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ABSTRACT
One of the most important problems in optical telecommunication networks is the Rout-

ing and Wavelength Assignment (RWA) problem, that consists in selecting routes and wavelengths
to establish communication between the node pairs of the network. In the most common version
of the RWA problem, the goal is to minimize the number of wavelengths required by the network.
Optical networks can be modelled as a graph, with nodes representing the optical routers, and op-
tical fiber links interconnecting some pairs of nodes. In this work, we investigate the use of twin
graphs as an alternative to model optical backbone networks, as recently proposed in the literature.
The work naturally extends to flexgrid optical networks. Twin graphs are suitable for resilient and
cost-effective optical networks, because of the following property: any single node failure causes
no impact on the pairwise hopcounts in the remaining network; and no other graphs with fewer
links satisfy this property.
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1. Introduction
A telecommunications network is called an optical network when the physical medium

used for the transmission of information between network nodes consists in fiber optic cables. In
these networks, to establish a communication between a pair of nodes, it is necessary a continuous
wavelength available along a particular route connecting them.

One of the most important problems in optical networks is the Routing and Wavelength
Assignment (RWA) problem, that consists in selecting routes and wavelengths to establish commu-
nication between the node pairs of the network. Since the number of wavelengths is related to the
cost of the network, in the most common version of the RWA problem, the goal is to minimize the
number of wavelengths required by the network to meet all communication demands [Murthy and
Gurusamy, 2002].

Optical networks can be modelled as graphs, with nodes representing the optical routers,
and optical fiber links interconnecting some node pairs. From this modelling, it is possible to
analyse their physical topologies by using metrics from graph theory. Such analyses can contribute
to the design of new optical networks, and to put forward changes in existing ones, in order to
improve their performance and cost-effectiveness.

For instance, [Baroni and Bayvel, 1997] analysed the number of wavelengths required in
real optical networks, which were modelled as2-connected random graphs such that0.1 < α <
0.4, whereα refers to the link density. The traffic demand was considered uniform, each demand
between a pair of nodes uses a single wavelength and flows through a shortest path, i.e., a geodesic
path connecting the node pair. The number of wavelengths was estimated by a heuristic algorithm.
It was observed that the number of wavelengths is almost independent of the network order, but
strongly depends on the link density.

In [Pavan et al., 2010], a set of29 real-world optical backbone network topologies have
been investigated, and some graph properties of them have been identified, in order to generate
graphs that mimic these properties. Among these properties, we highlight that the real-world optical
backbone topologies in this set have average node degree ranging from2 to 4, and19 of these29
topologies are2-connected graphs, i.e., they present at least2 node-disjoint paths between any pair
of nodes.

Recently, a new way to model optical backbone topologies has been proposed [Paiva
et al., 2013], based on a special family of2-connected graphs called twin graphs [Farley and
Proskurowski, 1997]. Twin graphs are suitable for resilient and cost-effective optical networks,
because: i) each of them provides at least two equal length paths, in number of links, for all non-
adjacent node pairs, which means that all distances on the graph remain unchanged after any single
node failure; and ii) no other graphs with fewer links satisfy this property [Farley and Proskurowski,
1997]. This family of graphs have shown interesting properties with respect to fault tolerance, re-
silience, cost (in number of links) and scalability [Paiva et al., 2013].

In this paper we compare topological characteristics of existing networks with topological
characteristics of networks modelled as twin graphs, in order to verify the advantages and disadvan-
tages of this new model compared to existing networks. In particular, the wavelength requirements
are used for comparing the cost of these networks. The topological characteristics, i.e., the invari-
ants considered in this paper are: number of nodes, maximum degree, minimum degree, average
degree, link density, diameter, average distance, link connectivity, node connectivity, algebraic con-
nectivity, average link betweenness, maximum link betweenness, and minimum link betweenness.

The paper is organized as follows. Section 2 presents concepts from graph theory used
throughout the paper. Section 3 describes the methodology used to obtain our results, which are
presented and discussed in Section 4. Section 5 brings conclusions and future works.

2. Graphs and invariants
A graph is a mathematical structureG = G(V,E), whereV = {v1, v2, . . . , vn} is a non-

empty set of vertices or nodes andE = {e1, e2, . . . , em} is a set of links interconnecting them.
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Each link ek = {vi, vj} corresponds to an interconnection between nodesvi andvj in G. The
number of nodes isn = |V (G)|, and the number of links ism = |E(G)|.

A graph that has no link orientation, no self-loops, i.e., linksek = {vi, vi}, and no more
than one link between any pair of nodes is called a simple graph.

Two nodesv andu are said to be adjacent if there is a link between them. The degree of
a nodev is the number of links adjacent tov in G. The minimum degree among all nodes inG
is denoted asδ = δ(G). Analogously, the maximum degree among all nodes inG is denoted as
∆ = ∆(G). The average degree ofG, denoted as〈d〉 is given by2m/n.

The link densityα(G) of a simple graphG with n nodes andm links is the ratio between
m and the number of links of a complete graph withn nodes. Thus,α(G) = 2m/(n(n − 1)).

A path can be defined as a sequence of vertices and links, without repetition. The distance
between two nodesu andv, denoted asdist(u, v), is the number of links in a shortest path between
u andv. A shortest path betweenu andv is called a geodesic. The diameter of a graphG, denoted
asdiam = diam(G), is the number of links of the largest geodesic inG. The average distance of
G, denoted as〈dist〉, is given by the sum of the distances between every pair of nodes, over the
number of node-pairs.

A graphG is said to be connected if there is at least one path between each pair of nodes
in G. Otherwise,G it is called a disconnected graph.

The node connectivity of a graphG corresponds to the smallest number of nodes which
need to be removed fromG for obtaining a disconnected (or trivial) graph. Analogously, the link
connectivity ofG corresponds to the smallest number of links that need to be removed fromG for
obtaining a disconnected graph.

One of the invariants considered in this work is the average link betweenness. The be-
tweenness centrality is proportional to the fraction of shortest paths between pairs of nodes passing
through a given vertex (or link). This metric was first proposed to vertices in [Freeman, 1977], and
then extended to links in [Girvan and Newman, 2002].

More precise definitions of vertex and link betweenness are given as follows [Comellas
and Gago, 2006]. LetG = G(V,E) be a graph, and letu, v andw ∈ V (G). Denoteσuv(w) as
the number of shortest paths fromu to v that go throughw, and denoteσuv as the total number of
shortest paths fromu to v in G. Then, the betweenness of a vertexw, denoted asBw, is given by:

Bw =
∑

u,v 6=w

bw(u, v), (1)

where:

bw(u, v) =
σuv(w)

σuv
. (2)

Analogously, the betweenness of a linke = uv in G, denoted asBe, is given by:

Be =
∑

u 6=v

be(u, v), (3)

where:

be(u, v) =
σuv(e)

σuv
, (4)

whereσuv(e) denotes the number of shortest paths fromu to v that go through linke, andσuv
denotes the total number of shortest paths fromu to v.

The average link betweenness is given by:

B
E
=

∑
e∈E Be

m
. (5)
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Another invariant considered is the algebraic connectivity [Fiedler, 1973], that is a metric
obtained from the Laplacian matrix of a graph. LetG = G(V,E) be a graph withn nodes, the
Laplacian matrix ofG is given byL(G) = D(G) − A(G), whereD(G) is the diagonal matrix of
vertex degrees ofG, andA(G) is the adjacency matrix ofG.

The adjacency matrix of a graphG, denoted asA(G), is a matrix where entriesaij are1
if there is a link between the nodesvi andvj, and0 otherwise.

Then, the algebraic connectivity of a graphG is defined as the second smallest eigenvalue
of the Laplacian matrix ofG. The algebraic connectivity ofG is denoted asµ2 = µe(G). According
to [William et al., 2011], this measure represents the network potential immunity to failure and thus
it is important in analyses of network survivability.

2.1. Twin Graphs
Let G = G(V,E) be a simple graph. The neighborhoodΓ(v) of a nodev ∈ V (G) is the

set of nodes which are adjacent tov in G. If two nodesu, v ∈ V (G) have the same neighborhood,
then(u, v) is a twin pair inG.

A graphG is 2-connected if and only if there are at least2 node-disjoint paths between
each pair of nodesu, v ∈ G. Since node-disjoint paths are also link-disjoint, a physical topology
modelled as a2-connected graph survives to any single link/node failure, because in this case each
pair of nodes is still connected by a path avoiding the failure. However, there are no restrictions on
the number of links of this path, with relation to the number of links of a geodesic in the original
graph. In this sense, the class of2-geodetically-connected graphs (2-GC for short) is defined as
a particular subset of the2-connected graphs. A graph is2-GC if and only if there are at least2
node-disjoint geodesics between each pair of non-adjacent nodesu, v ∈ G. Thus, in the case of any
single link/node failure, each pair of non-adjacent nodes is still connected by an alternative geodesic
which avoids the failure.

The class of twin graphs consists of2-GC graphs minimizing the number of links, that is,
minimal 2-GC graphs. Moreover, all minimal2-GC graphs are twin graphs, except the cube graph
Q3 and the cycle graphC3. Each twin graph hasn ≥ 4 nodes andm = 2n − 4 links [Farley and
Proskurowski, 1997].

Two methods for building twin graphs were proposed in [Chang et al., 1996]. Both meth-
ods are explained as follows.

2.1.1. Generating twin graphs
Let G1 be a twin graph withn nodes. Starting fromG1 we can obtain a new twin graph

G2 with n+1 nodes by identifying a twin par(u1, v1) ∈ G1 and adding a new nodew2 to that pair.
For instance, we can takeG1 as the cycleC4, which is a twin graph, and generate recursively new
twin graphs by means of the previously proposed method. This process is illustrated in Figure 1.

Figure 1: Generating a twin graph by adding a new node.

Other way to build a twin graph is by merging two twin graphsG1 with n1 = |V (G1)|
andG2 with n2 = |V (G2)|. For this we identify twin pairs(u1, v1) ∈ G1 and(u2, v2) ∈ G2 and
connect them by using 4 new linkse1 = {u1, u2}, e2 = {u1, v2}, e3 = {v1, u2} ande4 = {v1, v2}.
Figure 2 illustrates this process and the twin graphG obtained by merging both twin graphs shown
in Figure 1. Notice thatG is a twin graph withn = 4 + 5 = 9 nodes.
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Figure 2: Generating a twin graph by merging two twin graphs.

3. Methodology
This work analyses the modelling of optical backbone networks as twin graphs in com-

parison with real networks. This analysis is carried out considering, in particular, the cost of the
network, represented here by the wavelength requirements.

We have considered two sets of graphs: a setT of twin graphs, and a setR of real
networks. The setT consists of all twin graphs from9 to 17 nodes, that totalizes742 graphs. The
setR of real networks was taken from the set of29 networks investigated in [Pavan et al., 2010]. It
consists of the12 real networks for which the number of nodes also ranges from9 and17. Table 3
lists the networks inR, their number of nodes, average degree, and connectivity.

Number of nodes Average degree Connectivity
Arnes 17 2.35 1

Austria 15 2.93 1
Bren 10 2.20 2

Cesnet 12 3.17 2
Germany 17 3.06 2

Italy 14 4.14 2
Mzima 15 2.53 2
NSFnet 14 3.00 2

RNP 10 2.40 2
Spain 17 3.29 2

VBNS 12 2.83 2
Vianet 9 2.67 1

Table 1: Description of the real-world networks considered in this paper.

For each graph of both setsT andR, we computed the number of wavelengths, using the
methodology described in [Cousineau et al., 2015], and several other invariants, such as number of
nodes, maximum degree, minimum degree, average degree, link density, diameter, average distance,
link connectivity, node connectivity, algebraic connectivity, average link betweenness, maximum
link betweenness, and minimum link betweenness.

All computations of this work where performed using the IGRAPH package available for
the software R.
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4. Results and discussion
For comparing the efficiency in the use of wavelengths by optical backbone networks

modelled as twin graphs (T ), as opposed to real networks (R), we will carry out analyses by fixing
the network order (n) and investigate what can be expected from their other topological character-
istics.

The distribution of the number of wavelengths by the order of the networks were analysed
for both groupsT andR, as shown in Figure 3. For these network sets, we observe that the number
of wavelengths required by a network modelled as a twin graph is less than or at most equal to the
one required by a real network of the same order.

Whereas the real networks inR need between9 and38 wavelengths, twin graphs of the
same orders presented a reduced requirement, using between5 and18 wavelengths. This result
shows that, when modelling an optical backbone network as a twin graph, one could build an order
n network such that, in addition to having all properties of this class of graphs, it requires less
wavelengths than any ordern real network inR.

The Histogram 4(a) and the Boxplot 4(b) show the unidimensional distribution of the
number of wavelengths for the setsT andR. Both groups show asymmetric distributions for the
number of wavelengths, with the average ofT (14.8) andR (18.6) being affected by extreme values.
The median values ofT andR are16 and16.5, respectively, showing that the central point of data
is quite near. The graphs inT show few values above the median, whereas the networks inR
show quite distant median values, resulting in a positive asymmetric distribution of the data. Also,
the variability is greater inR than inT , and the absolute average deviation results in7.41 for the
networks inR, and in2.97 for the graphs inT .
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Figure 3: Distribution of the number of wavelengths by the numberof nodes, for both setsT andR.

As shown in [Paiva et al., 2013], twin graphs have2 ≤ 〈d〉 < 4. That range is close to the
average degree of networks inR, 2.2 ≤ 〈d〉 ≤ 4.14, as shown in Table 3.

For a fixedn, we observe in Figure 5(a) that twin graphs generally show average degree
greater than that presented by real networks. This invariant can also be seen as a means to assess
the cost of a network [Pavan et al., 2010]. Thus, according to that criterion, the twin graphs are
less attractive as topology model, since the decrease in the use of wavelengths for this class is
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associated with an increase in the average degree. Then, it is important to evaluate the cost-benefit
of prioritizing one of those parameters with respect to the other.

Figure 5(b) shows the behavior of the variable link densityα for both groupsT andR.
For a fixedn, we see that most existing networks inR are less dense than twin graphs inT . When
comparing Figure 5(b) with Figure 3, we find that the reduction on the use of wavelengths for twin
graphs can be due to their higher link density. Therefore, in the case of designing an ordern network
whereα is a critical variable, modelling the network as a twin graph would be beneficial if the cost
of adding new links is less than the cost of using more wavelengths.
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Figure 4: Histogram 4(a) and Boxplot 4(b) of the number of wavelengths.

Figures 5(c)- 5(e) show the distribution of invariants related to link betwenneess for fixed
values ofn. On average, the link betwenneess is higher for networks inR than inT . Despite the

minimum value for the link betwenneess is lower in real networks, the average link betweennessB
E

is affected by the maximum values that were higher than those found in twin graphs. The increase
in link betwenneess is related to increased congestion in the links, which influences the greater
wavelength requirements. With this result, we see that the best use of wavelengths by graphs in
T is result of lower average congestion presented by their links. In the case where congestion is a
critical variable in the design of the network, using a twin graph topology is shown as an alternative
to decrease the wavelength requirements.

Figure 5(f) shows the distribution of maximum degree∆. For the graphs inT , 4 ≤ ∆ ≤
15, whereas for networks inR, 3 ≤ ∆ ≤ 10. By fixing n, we can obtain networks modelled by
twin graphs having a widely varying values of∆, it is possible to increase∆ at most ton− 2 while
still using less wavelengths than the required inR. Thus, the twin graphs modelling is interesting
for networks having central nodes (nodes with a high value of maximum degree), providing lower
cost due to the reduced use of wavelengths.

For the groupT , it was obtained1.61 ≤ 〈dist〉 ≤ 3.12. This result is consistent with
that obtained for the networks inR, where1.87 ≤ 〈dist〉 ≤ 3.02. Figure 6(a) shows that, for a
givenn, 〈dist〉 shows no considerable difference of behavior between the two groups. Thus, in
relation to〈dist〉, twin graphs are comparable with real networks, and also reduce considerably
the requirement of wavelengths, as shown in Figure 3. The two groups neither show considerable
difference of behavior in the diameter, according to Figure 6(b). For graphs inT , 2 ≤diam≤ 8.
Such a result is close to that obtained inR, where3 ≤diam≤ 6.

The real networks inR showed lower or at most equal algebraic connectivityµ2 than
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Figure 5: Distribution of the average degree 5(a), the link density 5(b), the minimum link betweenness 5(c),

the average link betweenness 5(d), the maximum link betweenness 5(e), and the maximum degree 5(f), by

number of nodes.
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graphs inT , as Figure 6(c) shows. ForR, 0.19 ≤ µ2 ≤ 0.81, whereas forT , 0.27 ≤ µ2 ≤ 2.
According to [William et al., 2011],µ2 is directly related to the number of independent paths in
the graph. Therefore, the increase ofµ2 tends to be inversely proportional to the requirement of
wavelengths and proportionally associated with the increasing of robustness of the network. For
fixed values ofn, it is possible to find twin graphs showing better results forµ2 than the values
obtained by real network inR. Based on this criterion, the choice of a twin graph as network
topology conciliates the use of wavelengths with protection to network failures in a better way than
real networks inR. The twin graphs that maximized the algebraic connectivity (µ2 = 2) are known
as complete bipartite graphs.
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Figure 6: Distribution of the average distance 6(a), the diameter 6(b) and the algebraic connectivity 6(c) by

number of nodes.

For the other invariants, the twin graph class shows constant values, withδ, node connec-
tivity and link connectivity equal to2. The real networks inR also showδ and link connectivity
equal to2, for all networks. The results for node connectivity are presented in Table 3.

We close this section by presenting the results obtained when the number of wavelengths
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is jointly distributed with the invariants in study. For this, weconsider the invariants that the above
analyses have indicated in association with the wavelength requirements. These invariants are the
average degree〈d〉, the link densityα, and the maximum link betweennessBmaxE , shown in
Figures 7 and 8.

When considering the entire sample, the invariants〈d〉 (Fig 7(a)) andα (Fig 7(c)) show
good correlation with the number of wavelengths. However, by fixing the number of nodesn
(Figs 7(b) and 7(d)), both of these invariants are constant. Thus, they do not explain the variation
in the wavelength requirements. Given that, when designing an optical network,n is an input
parameter of the problem, not a variable, it is necessary to find invariants that show good correlation
with the number of wavelengths for each fixedn.

The maximum link betweennessBmaxE presented a very strong positive linear correla-
tion ρ = 0.995 with the wavelength requirements, see Fig 8(a). A simple linear regression was
performed to predict the number of wavelengths based onBmaxE . The regression equation ob-
tained is0.385+0.976∗BmaxE , with R2 of 0.99 and residual stardard error of0.335. Thet− test
presented strong evidence that both these model coefficients are significantly different from zero
(p− value < 0.001). These results show a significant correlation between the variables maximum
link betweenness and wavelength requirements.

Forn fixed,BmaxE also showed a very strong positive linear correlation with the number
of wavelengths. Givenn = 17 (Fig 8(b)), the result for linear correlation wasρ = 0.983, pointing
out that the number of wavelengths is proportionally related to the maximum link betweenness.
Notice that this result agrees with the one found for the entire sample.

Moreover, these result shows how a single link could affect the wavelength requirements.
For a twin graph of ordern = 17, the wavelength requirements range from9 to 17, whereas the
maximum link betweenness ranges from8.07 to 18.5. Therefore,BmaxE appears as an important
invariant to be considered in solving the RWA problem, since the control on this invariant showed
to be related to the reduction of the wavelength requirements.

5. Conclusion
We have presented the results obtained from comparative analyses between modelling

networks as twin graphs and real networks. Several invariants of graph theory were compared
in order to identify the main differences between the topological characteristics of these groups.
The results help us to decide when twin graphs are indeed advantageous for the design of optical
networks. Notice that this work naturally extends to the study of Elastic Optical Networks.

Our analyses showed that twin graph topologies lead to networks requiring less wave-
lengths, when compared to a set of real networks of the same orders. This reduction is usually
achieved by the higher density and the lower congestion observed in twin graphs. Thus, an optical
backbone network modelled as a twin graph could benefit from both fault tolerance and cost savings
caused by the greater efficiency in using wavelengths.

In addition, we have found an invariant which presents a very strong correlation with
the number of wavelengths. The maximum link betweenness showed to be directly related to the
wavelength requeriments. Then, this invariant can be then used for solving the RWA problem, in
order to minimize the network cost.
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Figure 7: Number of wavelengths with respect to: 7(a) the average degree for all graphs inT and inR, 7(b),

the average degree for graphs inT and inR with 17 nodes, 7(c) the link density for all graphs inT and in

R, and 7(d) the link density for graphs inT and inR with 17 nodes.
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Figure 8: Number of wavelengths with respect to the maximum link betweenness, 8(a) for all graphs inT

and inR, and 8(b) for graphs inT and inR with 17 nodes.

Comellas, F. and Gago, S. (2006). Spectral bounds for the betweenness of a graph.Linear Algebra
and its Applications, 423:74–80.

Cousineau, M., Perron, S., Caporossi, G., Paiva, M. H. M., and Segatto, M. E. V. (2015). RWA
problem with geodesics in realistic OTN topologies.Optical Switching and Networking, 15:
18–28.

Farley, A. and Proskurowski, A. (1997). Minimum self-repairing graphs.Graphs and Combina-
torics, 13:345–351.

Fiedler, M. (1973). Algebraic connectivity of graphs.Czechoslovak Mathematical Journal, 23(98):
298–305.

Freeman, L. (1977). A set of measures of centrality based on betweenness.Sociometry, 40:35–41.

Girvan, M. and Newman, M. (2002). Community structure in social and biological networks.Proc.
Natl. Acad. Sci., 99.

Murthy, C. and Gurusamy, M. (2002).WDM optical networks: concepts, design, and algorithms.
Prentice Hall, New Jersey.

Paiva, M. H. M., Caporossi, G., and Segatto, M. E. V. (2013). Twin graphs for OTN physical
topology design.Les Cahiers du GERAD, 48:1–12.

Pavan, C., Morais, R. M., Rocha, R. F., and Pinto, A. N. (2010). Generating realistic optical
transport network topologies.IEEE/OSA Journal of Optical Communications and Networking,
2(1):80–90.

William, L., Pawlikowski, K., and Sirisena, H. (2011). Algebraic connectivity metric for spare
capacity allocation problem in survivable networks.Computer Communications, 34:1425–1435.

1187


