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RESUMO
A materialização de visões promove a redução do tempo de execução de consultas mul-

tidimensionais. No entanto, esta materialização tem um custo associado que pode ultrapassar as
restrições de custo de um determinado ambiente, caracterizando o problema de seleção view (PSV).
PSV consiste em selecionar as melhores visões dado um certo limiar de custo. Várias soluções têm
sido propostas na literatura para tentar resolver este problema. Neste trabalho, o PSV é tratado por
meio de algoritmos de otimização baseados na meta-heurística Reactive GRASP e variantes da heu-
rística Path-Relinking. Os resultados experimentais mostram que o algoritmo proposto é capaz de
fornecer melhores soluções quanto o tempo de execução das consultas, em comparação com outras
heurísticas na literatura. Nosso algoritmo reativo promoveu uma redução de 10,25 % no tempo de
execução das consultas.
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ABSTRACT
The materialization of views promotes the reduction of multidimensional queries’s exe-

cution time. However, this materialization has an associated cost that may exceed the cost cons-
traints of a given environment, characterizing the view selection problem (VSP). VSP consists in
selecting the best views given a certain cost threshold. Several solutions have been proposed in the
literature to try and solve this problem. In this paper, the VSP is handled by using novel optimi-
zation algorithms based on the reactive GRASP meta-heuristic and variants of the path relinking
heuristic. The experimental results show that the proposed algorithm is able to provide better so-
lutions regarding the queries runtime, compared to other heuristics in the literature. Our reactive
algorithm promoted a reduction of 10.25% in the queries runtime.
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1. Introduction
In an increasingly dynamic and volatile environment, companies need to identify patterns

of behavior and trends present in their business environment, as it is of paramount importance
to make immediate decisions in emergent situations in order to remain strong and competitive in
the market. Having in mind that a decision taken before competitors might be decisive in market
leadership, the need for fast and reliable information encourages the effort to conduct researches
on mechanisms to store and manipulate the data appropriately, aiming at speeding up the decision-
making process. One may point out the technologies of data warehouse (DW) and OLAP (On-Line
Analytic Processing) as a result of these research efforts [Wrembel e Koncilia, 2006].

A DW is a multidimensional database that stores subject-oriented, integrated, time-variant
and non-volatile data, and is used to perform analytic queries and information retrieval. In turn,
OLAP tools are meant for multidimensional processing of data extracted from DWs, allowing this
data to be analyzed from different perspectives and levels of aggregation by decision makers. Mul-
tidimensional and analytic queries (OLAP queries) are submitted through OLAP tools, which, in
turn, retrieve data from DWs through the execution of operations such as roll-up, drill-down, pi-
voting and slice and dice [Wrembel e Koncilia, 2006]. These operations are applied over a visual
metaphor of an structure, called data cube, which organizes the information according to various
perspectives of analysis (dimensions, hierarchies and levels) defined by strategic business analysts
and for a given analysis fact (information of business interest).

OLAP queries are answered through the execution of operations of selection, join and
aggregation over a database structured according to a perspective of analysis (called view). These
two last operations are time consuming and use up resources, especially when applied to large vo-
lumes of data. However, OLAP queries must be answered in a short time interval, since the quality
of decisions, the productivity and the decision makers’ satisfaction strongly depend on how fast
these queries are processed. For this reason, several solutions have been proposed in the literature
to maximize the processing performance of analytic queries. Among these solutions, studies have
shown the importance of the partial aggregation of multidimensional structures for speeding the
execution of OLAP queries [Khan e Aziz, 2010]. This aspect has raised the interest of the research
community, mainly with respect to the identification of which portions of data (i.e. views) must be
partially aggregated (i.e. materialized).

Materialized views store aggregated and precomputed data to eliminate the overhead as-
sociated with costly join and data aggregation operations required by analytic queries. Thus, given a
certain threshold of storage cost, there is a need to select the best views to be materialized, i.e. views
that satisfy the storage requirements and provide the lowest response time to process OLAP que-
ries. Several solutions have been proposed by researchers to solve this problem, which is known in
the literature as the view selection problem (VSP). Aiming to maximize the performance of OLAP
queries, we present in this article the following contributions:

• Proposition of novel optimization algorithms based on the reactive GRASP meta-heuristic
and variants of the path relinking heuristic that are used for selecting OLAP views in one of
the phases of the proposed method.

• Description of performance tests that validate the proposed method and the proposed optimi-
zation algorithms in scenarios with a high diversity of views (i.e. amount of space available
for materialization), and runtime of OLAP queries.

This paper is organized as follows: In Section 2, is formally described the VSP considered
in this study. Section 3 describes the optimization algorithms that are proposed for selecting views.
In Section 4, results collected from performance tests that were conducted in order to evaluate the
optimization algorithms are discussed. Finally, Section 5 concludes the article and addresses future
work.
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2. Problem description
An OLAP systems’ user performs a series of analytic queries in order to, for example,

analyze the evolution of car sales in various stores located throughout the country. To perform this
analysis the user can start by making a query to a level that contains concise data: "Which stores
were the most profitable in the last quarter?", then obtain more detailed data through the query:
"Which cars were the best sellers in these stores?"and submit more queries until the analysis is
completed. Each submitted query can be answered quickly by views that, when materialized, con-
tain, in their data combination, the data associated with the outcome of the query. However, among
views that can answer such query, exist a view that provides the minimum processing cost, i.e.,
view with smaller size, called view of minimum cost [Firmino et al., 2011]. The execution history
of the user’s queries indicates what is really relevant to the user at a given time. As also determines
the usage frequency for each view of minimum cost. The usage frequency is the view’s benefit
for processing queries, because views associated with heavily used queries must be materialized to
reduce the response time of these queries.

The materialization of all possible views of a data cube is not feasible for the following
reasons: First, the materialization of each view has a cost that is affected by several issues, such as
storage space and processing time for materializing views. Second, the number of possible views is
usually very large and prohibitive. It is given by the combination

∏d
i=1ni, where ni is the number

of levels per hierarchy of the dimension i, and d is the number of dimensions of the data cube. For
example, with only two levels and only three dimensions, 2∗2∗2 = 8 views are generated, whereas
with five dimensions, each with four levels, 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 possible views are produced.

Due to the impossibility of having a complete data materialization, it is crucial to define
which views should be materialized and how to select them. This definition has been referred to
as view selection problem (VSP) [Khan e Aziz, 2010]. The VSP is a combinatorial optimization
problem, which has a set V of possible views of a cube C, and is essential to find the subsetM ∈ V
that maximizes the benefit of the total queries performed over C.

The VSP mathematical modeling is given by Equation 2, and corresponds to the for-
mulation of the Knapsack Problem. Let V = {1, . . . , n} be the set of views to be chosen for
materialization. Then, xi is the decision variable that indicates if the view i was chosen to be mate-
rialized, assuming the value of 1 if it was indeed chosen and of 0 otherwise. LetBi be the benefit of
materialization for the view i and Si the physical space required for the storage of the view i. Then,
the VSP problem is to find a subset of V that allows to obtain the greatest benefit value considering
CV as a constraint value, which represents the storage space available for the materialization of the
views selected.

Max f (x) =

{
n∑

i=1

xi∗Bi

}

Subject to :

n∑
i=1

xi∗Si ≤ CV and xi ∈ {0, 1} ,∀ i = 1, . . . , n (1)

3. Using GRASP to Select OLAP Views
Two optimization algorithms proposed are based on the following meta-heuristics: Reac-

tive GRASP(RG), described in Section 3.1 , and Reactive GRASP with Path Relinking (RGPR),
which uses the Path Relinking heuristic and is described in Section 3.2. These algorithms are de-
tailed as follows. These optimization algorithms use the novel local search technique described in
Section 3.3.
3.1. Reactive GRASP (RG)

The RG algoritm, described by Algorithm 1, extends our previous work for selecting
OLAP views [Firmino et al., 2011] as follows: First, the greedy rate, which was obtained previ-
ously by receiving it as an input parameter, is now computed by the procedure GetGreedyRate that
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reactively calculates its value. Finally, RG uses a new heuristic in the phase of local search that
eliminates the use of two input parameters (ϑ and τ ) present in the method proposed in [Firmino
et al., 2011].

Algorithm 1 Reactive GRASP Algorithm
Require: ϕ, a list of views
Require: δ, amount of space available for materialization
Ensure: best found solution

1: bestsolution← ∅
2: while stopping criteria not satisfied do
3: ϕ′ ← ϕ
4: solution← ConstructionPhase(ϕ′,GetGreedyRate(),δ)
5: solution← LocalSearchPhase(ϕ′, δ, solution)
6: UpdateBestSolution(solution, bestsolution)
7: end while
8: return bestsolution

At the beginning of the algorithm 1, the best solution is initialized to an empty set of
views, i.e. at the beginning of the algorithm, the benefit of the best solution is zero. In lines 2 to
7, the GRASP iterations are performed until the stop criterion is met. In line 3, the variable ϕ is
copied into ϕ in the beginning of each new iteration, so that the list of views given as input to the
procedure ConstructionPhase of line 4 remains unchanged. In line 4, a partial solution is obtained
through the construction phase and is stored in the variable solution. Afterwards, in line 5, during
the phase of local search, a new solution, which is equal to or better than the previous solution, is
obtained and stored in the variable solution. In line 6, the procedure UpdateBestSolution is called
to compare the current best solution (bestSolution) and the solution obtained in the previous line
(solution). It subsequently assigns the solution with greatest benefit to bestSolution. The benefit of
a solution is given by the sum of the benefit of each view that composes the solution. Finally, at
the end of all iterations, in line 7, the best solution found so far, which is essentially the best set of
views for processing queries of a given signature, is returned.

The procedure GetGreedyRate works as follows. Initially, an initial value between {0,1}
is assigned to the greedy rate θ. Then, an initial change that can be {increment (I) or decrement
(D)} and a value v to be incremented or decremented are defined. At each algorithm iteration, there
is a check to assess whether the current solution has improved in relation to the previous one, i.e.
if the current generated solution is better than the previous solution. If it is, the current change is
performed. Otherwise, the opposite change is conducted.

3.2. Reactive GRASP with Path Relinking (RGPR)
The RGPR algoritm, described by Algorithm 2, is a result of the combination of RG with

Path Reliking. Path Relinking (PR) is used by this algorithm within the GRASP metaheuristic’s
iterations, as suggested in [Mateus et al., 2011]. The purpose of this Path Relinking application is
to run Path Relinking with different, good elite sets, because during the algorithm iterations, the
elite set is adjusted so as to improve the quality of re-linkings.

At the start of Algorithm 2, the elite set £ is initialized with an empty set. The iterations
of this algorithm are computed from lines 2 to 10 until the stop criterion is reached. During each
iteration, a solution resulting from the local search is generated in line 5. In line 6, the algorithm
checks if the elite set £ is full. If £ is full, in line 7, the path relinking is applied, and then, to add the
generated solution to £, the method ADD is called in line 8. It is worth mentioning that the solution
is only added if the difference between itself and all the solutions contained in £ is greater than the
value returned by the procedure GetDifferenceThreshold. This constraint is important to preserve
the diversity of the elite set’s solutions. The value obtained reactively by GetDifferenceThreshold
represents the threshold of the difference between two solutions, i.e., the minimum number of
different elements between two solutions so as to consider the two solutions sufficiently distinct.
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Otherwise, if £ is not full yet, then the method ADD adds the solution to £ in line 10. Finally, at the
end of the iteration, in line 11, the best solution found in the elite set is returned.

GetDifferenceThreshold works as follows. Initially, the elite set £ must have at least two
solutions. The difference between them is computed and considered the current difference threshold
(∆). When a new solution is added to the elite set £, the value of ∆ is updated using the following
equation: ∆=Max(∆,Diff(solbest, solbest−1)). solbest and solbest−1 represent respectively the
best solution and the second best solution for £.

Algorithm 2 Reactive GRASP with PR Algorithm
Require: ϕ, a list of views
Require: δ, amount of space available for materialization
Require: ξ, path relinking variant
Ensure: best found solution

1: £← ∅
2: while stopping criteria not satisfied do
3: ϕ′ ← ϕ
4: solution← ConstructionPhase(ϕ′,GetGreedyRate(),δ)
5: solution← LocalSearchPhase(ϕ′, δ, solution)
6: if IsFull(£) then
7: solution← PathRelinking(£,solution,ξ)
8: ADD(£, solution, GetDifferenceThreshold())
9: else

10: ADD(£, solution, GetDifferenceThreshold())
11: end if
12: end while
13: return MAX(£)

The PathRelinking procedure consists consists in a search strategy of solutions that ex-
ploits the connection path between two solutions: the solution and the a solution is chosen ran-
domly from £. The process of connection path is performed until the truncation condition is reached
or both solutions are identical. The truncation condition is true, while the percentage of improve-
ments in the solutions generated by PR is greater than the percentage of no improvements. The
connection step can be performed, according to the relinking variant (ξ): forward, forward trunca-
ted, backward, backward truncate, mixed (i.e. forward and backward are executed interchangeably)
and mixed truncate. The connection steps may be made by adding or removing views. The choice
of the next connection step to be executed is performed by computing all possible movements and
selecting the movement with greater benefits. At the end of the procedure, the best solution found
during relinking process is returned.

3.3. The Novel Local Search
In each iteration of the GRASP meta-heuristic, the procedures ConstructionPhase and

LocalSearchPhase are called. The ConstructionPhase procedure aims at generating a good initial
solution by means of a semi-greedy heuristic. The ConstructionPhase procedure, used by the pro-
posed algorithms, is the same developed in [Firmino et al., 2011]. The second procedure aims to
refine the solution obtained in the construction phase in order to find better solutions. Given a solu-
tion s, the search for better solutions is made through the search for neighboring solutions in order
to find better solutions than s

In [Firmino et al., 2011], the local search technique is based on the random choice of
elements of the exchange set, so that a valid permutation is performed. However, there is a low
probability of valid permutation because of the random choice of elements. Differently from the
local search technique used in [Firmino et al., 2011], in this article, we propose a novel local search
technique, described in Algorithm 3, to overcome the low efficiency of the swap method applied
in the aforementioned work. The novel technique consists in sorting the views of ϕ and solution
and in finding permutations in the sorted lists of views. Based on their benefit values, the views are
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ordered in descending order and in case of a tie, they are ordered in an increasing manner and based
on their sizes, as shown in line 1. Due to the ordering of these elements, it is possible to know in
advance that if the current element cannot be exchanged, then it will not be possible to exchange its
subsequent elements.

Algorithm 3 LocalSearchPhase Procedure
Require: ϕ, a list of views
Require: δ, amount of space available for materialization
Require: solution, solution built in the previous phase
Ensure: a similar or improved solution

1: SortByValueDescAndSizeAsc(solution,ϕ)
2: SetAll(selectedList,false)
3: psol ← Length(solution) - 1; pϕ← 0
4: isStopping ← false
5: swapList← ∅
6: while not isStopping do
7: pϕ← GetNextNotSelect(selectedList,pϕ)
8: ElmIn← Get(solution,psol)
9: ElmOut← Get(ϕ,pϕ)

10: if Value(ElmIn) = Value(ElmOut) then
11: if Size(ElmIn) > Size(ElmOut) then
12: RecordSwap(selectedList, swapList, psol, pϕ)
13: else
14: isStopping ← true
15: end if
16: else if Value(ElmIn) > Value(ElmOut) then
17: isStopping ← true
18: else if SizePlus(ElmIn) > Size(ElmOut) then
19: RecordSwap(selectedList, swapList, psol, pϕ)
20: else
21: SearchCombination(psol, pϕ)
22: end if
23: if pϕ > Length(ϕ) then
24: psol← psol - 1; pϕ← 0
25: end if
26: if psol < 0 then
27: isStopping ← true
28: end if
29: end while
30: return ExecuteSwaps(swapList,ϕ,solution)

In second line of Algorithm 3, a list of boolean values whose length is equal to the sum
of the length of the two lists (ϕ and solution) is initialized with all values equal to false. This list
indicates the elements that were selected during the execution for being exchanged (selectedList).
In line 3, two pointers (i.e. psol and pϕ) are initialized. The pointer psol is used to scan the ordered
list of views in Solution from the end to the top of this list, while pϕ is used to scan the ordered list
of views in ϕ from the top to the end of this list. In lines 4 and 5, the iterations’ control variable
(i.e. isStopping) and the list used to store the exchanges made during the iterations (i.e. swapList)
are initialized, respectively.

When all variables are initialized, the algorithm’s iterations are executed in lines 6 to 29.
At the beginning of the iteration, the pointer is updated to point to the next view in ϕ that has
not been selected for exchanging. Through the pointers and the procedure Get, the view that is
signaled by the pointer is obtained. The procedures Value and Size receive as input parameter a
view, returning respectively the value and the size of this view. The procedure SizePlus returns the
view’s size plus the remaining space in solution. The remaining space represents the space available
in solution to receive other views so that the size of solution does not exceed the space available for
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materialization. The remaining space is calculated by subtracting the size of solution from the total
space available for materialization (δ). The size of solution is calculated through a sum of the sizes
of all views contained in solution.

In line 10, there is a check to assess if the view inside the solution (ElmIn) has the same
value as the outside view (ElmOut). If that happens, there is a second check (line 11) to assess if the
size of ElmIn is larger than ElmOut. If this is established to be true, the exchange is recorded (as
shown line 12) because this frees space in solution without affecting the value of solution. However,
if the size of ElmIn is not greater than ElmOut, the iterations are terminated (line 14). This occurs,
because, since the elements are ordered, the next elements to be scanned in ϕ have sizes that are
equal to or greater than ElmOut, preventing the permutation with any element of ϕ. When the value
of ElmIn is greater than ElmOut, in line 17, the iterations are also terminated. This occurs because
of the ordering of the views, which indicates that the next views to be scanned in ϕ have values
that are equal to or smaller than ElmOut. Thus, this prevents any permutation with ElmIn or any
element of solution. In line 19, if the value of ElmIn is smaller than ElmOut and the size of ElmIn
plus the remaining space of solution is greater than the size of ElmExt, the exchange is stored.

To investigate cases where views could be exchanged, comparisons based on the values
and sizes of the views of ElmIn and ElmOut were made. However, an untreated case remains,
when ElmIn is smaller than ElmOut and the size of ElmIn plus the remaining space of solution is
smaller than the size of ElmOut, i.e. ElmOut is too large to be exchanged. In this case, in line 21,
the procedure SearchCombination is executed. Using the sorted list, this procedure searches for
the closest views to ElmIn, so as to find a combination of views whose combined size is greater
than ElmOut and whose combined value is smaller than ElmOut. Having found this combination,
the procedure SearchCombination calls the procedure RecordSwap to register the exchange. The
procedure RecordSwap stores in swapList the exchange to be made and adjusts the pointers to
continue the searches for new permutations. The adjustment of pointers is done in line 24.

At the end of each iteration of the Algorithm 3, pointers are checked. In line 24, the
pointers are adjusted if the pointer pϕ has scanned all elements in ϕ and no permutation compatible
with the current ElmIn has been found. In addition, in line 27, if all elements of solution have been
scanned, i.e. psol < 0, then the iterations are terminated. Finally, the procedure ExecuteSwaps
performs all the exchanges recorded in the swapList and returns the solution resulting from the
exchanges that were carried out.

4. Performance Evaluation
4.1. Experimental Setup

Experiments were performed on a computer with the Windows 7 Professional 64 bits
operating system, Intel Core i7 X 980 @ 3.33GHz processor and 16GB of RAM. The OLAP server
used was the Mondrian version 3.2.0.13583. Mondrian is an open source OLAP server, written in
Java, which runs queries written in MDX, by reading data from a relational database and presenting
the results in a multidimensional format. All of the algorithms have been implemented in Java. The
generator of randomness was the Mersenne Twister found in the COLT1 library1. The seeds were
obtained from decimal places of π = .1415926535897932384... taken from 5 to 5, e.g. the seed1
= 14159, seed2 = 26535, seed3 = 89793, and so on.

The Star Schema Benchmark (SSB)[ONeil et al., 2009] was adapted to increase the num-
ber of dimensions and levels, in order to have a large number of views and, consequently, a greater
number of different queries. This change was necessary to investigate the scalability and efficiency
of the proposed algorithms when there is a large set of possible views to be chosen. With respect
to the schema of multidimensional data used, it is composed of 5 dimensions (Part, Supplier, Cus-
tomer, Date and CommitDate), 37 levels and 2 measures (Lo_Revenue and Lo_SupplyCost). This
schema was used to create a synthetic dataset based on the SSB’s scale factor 1, which produced

1Available at http://acs.lbl.gov/software/colt/colt-download/releases
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about 6M records in the fact table and produced a total of 17,325 possible views, whose materiali-
zation would consume the estimated space of 8,346 TB.

The workload was composed of 1,200,006 query submissions randomly chosen from 1200
distinct queries. These 1200 queries were chosen at random, with seed 1 belonging to a set k of
17,325 distinct queries. Each query k was designed to have a unique combination of levels, and
therefore, each of them is directly associated with only one view of the 17,325 possible views. The
estimated total space for the materialization of 1,200 views associated with the 1,200 user’s distinct
queries is 561.2 GB. Given this total amount of space, in the experiments the following percentages
of space available for materialization were considered: 1.25% = 7GB; 2.5% = 14GB; 5% = 28GB;
10% = 56GB; 20% = 112GB; 40% = 224GB and 60% = 336GB.

In our experiments, nine algorithms were evaluated: ACO [Song e Gao, 2010], G (Fir-
mino, et al. , 2011), and seven instances of the novel algorithms proposed in this article: RG (Reac-
tive GRASP as described by Algorithm 1), RGF (RG with relinking of type forward), RGFT (RGF
with the truncation condition), RGB (RG with relinking of type backward), RGBT (RGB with the
truncation condition), RGM (RG with the mixed relinking, i.e. forward and backward) and RGMT
(RGM with the truncation condition). The reason for using an ACO (Ant Colony Optimization)
algorithm in our study is twofold. First, has been applied to several optimization problems [Do-
rigo e Blum, 2005]. Second, ACO was evaluated with a small workload of 32 distinct queries, and
presented a somewhat better performance than the experiments reported in [Firmino et al., 2011].
Then, in this paper, we aim to evaluate the ACO with respect to our GRASP-based algorithms by
using a larger workload composed of 1200 distinct queries.

For all the algorithms no-reactive, i.e. ACO and G, it was necessary to perform the pa-
rameters’ calibration for the execution of the experiments detailed in this article. The calibration
process was same used in [Firmino et al., 2011].

4.2. Performance Results
In this section, a comparative analysis between the nine algorithms is performed. These

are ACO [Song e Gao, 2010], G [Firmino et al., 2011], RG, RGF, RGFT, RGB, RGBT, RGM and
RGMT. This analysis was carried out using two evaluation criteria: (1) space available for mate-
rialization and (2) runtime reduction of the user’s OLAP queries. These criteria defined two test
configurations used in our experiments that are described as follows.

Space Available for Materialization. The aim of this test configuration is to evaluate the behavior
of the algorithms in different scenarios of available space for materialization: {1,25%, 2,5%, 5%,
10%, 20%, 40% e 60%}. To accomplish that, each algorithm was executed 50 times, using as a
stop criterion the maximum time of 2 minutes and the value of 500000 as the maximum number of
iterations of the algorithm without improvements in the quality of the solution generated. We also
used as seed the number corresponding to the execution number. For the non-reactive algorithms
(ACO and G), we used their respective values of parameters that were obtained from the calibration
process. We calculated the average of the generated solutions’ benefits for all 50 executions of each
algorithm in the different scenarios of available space. This is shown in Figure 1. It is important
to notice that the ACO’s benefit values (i.e. 1,25% = 273,20; 2,5% = 311,65; 5% = 337,94; 10%
= 409,21; 20% = 513,35; 40% = 683,92 e 60% = 834,62) are not shown in these figures because
they were much smaller in value than the results of the other algorithms. For that reason, their
inclusion would prevent a more detailed visualization of all the results, being therefore suppressed
in the image.

The PR’s truncated variants produced performance gains with respect to their correspon-
ding non-truncated approaches, as shown especially in the spaces 20% and 40%. This occurred
because in certain scenarios there is no need to execute the entire path of relinking if better solutions
can be found in the path’s intermediate parts. Hence, this processing gain can be used to generate
new solutions in the construction phase or in the local search phase of the GRASP meta-heuristic.
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(a) Space 1.25% (b) Space 2.5%

(c) Space 5% (d) Space 10%

(e) Space 20% (f) Space 40%

(g) Space 60%

Figura 1: Assessment of space available for materialization

Also, it is important to notice that in most cases, the RGF algorithm (i.e. Reactive GRASP
with relinking of type forward) presented performance losses when compared to other algorithms.
This occurred because RGF is a non-truncated variant, as explained previously, and because in
certain scenarios, a permanently ascending search in the space of solutions (i.e. from a worst
solution to a better solution) may not be beneficial if between the two ends one can only find worse
solutions than those in the extremes.

In addition, the G algorithm, generated slightly better results on average than its reactive
variant, called RG. This occurred because the G algorithm went through a calibration phase, being
therefore expected since the beginning to produce good solutions thanks to its calibration. On the
other hand, due to its reactive properties, the RG algorithm takes some time until its parameters are
stabilized, and during this time interval, it might generate not so good solutions, reducing the benefit
average value of the RG’s solutions. One should note that the addition of the Path Relinking meta-
heuristic to the RG algorithm produced, in most cases, an increase in the quality of the solutions
generated. Then, the average value of all solutions generated for all the spaces of materialization

2008



Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

were evaluated, and we noticed that the reactive algorithms presented slight losses when compared
to the G algorithm. The greatest performance loss, in a reactive algorithm, was of 0.01152%.

In this work, in addition to the averages of the solutions generated, we are also interested
in analyzing the gains obtained by our novel technique of local search, which is proposed in this
paper. Thus, for the 50 executions related to the spatial evaluation, we calculated the average gains
of this local search by using Equation 2.

∑i=N
i=1 solCi − solM i

N
,where : (2)

• i represents the index of the algorithm’s ith-iteration;
• solC indicates the value of the solution produced in the construction phase;
• solM corresponds to the value of the solution produced in the local search phase.

The local search gains represents the gains promoted by the local search technique used
in the executed algorithm. In this work, we compared G and the reactive algorithms with the novel
local search technique. Results indicated that all reactive algorithms generated performance gains
when compared to G’s local search. The lowest percentage gain was 69%, as shown in Figure 2.

(a) Percentual Gains of the Novel Local Search (b) Variance vs. Space available for Materialization

Figura 2: Assessment of Novel Local Search and Variance

We also investigated the behavior of the solution space, by allocating different values to
the space available for materialization. In the 50 executions made for this evaluation, we calcula-
ted the variance of the solutions generated by the algorithms for the different spaces available for
materialization. The idea was to investigate the diversity of the solution space because, in environ-
ments of greater diversity of solutions, there is a greater incidence and amplitude of local maxima
in the solution space. This irregularity in the solution space represents an extra challenge for the
algorithms while they are searching for excellent or very good solutions, since they have a higher
probability of becoming trapped in local optima.

As shown in Figure 2, for small or large spaces of materialization, the variances obtained
were smaller than those obtained with intermediate sizes of spaces for materialization. This oc-
curred because, with small spaces, the number of views that can be added to the solution is small,
reducing the problem’s difficulty, since only a few views need to be considered to be chosen and
consequently, few different solutions are generated. On the other hand, with large spaces of materi-
alization, many views can be added to the solution, due to the large space available. Initially, a large
number of views is added to the solutions because there is a large space for materialization. Then,
at the end, there is only a small number of views to be chosen because most of them were already
selected and consequently, only few different solutions are generated. This determines the soluti-
ons’ diversity and thus, the irregularity of the solution space. Thus, we verified that the scenario of
greater diversity and, consequently, of greater difficulty, was the space available for materialization
equal to 5%, which presented the largest variance.
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Runtime Reduction of OLAP Queries. In this test configuration, the views selected by the algo-
rithms were materialized and the time spent to process the history of user queries was compared,
using for each algorithm its respective solution (i.e.views selected by each algorithm). After that
step, we selected the best solution produced by reactive algorithms (called SReactiveGRASP) and
the best solution produced by the ACO algorithm (called SACO). The algorithms selected the views
using the percentage value of 5% of the total space for materialization. The value of 5% was used
because it corresponds to the scenario of greatest complexity, as detailed previously.

For each solution, we carried out 20 executions of each query q of the 1200 MDX distinct
queries of the history of the user’s queries. Then, we collected the elapsed runtime and computed
the average runtime for the 20 executions of each query q. Multiplying the average runtime of the
query q by the respective frequency of the query q found in the history of the user’s queries, we
obtained the query q’s runtime with respect to this history of queries. Finally, we computed the sum
of the runtime of each query q found in the history of queries, and collected the runtime needed to
solve the history of the user’s queries using the aforementioned solution.

To compare the average runtime of two solutions, we performed the Paired T Test [Nancy
L. Leech, 2007], which has been used to compare the means of two samples, so that the observa-
tions of a sample are paired with observations of another sample. Through two samples, X and Y,
we created a set D with the differences between the measurements of each sample (di = yi − xi).
However, to apply the paired T-test, the differences between the averages must have an approxima-
tely normal distribution. Then, the Jarque-Bera Test for Normality [Jarque et al., 1987] was applied
to the 1200 MDX distinct queries to ascertain if the obtained samples follow a normal distribution.
After having satisfied the normal distribution constraint, we built a confidence interval for the dif-
ference of the averages and checked if the two samples were equivalent statistically. Then, for each
pair of samples of the two solutions being compared, the Paired T-Test with a confidence interval
of 99% was computed. The idea is to verify if the average runtime of a query q is statistically the
same for both solutions. If this is true, the average runtime of the query q using both solutions is
the same.

According to our Paired T Test results, in 74% (890 of 1,200) of the queries, we concluded
that the average runtime was different for both solutions. Also, for each solution (SReactiveGRASP
and SACO), we computed the sum of the runtime of each query from the set of 1200 MDX distinct
queries, in order to get the runtime needed to solve the history of the user’s queries. Results indica-
ted that the SReactiveGRASP solution produced a runtime reduction of 10.25% when compared to
the SACO solution.

5. Conclusion and Future Work
We proposed optimization algorithms based on the Reactive GRASP meta-heuristic and

Reactive GRASP with Path Relinking, for view selection problem (VSP), aiming at maximizing the
performance of OLAP queries. To the best of our knowledge, our work makes the first attempt of
applying the GRASP meta-heuristic with Path Relinking and its variants to VSP. Furthermore, was
proposed a novel local search technique which is used by our proposed optimization algorithms.

Experiments were performed using two test configurations: Space Available for Mate-
rialization and Runtime Reduction of OLAP Queries. In the first test configuration, we aimed at
studying: (1) the behavior of the solution space when there are variations in values of space avai-
lable for materialization; (2) the local search improvements, which stand for the gains promoted
by the local search technique of the tested algorithms; (3) the usage of the Path Relinking heuris-
tic; (4) the non-reactive and reactive properties of the algorithms tested. The novel local search of
our reactive algorithms produced performance gains of at least 69% when compared to previous
local search. The second test configuration evaluated the reduction in the response time of queries
executed over the user’s history, applying the views of two solutions generated by two algorithms:
Reactive GRASP and ACO. Results showed that the Reactive GRASP’s solution produced a run-
time reduction of 10.25% when compared to the ACO’s solution.
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The definition of multi-objective optimization algorithms for VSP problem is a possibility
for future research. That is, new criteria, besides the views’ usage frequency, need to be studied
and treated together. Examples are maintenance cost and the use of indexes in tables associated at
materialized views. Finally, we plan to investigate how materialization tables can be distributed in
a distributed environment to optimize queries runtime.
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