There are two classes in which the MHCA underperformed when compared to the HCA,

they are the flat and le450. Nonetheless, the difference is not notable, the flat instances begins with

15,9% and decreases to 3,1% in best k + 4. In regards to le450, the dissimilarity is not significant,

starting with approximately 6% and hitting zero in best k + 2 for both the MHCA and HCA.

The third category of results, shown in Figure 4, is the total number of cycles for each

algorithm, which means the effort to color a respective instance, with k colors. The purpose of

the MHCA is to distribute the effort between CPUs in order to expand the search and avoid local

maximum.

In each execution, the number of cycles refers to the difficulty to color the given graph

with an assigned number of colors. During the process, if the algorithm does not color a respec-

tive graph, more cycles are required to find a solution. The maximum number of cycles in each

algorithm is given from a parameter: 100.000 cycles in the HCA and 4.166 cycles in each execu-

tion flow of the MHCA, both following the same stop conditions described in the setup section,

which means that when a MHCA flow achieves 4.166 cycles, it continues until all execution flows

reach the maximum number of cycles. Thus, the total effort of the MHCA surpasses 9.9984 cycles

(24 flows x 4.166), and in most cases, the effort of the MHCA is larger than the HCA when both

algorithms were unsuccessful in the coloring process.

The algorithm utilizes more effort and cycles if it obtains an unfavorable solution, on the

other hand, an uncomplicated result can be achieved with few iterations and minimal work load. A

straight line in a graph belonging to the HCA, such as the one shown in Figure 4, signifies that there

is no progress to color an instance of the respective class, such as the latin square instance using

between best k and best k + 7 colors, in which no execution obtained a successful solution to color

the instance. This also occurs with flat300 28 0 until best k + 3, flat1000 76 0 to best k + 6 and

r1000.5 until best k + 6.
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Figure 4: Total number of cycles on the HCA and MHCA for each class and k provided

The MHCA uses more cycles than the HCA when obtaining an unsuccessful solution,

however, the higher number of iterations does not justify the lower distances achieved by the MHCA

when compared to its counterpart. The main reason why the MHCA achieves better results is due

to the efficient exploration of the search space, as shown in nearly every graph, thus, easily coloring

with a minimum number of colors.

The results acquired in the evaluation of the MHCA proves that the updated algorithm is

in fact an improvement over the original, achieving better results than its predecessor in all three

categories. Additionally, it is worth mentioning that the latter is already considered to be one of

the finest algorithms for graph coloring, which proves how beneficial the modern version is for the

GCP.

4.2. The Instances

The table 1 displays the k-value achieved by the algorithms and the best result, for each

instance, known so far in the literature. The column labeled k-HCA signifies the k-value of colors

that the HCA obtained in its executions, while k-MHCA refers to the k-values for the MHCA.

A total of 47 instances were evaluated, and the MHCA achieved best k-values than its

counterpart in 16 cases, 34,04% respectively. In just one case the number of colors in the MHCA is

worse than the HCA, 2,1% of the instances.

In general terms, the HCA obtained 3,23% of an average difference when compared to the

best k known in the literature, while the MHCA obtained more proximate values to best k, reaching

1,85% of an average distance. In 30 instances, the MHCA obtained values equal to best k, while

the HCA obtained 25, getting 20% more successful coloring cases with best k.

Based on these results, we can confirm that the MHCA is an interesting and beneficial

alternative to the original HCA, achieving k values that are equivalent or proximate to the best re-
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Table 1: Colors achieved per instance in the literature (best k column), HCA and MHCA.

instance best k k-HCA k-MHCA instance best k k-HCA k-MHCA

dsjc125.1 5 5 5 qg.order100 100 100 100

dsjc125.5 17 17 17 latin square 97 108 106

dsjc125.9 44 45 44 le450 5a 5 6 5

dsjc250.1 8 8 8 le450 5b 5 5 5

dsjc250.5 28 28 28 le450 5c 5 5 5

dsjc250.9 72 75 73 le450 5d 5 5 5

dsjc500.1 12 12 12 le450 15a 15 16 16

dsjc500.5 48 49 48 le450 15b 15 16 16

dsjc500.9 126 132 129 le450 15c 15 16 15

dsjc1000.1 20 20 21 le450 15d 15 16 15

dsjc1000.5 85 85 85 le450 25a 25 25 25

dsjc1000.9 223 232 229 le450 25b 25 25 25

dsjr500.1 12 12 12 le450 25c 25 27 27

dsjr500.1c 84 91 88 le450 25d 25 27 27

dsjr500.5 122 126 124 r125.1 5 5 5

flat300 20 0 20 20 20 r125.1c 46 46 46

flat300 26 0 26 26 26 r125.5 36 38 36

flat300 28 0 28 31 31 r250.1 8 8 8

flat1000 50 0 50 50 50 r250.1c 64 66 65

flat1000 60 0 60 60 60 r250.5 65 67 67

flat1000 76 0 76 84 83 r1000.1 20 20 20

qg.order30 30 30 30 r1000.1c 98 109 101

qg.order40 40 40 40 r1000.5 234 245 241

qg.order60 60 60 60

sults known in the literature. The improvements offered by the MHCA are significant due to taking

advantage of modern hardware resources and thus, developers should be aware of such technology

in order to solve complex computational problems more efficiently.

5. Conclusion

The Graph Coloring Problem is considered to be one of the most important concepts and

areas in Computer Science. The GCP can be applied in many real-world applications such as Physi-

cal Layout Segmentation, Aircraft Scheduling, Student Time Table and Bi-processor Tasks. Because

of this, many methods have been proposed to solve this problem including metaheuristic algo-

rithms such as Genetic Algorithms, Simulated Annealing, Tabu Search, Ant Colony Optimization

or GRASP. Metaheuristics have proven to be successful in terms of finding optimal or sub-optimal

solutions efficiently and rapidly. In fact, algorithms that take advantage of modern computer archi-

tectures have become popular in recent years to solve the GCP due to their positive characteristics

and overall achievements in the combinatorial optimization area.

The Hybrid Coloring Algorithm (HCA) of Galinier and Hao proposed in 1999 is currently

understood to be one the best performing algorithms for graph coloring. This is due to having

specific attributes such as operating in a space of infeasible solutions and making use of robust

global and local search operators.

The objective of this paper was to analyze in detail the HCA for graph coloring and

propose a modern version that benefits from recent computer infrastructures. The model that was
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implemented in order to improve the HCA is called the Island Model, which basically consists in

having sub-populations and exchanging individuals between them.

Based on the results, we can conclude that the modern HCA is a competitive alternative

and improvement to the original version developed over 15 years ago. In all three evaluated cat-

egories (Distance to best k, average number of conflicts and cycles per execution flow during the

search process), the MHCA outperformed its counterpart. Therefore, we can confirm that recent

computer architectures can significantly aid in solving complex computational problems, and as

such, developers should start transitioning their algorithms to modern standards.
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