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RESUMO

Este trabalho apresenta um algoritmo que combina busca local iterada e programacao
dindmica para tratar a versao robusta do problema de sequenciamento em uma maquina com
atraso total ponderado. Um conjunto de incertezas orcado foi considerado com o objetivo de
modelar a incerteza sobre os tempos de processamento das tarefas, bem como para controlar o
nivel de conservadorismo sobre os dados de entrada. Foram realizadas simulacdes sobre os
resultados obtidos a fim de comparar as abordagens robusta e deterministica em relagdo aos
sequenciamentos otimizados. O algoritmo robusto apresentou melhores resultados quando ha
pouco atraso nas tarefas de uma determinada sequéncia, apresentando piores resultados se o
atraso medio das tarefas for significativamente alto. No entanto, ao se avaliar as caudas das
distribui¢cdes dos custos simulados, a solugéo robusta decresce mais rapido do que a abordagem
deterministica em todos os casos observados.
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ABSTRACT

In this paper, we developed an algorithm based on both iterated local search and
dynamic programming to deal with the robust version of the single machine total weighted
tardiness-scheduling problem. The budgeted uncertainty set was used to model the uncertainty
over the jobs processing times and to control the degree of conservatism on data. Simulations
were performed to compare both the robust and the deterministic approaches on the schedule
optimization. The robust algorithm presents better results if there are few delayed jobs in a
sequence, being moderately worse in cases where the average jobs tardiness is significantly high.
However, considering the tails of the simulated cost distributions, the robust solution presents
faster decrease in all observed cases.
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1. Introduction

Robust Optimization (RO) problems constitute an intense research field given their
theoretical and practical relevance. A wide variety of optimization problems are often stated
considering precisely defined numerical parameters, which in many cases are only possible to be
actually known by the time the solution is effectively implemented. Thereby, rather than exact
values of the input data, one may define a set of all their possible realizations scemaib set
[Kasperski and Zietiski 2016] or originally uncertainty sefBen-Tal and Nemirovsky 1998]. In
fact, by taking into account the uncertainty of the data, a solution is said to be feasible if it is
feasible for all realizations of the data in a predetermined uncertainty set [Poss and Raack 2013].

The most relevant frameworks and developments in the field of RO are relatively
recent, especially on the aspects related to tractability, conservativeness, probability guarantees
and flexibility. The main advantage about RO rather than others approaches to deal with data
uncertainty in optimization likeStochastic Optimizatioms the knowledge about probabilistic
behavior of the data, which requires to meet restricted conditions [Bext-al&2009], besides to
be difficult to measure and obtain the actual probability function of data in many practical
applications [Bertsimas and Sim 2003]. An example of stochastic optimization approach can be
found in [Ranjbar et a&2012], where the authors study the problem|axwhen the processing
times are stochastic according to a normal distribution. Their goal is to found a schedule that
maximizes the customer service level, which is the probability of the makespan not exceeding the
due date. They proposed a non-linear formulation and developed exact branch-and-bound
algorithms to the problem, as well as provide upper / lower bounds and dominance rules to
accelerate B&B procedures. Opposed to this idea of knowing the probability distribution of the
data, RO states that the unknown parameters belong to determined uncertainty sets and imposes
that constraints must be feasible for all parameters values in the uncertainty set [Poss 2013].

In this sense, [Kouvelis and Yu 1997] proposed three different robustness criteria in
order to evaluate the objective function values of the solution under any likely input parameter
scenario, which are: the absolute robustness or worst-case scenario, the maximal regret or robust
deviation and the relative robust deviation. In this paper, we seek for a solution minimizing cost
in a worst-case scenario. Regarding to the uncertainty sets, [Garisa@®15] develop a guide
to construct different kinds of sets from a given uncertainty constraint formulation and provide
additional references in theoretical investigations to each referred set.

Such as other optimization problems, Scheduling has also a wide source of uncertainties
that may affect real scheduling schemes. Machine failures and setup times, working environment
conditions, labor productivity, changes in tasks’ order or due dates among other unavailability
factors might turn down the yields of an optimal schedule. Therefore, robust schedules have a
practical interest since they provide hedge against system adverse conditions. In spite of its
relevance in real problems, robust schedule has not been turned into practical frameworks
whereas even simple scheduling problems becbiRénard as soon as the uncertainty set
contains more than one scenario [Alalou and Croce 2008], [Daniels and Kouvelis 1995], [Yang
and Yu 2002]. Complementarily, [Kouvelis and Yu 1997] has proved that robust discrete
optimization problems are harder to solve, in the computational complexity sense, than their
deterministic counterparts are. However, these negative aspects do not undermine efforts in
providing solutions to robust schedules through the development of heuristic or linear approaches
instead of strictly combinatorial algorithms.

[Alalou and Della Croce 2008] provide algorithmic and computational complexities for
a set of well-known non-preemptive polynomial-time single machine-scheduling problem. By
considering the scenario-based framework, in which all possible data realizations must be
explicitly described, and the absolute robustness criterion, the authors develop complexity proofs
for the robustness versions of thiprec|fqx, 111 X w;C; and1]| X U; (see [Grahanetal 1979]
for notations’ description). For each problem, they considered the uncertainty on the parameters
processing time, release date, due date and weight pfyobtler each possible scenario. In the
same context, [Najet al 2015] propose an artificial scenarios based approach to construct and
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identify robust schedules in an environment of unrelated parallel machines, which objective is
minimizing makespanQuax) when the splitting is tolerated. The uncertainty of processing time
was taking by mean of discrete scenarios and the robustness was evaluated according to a worst-
case strategy. [Yang and Yu 2002] evaluate the robust problem of minimizing the sum of
completion time in a single machine environment considering a finite number of generic
scenarios. The authors prove that this problem is NP-Complete and provide polynomial time
heuristics and a dynamic programming to find optimal solutions. [Faria$ dr2010] analyze

the machine environment 1|W)C; and develop a large family of valid inequalities for the convex
hull of the set of feasible robust schedules, considering the min-max criterion in a scenario
strategy. [Mastrolilliet al 2013] adopt worst-case scenario strategy and model uncertainty in the
single machine-scheduling problem minimizing the weighted sum of completion times. They
presented a polynomial-time algorithm based on dynamic programming for when the number of
scenarios and the values of the instances are bounded by some constant.

On the other hand, [Lat al 2014] explore the uncertainty over the processing times in
a constraint-based assumption, that is, each parameter may take any value between given lower
and upper bounds, independent of the values of the other problem parameters. The authors
proposed and compared the results of a mixed integer linear program (MILP), a simple iterative
improvement (Sll) heuristic and simulated annealing (SA) heuristic in min-max criteria to
minimize the worst-case @f,,, in a robust single machine-scheduling problem. They describe
the uncertainty on the processing time by using intervals and adopted the budget pdtaaseter
described in [Bertsimas and Sim 2004] aiming to control the degree of solution conservatism. In
their MILP formulation, [Lu et aP014] were capable to find the optimal solution for all instances
with 50 and 100 jobs, whereas only five of eleven instances with 200 jobs had their optimal
solutions obtained in the maximum computing time. Among heuristics, SA outperforms SlI for
all instances sizes, besides having found better solutions in nine of eleven instances with 200
jobs, surpassing the MILP vyields. They also perform a simulation over the instances showing
that, ad increases, the central tendency of simul#&igg, is more significant, i.e., leads to less
variability. In a similar way, we model the uncertain on the processing times in the constraint-
based framework by considering the budgeted uncertainty set, which has advantages on both
computational complexity and probabilistic guarantees, leading to a very large use of this set in
discrete optimization problems under uncertainty [Pessoa2€tlal].

In this paper, the problem of minimizing the robust total weighted tardiness sum in a
single machine environment is addressed. Encouraged by the positive results brought by
[Bertsimas and Sim, 2003] we consider the robust counterpart of thavTj| assuming the
budgeted uncertainty set for the processing times. In this set, defined in [Bertsimas and Sim
2004], a positive integel” controls the degree of conservatism by limiting the number of jobs
that might vary simultaneously from their respective nominal values. To solve this problem, we
propose an algorithm based upon iterated local search combined with a dynamic programming
procedure. Then, we compare the obtained robust schedules with the optimal deterministic
schedules obtained through the algorithm stated in [Rodrigues2008] using Monte Carlo
simulation, in order to evaluate the yields of the robust approBicl. optimality of the
deerministic solutions to the problem considered in this paper has been proven by [@aalaka
2008].

Besides the introductory Section, this paper presents the following organization:
Section 2 describes the single machine robust total weighted tardiness problem, as well as the
notation to be used in all other parts of this work. Moreover, we provide a description on the
budgeted uncertainty set and how we consider it in the processing time of the jobs. In Section 3,
we present the min-max algorithm implemented to minimize the maximum total weighted
tardiness given all possible realizations of the processing times in a given scenario. Additionally,
we also describe the simulation performed for both deterministic and robust solutions to evaluate
the quality of the robust scheduling. Section 4 is dedicated to the results and to the comparative
analysis on the simulation output data. Finally, Section 5 points out some conclusions, further
investigations and future developments regarding this problem.
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2. Problem statement

Consider a sef = {1,...,n} of jobs to be processed in a single machine without
preemption. It is possible to process only one job at a time in the machine. All jobs are available
for processing in time = 0, each jobyj requires a processing tirpg, and has a due daik and
a positive weightv;. The tardiness of a jopin relation to its due date is defined Bs=
max{C; — d;}, where C; is the completion time of job The deterministic version of this
scheduling problem consists in sequencing the jobs in the machine to mﬁﬁt_njzg-?}. If mis

a permutation of the jobs in the seof feasible schedules apdis then-tuple of the processing
times, it is possible to rewrite this this problemrg?f(n, p), wheref (m,p) = Y-, w;T;. As
s

proved in [Lawler 1977], this problem is strong§P-hard. In case ob; = 1,j € {1, ..., n}, the
problem becom&lP-hard in the ordinary sense [Du and Leung, 1990], albeit may be solved in
pseudo-polynomial time [Lawler 1977].

In this paper, we focus on robust counterpart of this problem, using the budgeted
uncetainty set referred to as robusf| Y w;T; for short. Instead of providing optimal solutions
given deterministic sets of input data, we are interested in model the uncertainty in processing
times by a finite sdl ¢ R™. Consequently, the robust problem aims to minirfiize p) over all
p €U or, in a formal Way?rléglF(ﬂ, U) whereF (m, U) =r;1€al)]<f(7'[,p) is the robust cost of

permutationz. Based on the structured approach provided by [Bertsimas and Sim 2003], we
consider the following uncertainty set definition in order to model the deviation on the processing
times:

Ul={peR": pj=p,+6p,j €{1,..,n},6 € [-11], ¥, |§| <T}.

Where p, and 3 are respectively referred to as the mean processing time jodijmbits
deviation, and the parameféadjusts the robustness of the solution by controlling the number of
processing times which vary at the same time to their maximum values. Based upon an
independence assumption amongst variables, one may think intuitively that the chance of many
coefficients change simultaneously in a real scheduling is quite unlikely. The Section 3 describes
the heuristic procedures and the dynamic programming associated to deal with this min-max
problem.

3. The Algorithm

Let © = {m,, ,, ..., T,} be a permutation of the job indicés...,n. Essentially, the
procedure herein has two phases. The algorithm computes its first solution as a permuofation
jobs obtained according to the well-known Earliest Due Date (EDD). Then, in the minimization
phase, the algorithm performs a local search over a neighborhood defined by Generalized
Pairwise Interchanges (GPI) moves as stated in [Della Croce 1995]. These moves consist as both
exchanges of pairs of jobs (not necessarily adjacent) and removal-and-insertion moves of a job.
This local search phase occurs until no more improvements are possible in the current robust
solution. This heuristic procedure was firstly proposed in [Rodrigiies 2008] for parallel
machine weighted tardiness probléRj| X w;T;) and we adapted it to the robasgfy w;T;.

Algorithm 1 presents the steps of the adapted local search heuristic. In the algdrithm,
represents the best current solution. The funati(rr) computesF (rr, U) for a given schedule
m, using dynamic programming to find optimally the worst-case solution for this permutation.
Then, it returns both the robust costofnd the sek of I' augmented jobs, i.e. jobs whage#

0, used to compute this cost. Alternativelypt;, (', K) calculates the cost of scheduté

considering a fixed sekK. ParametersV, g and L control the loops over a given initial
permutation, the number of 2-change moves performed in each perturbation and the frequency in
which a current solution is superseded for a totally random permutation, respectively. If there are
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not more improvements applying GPI moves, the algorithm exegutasdomly perturbations
through the pairwise moves over the current solution in order to run off from local optima.
During the execution of the proposed algorithm, each new GPI move performeek adofirgtly
evaluated by computingpts;, (', K) for the modified permutatiom’ using the seK of
augmented jobs found in the calculation @bt(rw). This calculation is used as a fast
underestimation of the value apt(w'). If this cost does not improve the robust costothen

the move is rejected. Otherwise, an exact evaluation of the move is proceeded, causing a rejection
of the move if the exact robust cost no longer improves the current solution. A preliminary
experiment with an instance of 40 jobs showed that this mechanism reduces the overall running
time by a factor of 43.

Algorithm 1 Iterated local search for robus}| ¥ w;T; (Adapted from [Rodrigues et 2D08])

e j «0; 1« 0; m* « a permutation following the EDD rule
* (C*",K") « opt(m")
* Whilej<3x*N
- Ifl=0o0rl = Lthen
= 7 < arandom permutation < 0
- (C,K) « opt(m);C" « —o0
- Whilec' < C
= For eachGPI move over
o n' < GPI move over
0 (CK) « optpu (', K)
o If ¢'<C Then(C',K") « opt(n")
o fC’'<CThenten'";C « C'; K «K'
s fC<C*Thenn*e«n';C*« C; K* <K
- Performg randomly chosen 2-change moves over
- 1 « 2-change move over
- jej+llel+1

Given a permutation, the corresponding robust cost and the associate® st
augmented jobs are calculated as follows. For eagl, ...,n, and y = 0, ... min{y, }, IetPK,y
be he set of all possible sums ofdgviations from jobs,, ..., m,., that is,

By ={Zjespi 1S {1, ...k} IS| =7}

Let alsop(m, k) = Y=, Pr,- We definef*(x,y,s) as the largest cost of the partial
schedule(ry, ..., ) augmenting exact jobs so that the sum of deviations of the augmented
jobs is exactly. The proposed dynamic programming algorithm calculates the value
of f*(k,y,s) for eachk =1,..,n,y =0,..,min{y,k} and s EP,C_I using the following
recursion:

(W,c*max{O,ﬁ,Tl—dnl} ifk=1Ly=0ands=0
Wk*max{O,ﬁn1+;5n1—dn1} ifk=1y=1ands = pg,
min{f*(lc—l,y—1,s—}§nx),f*(k—1,y,s)} +

k Wy * max{O, p(m, k) +5s— d,,x} ifk>1

frle,y,s) =

After each GPI move and before the computation of the robust cost by dynamic
programming, the cost of the current solution is calculated considering the augmented jobs of the
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previous schedule as this gives a lower bound on the robust cost of the solution. If the obtained
cost does not improve, the exact cost evaluation can be skipped. This procedure was adopted in
order to avoid unnecessary dynamic programming calculations and, consequently, reduce the
CPU time to compute an entire robust solution.

4. Computational experiments

The experiments consider only instances with 100 jobs. We seN = 100, q = 3,

L =10 andT = 10. We performed 300 perturbations over the current solutions in order to
change the search space to the algorithm. For each new sequence randomly generated, we
evaluate 1.565 x POGPI moves in the current sequence. We consider a scenario in which the
jobs processing times are augmented only 50% of to their nominal values, filnat i|é{).5 * ﬁj].

The reported times were obtained with an Intel® CWr& 3.4 GHz processor. The algorithm

was developed in C++ language.

The experiments were performed on available instances for this problem in OR-Library.
[Crauwelset al 1999 have generated this set of instances as follows: integers value for both
processing timep; and weightsy; were obtained from uniform distributions over [1, 100] and
[1, 10], respectively. The relative range of due dates (RDD) and the average tardiness factor (TF)
are likely to define the problem “hardness”. That way, after having computed’_; p; and
sdected from the sef0.2,0.4,0.6,0.8,1.0} the values for RDD and TF, all due datgsare
generated from the uniform distributig®(1 — TF — RDD/2),P(1 —TF + RDD/2)]. The
authors generated five problems for all the 25 possible combinations of RDD and TF, yielding
125 instances to a given 8ince our objective is evaluating the behavior of the robust schedules
against their deterministic versions regarding to tardiness, in this analysis we discard those
groups of instances in which deterministic costs are zero.

The results obtained in this paper were compared to those reached by the deterministic
optimal solution. Thus, in order to evaluate the quality of the robust scheduling, we run 10,000
simulations on both deterministic and robust solutions of each instance considering a random
triangular distribution for processing times. In practice, this probability density function is more
effective on turning into parameter estimates (minimum, maximum and most likely values) the
decision-maker’s subjective viewpoints than other probabilities functions [Stein and Keblis
2009]. The most likely values are the nominal processing times of the jobs, and the maximum
and minimum values are symmetric in a range of [-50%; +50%)] afgund

Table 1 summarizes the results of robust and simulated costs to all groups of instances.
All data are presented as average values of their respective groups. The percentages shown in
table are deviations from the average cost of deterministic optimal solutions. The two last
columns point out the average total CPU time and the average time to reach the best solution for
each instance group, respectively. It is important to notice that the robust costs of the robust
heuristic solutions are clearly better when compared to the robust costs of the deterministic
optimal solutions, which may be observed in all instances groups evaluated. Indeed, those
findings are relevant and are not so obvious since the optimization on robust schedules does not
ensure optimality.

Another important observation refers to the simulated data. For instance, in an 85%-
percentile, one may observe that 62% of groups presents their heuristic robust costs smaller than
the robust cost of deterministic optimal solutions. For a 95%-percentile, 90% of the groups have
their heuristic robust costs smaller, and at the 99%-percentile we reach 100% of the instances
groups following this behavior. Despite the good results obtained, one could perceive the
disadvantage in robust approach if the intended objective is to optimize average cost, once the
deterministic simulated average cost had a better performance for most instances with larger
values of TF. On the other hand, it is not possible to determine whether the underperformance of
robust schedules is due to the “hardiness” associated to the instances or whether the robust
method is not the best approach to this instance group. In contrast, groups 1, 6 and 15, in which
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TF is smaller, the robust approach shows itself with advantages on deterministic solutions.
Indeed, in real situations the decision-maker would be willing to deal with small delays rather
than infeasible or too delayed schedules.

Figures 1 to 3 presents a graphical view of the simulations performed on both robust
heuristic and deterministic solutions. A vertical straight dashed line on the same color of its
respective distribution indicate the average value to each kind of simulated solution (robust
heuristic and deterministic optimal). The abscissa axis represents the percentage distance from
the average cost of the optimal deterministic solution for the indicated group. Thus, Figure 1
illustrates an instance group where the simulated values for the heuristic robust solutions are not
only better in the average but also have a short tail than simulated costs of deterministic ones.
Figure 2 points out a case where simulated costs of both solutions are almost equivalent. In
Figure 3, it is possible to notice that the distributions of the simulated costs are very different
from each other, prevailing a clear advantage to the heuristic when the distribution tails are
confronted.

Figure 1 — Robust solution simulations for instance group 1.

Figure 2 — Robust solution simulations for instance group 10.
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Figure 3 — Robust solution simulations for instanceugr 16.

5. Corrlusion and future developments

In this paper we presented a heuristic approach to deal with the robust version of the
single machine total weighted tardiness scheduling problem. The proposed algorithm considered
the uncertain nature of data over the processing times and the budgeted uncertainty set was
assumed to model the variability and to control the level of conservatism on the values. The
heuristic presented good performance in computing robust costs when compared to those
obtained straight from the optimal deterministic solutions. Furthermore, as denoted in the
simulated results, the robust algorithm is better on average if there are few delayed jobs in a
schedule and is moderately worse on most of the cases. However, by considering the probabilistic
guarantee from which a solution will not surpass a certain limit, the simulated results evince the
better performance of the robust schedule.

For the next steps, we will develop further investigations by considering slack in the
processing times, by evaluating the simulation’s behavior to other probability distributions rather
than the triangular and by comparing the proposed algorithm with other similar approaches in
literature for the same problem. Moreover, we intend to apply other values of parBrmetiee
uncertainty set to evaluate eventual improvements or worsening in the obtained solutions.
Finally, we will try to derive a theoretical probabilistic guarantee on the deviation from the robust
cost since the well-known theorem of [Bertsimas and Sim 2004] only applies to linear objective
functions.
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Table 1 - Results of robust scheduling on single machine total weighted tardiness problem (Average values for each inst

| Robust Simulated  Simulated Simulation percentiles (Calculated on DC) . Time
_:@m”w”mm TF RDD _Mﬂmwm _umoﬁmﬁm_w_o Determ. Cost wmug%w%ﬁ Determ. Cost RotustCost|  Pr[85%] Pr[95%] PI[99%] M%Mv Best

(% onDC) (% onDC) (% onDC) | peterm. Robust | Determ. Robust| Determ.  Robust RO(s)
1 02 02 15 53438 | 718.0% 211.2% 122.6% 55.8% | 323.8% 93.7% | 597.9%  117.6% | 956.3%  147.8% | 201.1 54.9
2 04 0.2 6-10 52,570.0 121.1% 58.6% 16.6% 13.9% 62.2% 34.1% 99.6% 44.2% 146.8% 55.8% 355.2 203.7
3 06 02 11-15 185,027.8 62.4% 29.5% 7.3% 10.3% 33.2% 34.0% 55.1% 46.2% 82.8% 55.0% 515.1 338.8
4 08 0.2 16-20 433,824.6 31.2% 17.3% 3.3% 6.8% 25.6% 31.6% 38.3% 39.0% 51.3% 44.3% 869.6 600.0
5 1.0 0.2 21-25 665,021.4 13.2% 8.8% 1.3% 1.6% 31.3% 33.7% 42.5% 38.7% 50.3% 42.4% | 1,020.9 774.1
6 02 04 2630 256.6 | 12,036.0% 2,771.1% | 2600.6%  1,360.6% |6,175.1% 1,694.4%|12,329.4% 1954.5%|21,521.8% 2,290.2%| 173.5 349
7 04 04 31-35 24,792.8 331.4% 105.5% 54.3% 48.1% 150.9% 88.2% 265.9% 110.0% | 419.6% 128.4% 362.5 228.0
8 06 04 36-40 132,402.4 100.8% 40.1% 13.6% 18.5% 53.5% 55.7% 85.5% 68.3% 122.7% 77.6% 556.7 227.2
9 08 04 41-45 374,993.8 38.2% 20.2% 4.5% 7.6% 27.2% 29.3% 39.8% 35.7% 53.6% 40.9% 799.8 484.0
10 1.0 04 46-50 691,626.8 14.5% 9.6% 1.6% 2.3% 18.7% 20.7% 27.3% 25.6% 34.8% 29.1% | 1,009.7 612.0
11 04 06 5660 12,9550 | 597.9% 164.2% 111.1% 98.6% | 297.1% 192.1% | 528.0%  219.1% | 834.7%  2430% | 3823 2277
12 06 06 61-65 85,544.2 163.6% 56.8% 24.7% 35.0% 75.3% 63.3% 119.9% 75.9% 171.0% 85.8% 590.0 347.3
13 08 06 66-70 315,179.2 42.4% 19.4% 5.5% 11.1% 36.8% 40.3% 51.5% 44 8% 66.0% 49.2% 763.4 449.0
14 10 06 71-75 607,101.8 17.0% 10.1% 1.8% 3.3% 10.4% 9.0% 15.6% 11.6% 21.3% 14.4% | 1,032.2 496.3
15 04 08 81-85 656.6 [ 11,718.1% 2,028.1% 2,009.7% 1,265.3% |4,777.3% 1,621.5%| 9,334.4% 1,987.3%|15,700.9% 2,322.9%| 533.5 204.9
16 06 08 86-90 67,259.2 233.2% 71.9% 38.8% 49.4% 1058% 76.6% 172.1% 85.2% 248.3% 93.5% 670.8 402.3
17 08 0.8 91-95 295,368.4 47 5% 21.1% 6.6% 9.2% 25.1% 21.5% 38.0% 25.0% 52.1% 28.5% 832.3 412.7
18 1.0 0.8 96-100 576,902.0 19.8% 10.8% 2.0% 2.8% 20.4% 19.4% 27.4% 24.0% 34.5% 27.5% 884.5 461.2
19 06 1.0 111-115 132,623.0 123.2% 45.6% 21.0% 25.8% 71.0% 52.1% 106.3% 58.4% 143.7% 65.4% 759.9 393.1
20 08 1.0 116-120 300,435.0 44.0% 18.7% 6.4% 13.0% 28.5% 38.3% 41.9% 44.9% 55.6% 49.7% 755.8 455.8
21 10 10 121125 4861142 | 20.5% 13.0% 3.1% 4.0% 225% 21.1% | 314%  244% | 39.9%  27.6% | 8786 3628
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