
Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

An Optimized Leveled Parallel RCM for Bandwidth Reduction of Sparse
Symmetric Matrices

Thiago Nascimento Rodrigues
Maria Claudia Silva Boeres

Lucia Catabriga
Federal University of Espı́rito Santo

Av. Fernando Ferrari, 541, 29075-910, Vitória, ES, Brasil
nascimenthiago@gmail.com
{boeres,luciac}@inf.ufes.br

ABSTRACT
This work presents an implementation of the Leveled Parallel RCM algorithm as well as

an improvement version of it based on some proposed enhancements. The use of the bucket array
as the main data structure and the suppression of some steps performed by the original version of
the algorithm led to outstanding reordering time results and significant bandwidth reductions. The
OpenMP framework is used for supporting the parallelism and both versions of the algorithm are
tested with large sparse and symmetric matrices.

KEYWORDS. Bandwidth Reduction, Leveled Parallel RCM, Sparse Matrices

Paper topics (Combinatorial Optimization)

2405

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

1. Introduction

The resolution of large sparse linear systems Ax = b, in which A is a sparse matrix, is
central in several simulations in science and engineering and is generally the part of the simulation
that requires the highest computational cost. In the way to simplify the solution of this kind of
system, the minimizing of the bandwidth and reducing of the envelope play an efficient role. These
pre-processing methods consist of finding the permutation of rows and columns of the matrix which
ensures that nonzero elements are located in as narrow a band as possible along the main diagonal.
The sparsity of the matrix is not changed by permutations.

As [Papadimitriou 1976] proved the bandwidth minimization problem is NP-complete,
many heuristic algorithms have been proposed for solving the problem. The Reverse Cuthill-McKee
(RCM) [George 1971], Sloan [Sloan 1986], and Nested Dissection [George 1973] are examples
of heuristics based on graph search strategies. Another kind of approach is found in Spectral
algorithm [Barnard et al. 1993] which is a heuristic based on the computation of an eigenvector
of a special matrix. Metaheuristics like Tabu Search [Mart et al. 2001] and Simulated Annealing
[Rodriguez-Tello et al. 2008] have also become useful strategies for solving combinatorial opti-
mization problems like this. Besides, some hybrid algorithms were also introduced: one combining
ant colony optimization with hill-climbing [Lim et al. 2006] and another combining particle swarm
optimization with hill-climbing [Lim et al. 2007].

Parallel implementations of algorithms for bandwidth minimization problem have been
proposed in order to reach greater performance from multi-core processors. As examples, [Lin 2005]
introduced a genetic parallel algorithm tailored to this problem, and [Karypis and Kumar 1998]
presented a parallel formulation of the multilevel graph partitioning and sparse matrix ordering
problem. In this paper, the leveled parallel RCM proposed by [Karantasis et al. 2014] is presented.
The original implementation of the algorithm is based on the Galois system 1. However, in this
work, the results obtained by an alternative implementation of it using the OpenMP 2 framework
are analised. Furthermore, an optimized version of the leveled RCM is introduced. This second
algorithm is based on some suggested enhancements. Firstly, the four main steps of the original
algorithm are merged into just two overall phases. This change decreases the number of serial op-
erations performed by the algorithm. Moreover, the FIFO queue data structure used throughout
the whole algorithm is replaced by a static Bucket Array. This new evaluated structure leads to
significant reordering time improvements.

The outline of the paper is as follow. In the next section some definitions and structures
used in this work are presented. The Section 3 is dedicated to the Leveled Parallel RCM algorithm
description. In the Section 4, some changes in the original algorithm are proposed and an optimized
version of the Leveled RCM is presented. All tests and achieved results are described in the Section
5. Conclusions and future works are addressed in the Section 6.

2. Structures and Definitions

Let A be a structurally symmetric matrix, i. e., if aij 6= 0 then aji 6= 0, but not necessarily
aij = aji. The bandwidth of A denoted by lb(A) is defined as the greatest distance from the first
nonzero element to the diagonal, considering all rows of the matrix. The envelope of A, denoted by
env(A) is the sum of the distances from the first nonzero element to the diagonal, also considering

1Galois is a system that automatically executes serial C++ or Java code in parallel on shared-memory machines
[Galois].

2OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can be
used to specify high-level parallelism in Fortran and C/C++ programs [OpenMP].

2406

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

all rows of the matrix [Coleman 1984]. More formally,

bi = (i− j) ∀aij 6= 0; i = 2, 3, . . . , n

lb(A) = max
i=2,3,...,n

{bi}

env(A) =
n∑

i=2

bi

The Bandwidth Minimization Problem consists of finding a permutation of rows and
columns of A so as to bring all nonzero elements of A to reside in a band as close as possible
to the main diagonal, that is, b = min{max{|i− j| : aij 6= 0, i = 1..n, j = 1..n}}

In many scientific computations the manipulation of sparse matrices is considered the
crux of the design. Generally the nonzero elements in a sparse matrix constitutes a very small
percentage of data. This irregular nature of sparse matrix problems has led to development of a
variety of compressed storage formats. The Compressed Sparse Row (CSR) is an important storage
method which have been widely used in most sources [Saad 2003]. Storing a given matrix A with a
CSR scheme requires three one-dimensional arrays AA, JA and IA of length nnz, nnz, and n + 1
respectively, where n is the number of rows and nnz is the total number of nonzero elements in the
matrix A [Farzaneh et al. 2009]. The content of each array is as follow.

• Array AA: contains the nonzero elements of A stored row-by-row.

• Array JA: contains the column indexes in the matrix A which correspond to the nonzero
elements in the array AA.

• Vector IA: contains n + 1 pointers which delimit the rows of nonzero elements in the array
AA. The last position of the vector stores the number of nonzero elements of the matrix.

An example of this technique is illustrated in the Figure 1.

A =


1.0 0.0 0.0 2.0 0.0
3.0 4.0 0.0 5.0 0.0
6.0 0.0 7.0 8.0 9.0
0.0 0.0 10.0 11.0 0.0
0.0 0.0 0.0 0.0 12.0


AA 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

Figure 1: Example of a matrix A represented in CSR format.

Another important structure for this work is the Bucket Array. A bucket array consists
in an array B of size n where each cell of B is thought as a ”bucket” that is, a collection of key-
value pairs. An entry e with a key k is simply inserted into the bucket B[h(k)], where h(x) is a
hash function. A hash function maps each key to an integer in the range [0, n - 1]. As initially each
bucket is empty, if the hash function does not map any entry to a key ki, the bucket B[h(ki)] remains
empty. When each h(k) returns an unique integer, then each bucket holds at most one entry. On the
other hand, collisions may happen, where two distinct keys k1 and k2 have the same hashed value,
i. e., x1 6= x2 and h(x1) = h(x2). Hence, each bucket must be able to accommodate a collection of

2407

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

elements [Atallah and Fox 1998]. A typical hash function for integer keys is h(x) = x mod n. In
the proposed optimized RCM, this data structure is employed in replacement of FIFO queue used
to store the processed children in each iteration. An example of bucket array is shown in Figure 2.

0 → 15 10

1 → ∅

2 → 22

3 → ∅

4 → 104 29 34

Figure 2: Example of Bucket Array of size 5 storing 6 elements. The hash function is h(x) = x mod 5.

3. Leveled Parallel Reverse Cuthill-McKee
The Reverse Cuthill-McKee (RCM) operates on the unlabeled graph of the matrix A. The

labeled graph of A is a graph having n nodes, labeled from 1 to n, with an edge set E consisting of
edges such that {xi, xj} ∈ E if only if aij 6= 0 and aji 6= 0. The unlabeled graph of A is simply the
graph obtained from A with labels removed. The RCM algorithm generates a label for each node
of the unlabeled graph, and hence a reordering of A. The application of the algorithm requires that
a starting node be provided. It is usually chosen from the pseudo-peripheral 3 nodes of the graph.
Thus, given a starting node r, the algorithm is as follow [Chan and George 1980].

Step 1. Set x1 ← r.

Step 2. (Breadth-First Search - BFS) For i = 1, 2, . . . , n− 1, find all unlabeled neighbors of xi at
level i+ 1.

Step 3. (Main loop) For i = 1, 2, . . . , n, number all unlabeled neighbors of xi in increasing order
of degree.

Step 4. (Reverse the ordering) The RCM ordering is given by y1, y2, . . . , yn where yi = xn+1−i,
i = 1, 2, . . . , n.

The output of the algorithm is a permutation of the vertices of G stored in the vector
y = (y1, y2, . . . , yn), which labels the node v with label i if yi = v. The Leveled Reverse Cuthill-
McKee (L-RCM) proposed by [Karantasis et al. 2014] follows the general structure of the serial
RCM algorithm. It process nodes level by level and the parallelism is restrict to the current pro-
cessing level. Before to finalize an iteration, i. e., before advancing to a next level, the algorithm
stores each processed node in the RCM permutation array. The L-RCM pseudocode is shown in
Algorithm 1. The main general steps are [Karantasis et al. 2014]:

1. The expansion step works as a Breadth-First-Search. For each node (parent) in a processing
level, the children of it are analyzed. The correct level of each child is calculated based on
the level of the respective parent. If the level of a child is updated, the node is added to the
list (generation) which will be processed in the next iteration. As a child node might have
multiple parent nodes, the parent saved is the one closer to the source node in the permutation
array.

2. In the reduction step, each parent node computes its respective number of children.

3A pseudo-peripheral node is one of the pairs of vertices that have approximately the greatest distance (graph diam-
eter) from each other in the graph (the graph distance between two nodes is the number of edges on the shortest path
between nodes).

2408

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

3. A prefix sum4 step uses the output of the previous step to calculate each child position in the
permutation array according to the respective parent. Actually, it is created a correspondence
between the number of children of each parent and an appropriated index in the permutation
array.

4. In placement step, all nodes from the current iteration are stored in the permutation array.
Using the indexes generated in the prefix sum step as initial position, each child is allocated
in the correct range of positions. The sequence of these ranges respects the RCM ordering of
parents. After the last child of a parent is stored in the permutation array, the respective set
of children nodes is sorted in ascending degree.

Algorithm 1 Leveled RCM
1: Graph G = input(); // Read in graph
2: P[0] = source;
3: while (P.size < G.size)
4: // Expansion
5: List generation;
6: foreach (Node parent: P[parent1:parentN]) {
7: for (Node nb: parent.neighbors) {
8: if (nb.level > parent.level) {
9: if (nb.level > parent.level + 1) {

10: // Atomic check
11: atomic nb.level = parent.level + 1;
12: generation.push(child);
13: }
14: if (parent.order < child.parent.order)
15: atomic child.parent = parent;
16: } } }
17: // Reduction
18: foreach (Node child: generation) {
19: atomic child.parent.chnum++;
20: }
21: // Prefix Sum
22: foreach (int threads: thread) {
23: Prefix sum of parent.chnum into parent.index
24: }
25: // Placement
26: foreach (Node child: generation) {
27: atomic index = child.parent.index++;
28: P[index] = child;
29: if (child == child.parent.lastChild)
30: sort(P[children1:childrenM]);
31: } }

4. Optimized Leveled Parallel RCM
An optimized version of the Leveled Parallel RCM (OL-RCM) was obtained applying

some changes in the original algorithm. Besides, an alternative data structure was tested in replace-
4Prefix sum: The prefix sum operation takes a binary associative operator ⊕, and an ordered set of n elements

[a0, a1, . . . , an−1] and returns the ordered set [a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . .⊕ an−1)].

2409

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

ment of Linked List (FIFO queue) used for store nodes in each iteration. A main difference between
the algorithms is the number of steps. The original Leveled RCM is divided in four steps. In the op-
timized version of the algorithm, just expansion and placement steps are present. The pseudocode
is shown in Algorithm 2.

Algorithm 2 Optimized Leveled RCM
1: Graph G = input(); // Read in graph
2: P[0] = source;
3: while (P.size < G.size)
4: // Expansion
5: BucketArray generation;
6: foreach (Node parent: P[parent1:parentN]) {
7: for (Node nb: parent.neighbors) {
8: if (nb.level > parent.level) {
9: if (nb.level > parent.level + 1) {

10: // Atomic check
11: atomic nb.level = parent.level + 1;
12: if (nb.status == UNLABELED) {
13: nb.status = LABELED;
14: generation[hash(parent)].push(nb);
15: } } } } }
16: // Placement
17: foreach (Vector children: generation[bucket1:bucketN].children) {
18: atomic index = P.size + permOffSet;
19: atomic permOffSet += children.size;
20: sort(children);
21: foreach (Node child: children)
22: P[index++] = child;
23: } }

Initially, the graph is read and the root node is set in the first position of the permutation
array (P). The main loop is executed until each node of the graph is allocated in the permutation
array. For each parent node already processed at level i, the respective neighborhood is obtained
and the level of children is set as i + 1. As a child node may have more than one parent and as
each parent is picked up by different threads, this operation of setting the child level may generate
conflicts. So, it is performed as an atomic operation. Afterwards, processed children are labeled (if
they do not have a label yet), pushed to the parent array (they are parents of the next level of nodes),
and allocated at the bucket of its respective parent. From this point, all processing is done over the
bucket array (generation). As all processed children are allocated at the appropriated buckets, they
may be processed by different threads. Each thread uses the size of the children array of a bucket to
determine the positions of them in the permutation array. Thus, the threads sort each respective set
of children by degree, and place each node in the permutation array using the previous calculated
range.

The expansion phase remained essentially the same. As in BFS, when neighbors are
accessed for the first time, theirs distance from the source are recorded, the correct parent is set, and
they are labeled. Additionally, however, the reduction step of the original algorithm is incorporated
by this phase. Instead of checking all children to count the number of neighbors by parent in a
separated phase, this process is performed during the analysis of each parent in expansion phase. In
fact, when a neighbor is labeled, it is immediately allocated in the bucket corresponding to its parent.

2410

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

The appropriated bucket is determined by a hash function which is a simply mapping between the
parent position in permutation array and the corresponding parent position in the bucket array.

Through the use of a static data structure like bucket array, each thread has an optimized
way to determine the appropriated bucket to access. Actually, the cost involved in accessing a bucket
is related to an arithmetic operation performed by the hash function, added to the cost of accessing
an specific position of array of buckets. Another aspect that aggregates high performance in the use
of the bucket array is the static way to store children in buckets. It was possible by oversizing each
bucket. Each one was defined with size equals to the degree of the respective parent. Thus, adding
a child in an appropriated bucket corresponds to the cost of accessing one array position.

The placement stage also differs between the two algorithms. In the L-RCM, threads pro-
cess child by child. As the designated position in permutation array depends of an atomic operation
related to an index stored by the respective parent, each child placement implies a new synchronized
operation. Furthermore, there is the spent time in the previous step responsible to designate a range
of indexes for each parent. In the OL-RCM, the prefix sum step is removed. As the placement
operation is done by threads processing bucket by bucket, the range of positions in the permutation
array is calculated in its bucket iteration. Thus, the number of synchronized operations decreases
and an unnecessarily step (prefix sum) is eliminated.

5. Experimental Results
The performance evaluation of the OL-RCM algorithm was against a traditional serial

implementation of RCM and the Leveled Parallel RCM proposed by [Karantasis et al. 2014]. A
set of nine symmetric and square matrices was selected from the University of Florida Sparse Ma-
trix Collection [Davis and Hu 2011]. These matrices cover multiple kinds of problems in order to
increase the dataset variety. The set of tested matrices is shown in Table 1. The columns present
matrices and some characteristics of them: dimension, number of non-zeros, percentage of spar-
sity, and bandwidth. The program was coded in the C language and the parallelism was supported
by OpenMP framework. The experiments were performed on a PC with Intell i7-3610QM 8 core
processor with 2.3 GHz of CPU and 8 GB of main memory. The operational system was Ubuntu
14.04.3 LTS 64-bit with Linux Kernel 3.19.0-31. The code was compiled with GNU gcc version
4.8.4.

Table 1: Sparse Tested Matrices

Matrix Dimension Non-zeros Sparsity (%) Bandwidth
dw8192 8,192 41,746 99.938 4,160

FEM 3D thermal1 17,880 430,740 99.865 13,787
rail 79841 79,841 553,921 99.991 79,811
Dubcova3 146,689 3,636,643 99.983 146,356
inline 1 503,712 36,816,170 99.985 502,403

audikw 1 943,695 77,651,847 99.991 925,946
dielFilterV3real 1,102,824 89,306,020 99,993 1,036,475

atmosmodj 1,270,432 8,814,880 99.999 21,904
G3 circuit 1,585,478 7,660,826 99.999 947,128

The Table 2 shows a performance comparison between a serial and the two versions of
parallel Leveled RCM (L-RCM and OL-RCM). The programs were performed five times for each
pair (mi, tj), where mi is a matrix of the Table 1, and tj is the number of threads between 4 and
128 (in steps of 2) used by each program. For each (mi, tj) tested pair, the minimum and maximum
reported values were discarded, and the average was calculated from the considered values. In

2411

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

order to compare both algorithms, for each matrix mi it was selected the number of threads tj that
reached the best time reordering for the L-RCM algorithm. This same number of threads tj was
used to select the corresponding (mi, tj) tested pair from the OL-RCM algorithm. Each number of
thread tj chosen for the comparison of the two algorithms is indicated in the column #Threads of
the Table 2. Moreover, the Compressed Sparse Row format was the mechanism used to store each
tested matrices. The operations applied on them were also performed using this format.

The three columns grouped by Reorder Time column in the Table 2 show the elapsed
time by the algorithms to reorder each matrix. It is relevant to point out that the time spent in
each pseudoperipheral computation was excluded from the programs. With the L-RCM it was
possible to reach a time reduction ranging between 16.84% (rail 79841) and 81.23% (G3 circuit)
when comparing with times obtained for the serial implementation. On the other hand, the reorder
performance reached by the OL-RCM was highest for all tested matrices. In fact, for the six largest
matrices the attained time reduction was higher than eighty-four percent varying between 84.65%
for the Dubcova3 and 98.45% for the G3 circuit. Including the smallest matrices, the reordering
time performance of the OL-RCM was superior. Actually, the experimental results shown a time
reduction of 40%, 68.57%, and 58.95% for the dw8192, FEM 3D thermal1, and rail 79841
respectively. Nevertheless, no significant speedup was observed for the two parallel algorithms.
One reason for this result is that both algorithms use the same general strategy based on a parallelism
by level [Karantasis et al. 2014]. As a barrier must be placed between each level, increasing the
number of threads do not necessarily lead to an improvement of performance.

Table 2: Results Comparison

Input Reorder Time (sec.) Bandwidth Reduction (%)
Matrix #Threads RCM L-RCM OL-RCM RCM L-RCM OL-RCM
dw8192 4 0.005 0.003 0.003 96.490 93.462 92.764

FEM 3D thermal1 4 0.038 0.020 0.012 95.046 95.322 95.046
rail 79841 4 0.095 0.079 0.039 99.311 99.308 99.311
Dubcova3 32 1.199 0.469 0.184 98.442 98.425 98.442
inline 1 8 9.04 4.007 1.096 98.807 98.720 98.807

audikw 1 16 84.833 34.449 2.441 96.283 95.038 96.283
dielFilterV3real 16 88.298 35.521 2.661 97.548 97.542 97.548

atmosmodj 16 32.732 20.193 1.126 64.513 64.235 64.513
G3 circuit 8 84.832 15.922 1.318 99.464 99.463 99.464

The three columns related to Bandwidth Reduction in Table 2 shown the percentage of
band reduction obtained by each algorithm. This percentage was calculated as the ratio between
the band obtained after to apply the permutation generated by the algorithm and the original band.
The OL-RCM did not reach the best percentage of reduction just for the two smallest matrices. In
fact, the performance of L-RCM algorithm was superior only for the FEM 3D thermal1 matrix,
and for the smallest matrix (dw8192) the best band reduction was achieved by the serial RCM. For
the other seven matrices, as the serial implementation as the OL-RCM algorithm attained the same
quality of results. This quality may by graphically attested through Figs 3, 4, and 5. Matrices were
grouped according to the size of them: three smallest, three largest, and three of intermediate size.
The first row of each group presents the matrix sparsity before reordering. In the below rows, each
respective matrix is exhibited as result of a permutation of rows and columns derived from the new
proposed Leveled RCM algorithm.

2412

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

(a) dw8192 (b) FEM 3D thermal1 (c) rail 79841

Figure 3: Matrices of size smaller than a hundred thousand

(a) Dubcova3 (b) inline 1 (c) audikw 1

Figure 4: Matrices of size between a hundred thousand and one million

2413

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

(a) dielFilterV3real (b) atmosmodj (c) G3 circuit

Figure 5: Matrices of size larger than one million

6. Conclusion and Future Work

This paper analysed a parallel strategy for the traditional Reverse Cuthill-McKee reorder-
ing algorithm. Two implementations were presented and the results achieved by both represent
a significant improvement on reordering time. With the original studied algorithm (L-RCM), it
reached a time reduction of until 81.23% of the serial time. The changes proposed on this algo-
rithm led to performance enhancements. Actually, the optimized algorithm (OL-RCM) achieved
a time reordering higher than 84% for six of tested matrices. For the remaining matrices, the re-
sults were also superior when compared with the original algorithm. About the reordering quality,
both implementations attained relevant bandwidth reduction. In fact, an exception of one matrix
- atmosmodj, the permutation generated by both algorithms meant a band reduction superior to
ninety percent. Therefore, the original Leveled RCM as well as the proposed optimized version of
it might be considered as a efficient approach for the bandwidth reduction problem.

The implementation of the Leveled RCM, as well as the proposed enhancements presented
in this work were supported by the OpenMP parallel framework. However, some works have ad-
dressed the reordering problem through the use of another kind of parallelism tool. As example,
[Chevalier and Pellegrini 2008] has developed a parallel tool for graph partitioning, and several
works have discussed the parallelization of algorithms by the Galois System [Hassaan et al. 2011].
Therefore, an evaluation of alternative implementations developed over parallel platforms like these,
might aggregate more improvements to the studied algorithms.

References

Atallah, M. J. e Fox, S., editores (1998). Algorithms and Theory of Computation Handbook. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition.

Barnard, S. T., Pothen, A. e Simon, H. D. (1993). A spectral algorithm for envelope reduction
of sparse matrices. In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing,
Supercomputing ’93, p. 493–502, New York, NY, USA. ACM.

2414

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Chan, W. M. e George, A. (1980). A linear time implementation of the reverse cuthill-mckee
algorithm. BIT Numerical Mathematics, 20(1):8–14.

Chevalier, C. e Pellegrini, F. (2008). Pt-scotch: A tool for efficient parallel graph ordering. Parallel
Comput., 34(6-8):318–331.

Coleman, T. F. (1984). Large Sparse Numerical Optimization, volume 165 of Lecture Notes in
Computer Science. Springer.

Davis, T. A. e Hu, Y. (2011). The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25.

Farzaneh, A., Kheiri, H. e Shahmersi, M. A. (2009). An efficient storage format for large sparse
matrices. Communications Series A1 Mathematics & Statistics, 58(2):1–10.

Galois. http://iss.ices.utexas.edu/?p=projects/galois.

George, A. (1973). Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis, 10(2):345–363.

George, J. A. (1971). Computer Implementation of the Finite Element Method. PhD thesis, Stanford,
CA, USA. AAI7205916.

Hassaan, M. A., Burtscher, M. e Pingali, K. (2011). Ordered vs. unordered: A comparison of paral-
lelism and work-efficiency in irregular algorithms. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11, p. 3–12, New York, NY, USA.
ACM.

Karantasis, K. I., Lenharth, A., Nguyen, D., Garzarán, M. e Pingali, K. (2014). Parallelization of
reordering algorithms for bandwidth and wavefront reduction. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14,
p. 921–932, Piscataway, NJ, USA. IEEE Press.

Karypis, G. e Kumar, V. (1998). A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering. J. Parallel Distrib. Comput., 48(1):71–95.

Lim, A., Lin, J., Rodrigues, B. e Xiao, F. (2006). Ant colony optimization with hill climbing for
the bandwidth minimization problem. Appl. Soft Comput., 6(2):180–188.

Lim, A., Lin, J. e Xiao, F. (2007). Particle swarm optimization and hill climbing for the bandwidth
minimization problem. Applied Intelligence, 26(3):175–182.

Lin, W. (2005). Improving parallel ordering of sparse matrices using genetic algorithms. Appl.
Intell., 23(3):257–265.

Mart, R., Laguna, M., Glover, F. e Campos, V. (2001). Reducing the bandwidth of a sparse matrix
with tabu search. European Journal of Operational Research, 135(2):450–459.

OpenMP. http://openmp.org.

Papadimitriou, C. H. (1976). The np-completeness of the bandwidth minimization problem. Com-
puting, 16(3):263–270.

2415

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Rodriguez-Tello, E., Hao, J. e Torres-Jimenez, J. (2008). An improved simulated annealing algo-
rithm for bandwidth minimization. European Journal of Operational Research, 185(3):1319–
1335.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2nd edition.

Sloan, S. W. (1986). An algorithm for profile and wavefront reduction of sparse matrices. Interna-
tional Journal for Numerical Methods in Engineering, 23(2):239–251.

2416

