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RESUMO 

 
Este trabalho apresenta um algoritmo que combina busca local iterada e programação 

dinâmica para tratar a versão robusta do problema de sequenciamento em uma máquina com 
atraso total ponderado. Um conjunto de incertezas orçado foi considerado com o objetivo de 
modelar a incerteza sobre os tempos de processamento das tarefas, bem como para controlar o 
nível de conservadorismo sobre os dados de entrada. Foram realizadas simulações sobre os 
resultados obtidos a fim de comparar as abordagens robusta e determinística em relação aos 
sequenciamentos otimizados. O algoritmo robusto apresentou melhores resultados quando há 
pouco atraso nas tarefas de uma determinada sequência, apresentando piores resultados se o 
atraso médio das tarefas for significativamente alto. No entanto, ao se avaliar as caudas das 
distribuições dos custos simulados, a solução robusta decresce mais rápido do que a abordagem 
determinística em todos os casos observados. 
 
PALAVRAS CHAVE. Sequenciamento Robusto, Máquina Simples, Conjunto de Incertezas 
Orçado. 
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ABSTRACT 

 
In this paper, we developed an algorithm based on both iterated local search and 

dynamic programming to deal with the robust version of the single machine total weighted 
tardiness-scheduling problem. The budgeted uncertainty set was used to model the uncertainty 
over the jobs processing times and to control the degree of conservatism on data. Simulations 
were performed to compare both the robust and the deterministic approaches on the schedule 
optimization. The robust algorithm presents better results if there are few delayed jobs in a 
sequence, being moderately worse in cases where the average jobs tardiness is significantly high. 
However, considering the tails of the simulated cost distributions, the robust solution presents 
faster decrease in all observed cases.       
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1. Introduction 
 

Robust Optimization (RO) problems constitute an intense research field given their 
theoretical and practical relevance. A wide variety of optimization problems are often stated 
considering precisely defined numerical parameters, which in many cases are only possible to be 
actually known by the time the solution is effectively implemented. Thereby, rather than exact 
values of the input data, one may define a set of all their possible realizations, named scenario set 
[Kasperski and Zieliński 2016] or originally, uncertainty set [Ben-Tal and Nemirovsky 1998]. In 
fact, by taking into account the uncertainty of the data, a solution is said to be feasible if it is 
feasible for all realizations of the data in a predetermined uncertainty set [Poss and Raack 2013]. 

The most relevant frameworks and developments in the field of RO are relatively 
recent, especially on the aspects related to tractability, conservativeness, probability guarantees 
and flexibility. The main advantage about RO rather than others approaches to deal with data 
uncertainty in optimization like Stochastic Optimization is the knowledge about probabilistic 
behavior of the data, which requires to meet restricted conditions [Ben-Tal et al 2009], besides to 
be difficult to measure and obtain the actual probability function of data in many practical 
applications [Bertsimas and Sim 2003]. An example of stochastic optimization approach can be 
found in [Ranjbar et al 2012], where the authors study the problem Pm || Cmax when the processing 
times are stochastic according to a normal distribution. Their goal is to found a schedule that 
maximizes the customer service level, which is the probability of the makespan not exceeding the 
due date. They proposed a non-linear formulation and developed exact branch-and-bound 
algorithms to the problem, as well as provide upper / lower bounds and dominance rules to 
accelerate B&B procedures. Opposed to this idea of knowing the probability distribution of the 
data, RO states that the unknown parameters belong to determined uncertainty sets and imposes 
that constraints must be feasible for all parameters values in the uncertainty set [Poss 2013]. 

 In this sense, [Kouvelis and Yu 1997] proposed three different robustness criteria in 
order to evaluate the objective function values of the solution under any likely input parameter 
scenario, which are: the absolute robustness or worst-case scenario, the maximal regret or robust 
deviation and the relative robust deviation. In this paper, we seek for a solution minimizing cost 
in a worst-case scenario. Regarding to the uncertainty sets, [Gorissen et al 2015] develop a guide 
to construct different kinds of sets from a given uncertainty constraint formulation and provide 
additional references in theoretical investigations to each referred set.  

Such as other optimization problems, Scheduling has also a wide source of uncertainties 
that may affect real scheduling schemes. Machine failures and setup times, working environment 
conditions, labor productivity, changes in tasks’ order or due dates among other unavailability 
factors might turn down the yields of an optimal schedule. Therefore, robust schedules have a 
practical interest since they provide hedge against system adverse conditions. In spite of its 
relevance in real problems, robust schedule has not been turned into practical frameworks 
whereas even simple scheduling problems become NP-hard as soon as the uncertainty set 
contains more than one scenario [Alalou and Croce 2008], [Daniels and Kouvelis 1995], [Yang 
and Yu 2002]. Complementarily, [Kouvelis and Yu 1997] has proved that robust discrete 
optimization problems are harder to solve, in the computational complexity sense, than their 
deterministic counterparts are. However, these negative aspects do not undermine efforts in 
providing solutions to robust schedules through the development of heuristic or linear approaches 
instead of strictly combinatorial algorithms. 

[Alalou and Della Croce 2008] provide algorithmic and computational complexities for 
a set of well-known non-preemptive polynomial-time single machine-scheduling problem. By 
considering the scenario-based framework, in which all possible data realizations must be 
explicitly described, and the absolute robustness criterion, the authors develop complexity proofs 
for the robustness versions of the 1|����|��	
, 1|| ∑ �
�
 and 1|| ∑ �
 (see [Graham et al 1979] 
for notations’ description). For each problem, they considered the uncertainty on the parameters 
processing time, release date, due date and weight of job j under each possible scenario. In the 
same context, [Naji et al 2015] propose an artificial scenarios based approach to construct and 
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identify robust schedules in an environment of unrelated parallel machines, which objective is 
minimizing makespan (CMAX) when the splitting is tolerated. The uncertainty of processing time 
was taking by mean of discrete scenarios and the robustness was evaluated according to a worst-
case strategy. [Yang and Yu 2002] evaluate the robust problem of minimizing the sum of 
completion time in a single machine environment considering a finite number of generic 
scenarios. The authors prove that this problem is NP-Complete and provide polynomial time 
heuristics and a dynamic programming to find optimal solutions. [Farias Jr. et al 2010] analyze 
the machine environment 1|| ∑wjCj and develop a large family of valid inequalities for the convex 
hull of the set of feasible robust schedules, considering the min-max criterion in a scenario 
strategy. [Mastrolilli et al 2013] adopt worst-case scenario strategy and model uncertainty in the 
single machine-scheduling problem minimizing the weighted sum of completion times. They 
presented a polynomial-time algorithm based on dynamic programming for when the number of 
scenarios and the values of the instances are bounded by some constant. 

On the other hand, [Lu et al 2014] explore the uncertainty over the processing times in 
a constraint-based assumption, that is, each parameter may take any value between given lower 
and upper bounds, independent of the values of the other problem parameters. The authors 
proposed and compared the results of a mixed integer linear program (MILP), a simple iterative 
improvement (SII) heuristic and simulated annealing (SA) heuristic in min-max criteria to 
minimize the worst-case of ��	
 in a robust single machine-scheduling problem. They describe 
the uncertainty on the processing time by using intervals and adopted the budget parameter Γ as 
described in [Bertsimas and Sim 2004] aiming to control the degree of solution conservatism. In 
their MILP formulation, [Lu et al 2014] were capable to find the optimal solution for all instances 
with 50 and 100 jobs, whereas only five of eleven instances with 200 jobs had their optimal 
solutions obtained in the maximum computing time. Among heuristics, SA outperforms SII for 
all instances sizes, besides having found better solutions in nine of eleven instances with 200 
jobs, surpassing the MILP yields. They also perform a simulation over the instances showing 
that, as Γ increases, the central tendency of simulated ��	
 is more significant, i.e., leads to less 
variability. In a similar way, we model the uncertain on the processing times in the constraint-
based framework by considering the budgeted uncertainty set, which has advantages on both 
computational complexity and probabilistic guarantees, leading to a very large use of this set in 
discrete optimization problems under uncertainty [Pessoa et al 2015]. 

In this paper, the problem of minimizing the robust total weighted tardiness sum in a 
single machine environment is addressed. Encouraged by the positive results brought by 
[Bertsimas and Sim, 2003] we consider the robust counterpart of the 1|| ∑wjTj assuming the 
budgeted uncertainty set for the processing times. In this set, defined in [Bertsimas and Sim 
2004], a positive integer Γ controls the degree of conservatism by limiting the number of jobs 
that might vary simultaneously from their respective nominal values. To solve this problem, we 
propose an algorithm based upon iterated local search combined with a dynamic programming 
procedure. Then, we compare the obtained robust schedules with the optimal deterministic 
schedules obtained through the algorithm stated in [Rodrigues et al 2008] using Monte Carlo 
simulation, in order to evaluate the yields of the robust approach. The optimality of the 
deterministic solutions to the problem considered in this paper has been proven by [Tanaka et al 
2008].  

Besides the introductory Section, this paper presents the following organization: 
Section 2 describes the single machine robust total weighted tardiness problem, as well as the 
notation to be used in all other parts of this work. Moreover, we provide a description on the 
budgeted uncertainty set and how we consider it in the processing time of the jobs. In Section 3, 
we present the min-max algorithm implemented to minimize the maximum total weighted 
tardiness given all possible realizations of the processing times in a given scenario. Additionally, 
we also describe the simulation performed for both deterministic and robust solutions to evaluate 
the quality of the robust scheduling. Section 4 is dedicated to the results and to the comparative 
analysis on the simulation output data. Finally, Section 5 points out some conclusions, further 
investigations and future developments regarding this problem. 
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2. Problem statement  
 

Consider a set � =  {1, … , �} of jobs to be processed in a single machine without 
preemption. It is possible to process only one job at a time in the machine. All jobs are available 
for processing in time � =  0, each job � requires a processing time �
, and has a due date �
 and 
a positive weight �
. The tardiness of a job j in relation to its due date is defined as �
  =
 max!�
 − �
#, where �
 is the completion time of job �. The deterministic version of this 
scheduling problem consists in sequencing the jobs in the machine to minimize ∑ �
�
$
%& . If ' is 
a permutation of the jobs in the set ( of feasible schedules and � is the n-tuple of the processing 
times, it is possible to rewrite this this problem as min+∈- �.', �/, where �.', �/ =  ∑ �
�
$
%& . As 

proved in [Lawler 1977], this problem is strongly NP-hard. In case of �
 = 1, � ∈ {1, … , �}, the 
problem become NP-hard in the ordinary sense [Du and Leung, 1990], albeit may be solved in 
pseudo-polynomial time [Lawler 1977]. 

In this paper, we focus on robust counterpart of this problem, using the budgeted 
uncertainty set referred to as robust 1|| ∑ �
�
 for short. Instead of providing optimal solutions 
given deterministic sets of input data, we are interested in model the uncertainty in processing 
times by a finite set � ⊂ ℝ$. Consequently, the robust problem aims to minimize �.', �/ over all � ∈ � or, in a formal way, min+∈- 2.', �/ where 2.', �/ = max3∈4 �.', �/ is the robust cost of 

permutation '. Based on the structured approach provided by [Bertsimas and Sim 2003], we 
consider the following uncertainty set definition in order to model the deviation on the processing 
times: 

�5 ≡  !� ∈ ℝ$ ∶  �
 = �89 + ;
�8< , � ∈ {1, … , �}, ;
 ∈ [−1,1], ∑ |;
|$
%& ≤ Γ #.  
Where �89  and �8<  are respectively referred to as the mean processing time of job j and its 

deviation, and the parameter Γ adjusts the robustness of the solution by controlling the number of 
processing times which vary at the same time to their maximum values. Based upon an 
independence assumption amongst variables, one may think intuitively that the chance of many 
coefficients change simultaneously in a real scheduling is quite unlikely. The Section 3 describes 
the heuristic procedures and the dynamic programming associated to deal with this min-max 
problem. 

 
3. The Algorithm 
 

Let ' = {'&, '@, … , '$} be a permutation of the job indices 1, … , �. Essentially, the 
procedure herein has two phases. The algorithm computes its first solution as a permutation π of 
jobs obtained according to the well-known Earliest Due Date (EDD). Then, in the minimization 
phase, the algorithm performs a local search over a neighborhood defined by Generalized 
Pairwise Interchanges (GPI) moves as stated in [Della Croce 1995]. These moves consist as both 
exchanges of pairs of jobs (not necessarily adjacent) and removal-and-insertion moves of a job. 
This local search phase occurs until no more improvements are possible in the current robust 
solution. This heuristic procedure was firstly proposed in [Rodrigues et al 2008] for parallel 
machine weighted tardiness problem .A|| ∑ �
�
/ and we adapted it to the robust 1|| ∑ �
�
. 

Algorithm 1 presents the steps of the adapted local search heuristic. In the algorithm, '∗ 
represents the best current solution. The function C��.'/ computes  2.', �/ for a given schedule ', using dynamic programming to find optimally the worst-case solution for this permutation. 
Then, it returns both the robust cost of ' and the set D of E augmented jobs, i.e. jobs whose ;
 ≠0, used to compute this cost. Alternatively, C��GH
.'I, D/ calculates the cost of schedule '′ 
considering a fixed set D. Parameters K, L and M control the loops over a given initial 
permutation, the number of 2-change moves performed in each perturbation and the frequency in 
which a current solution is superseded for a totally random permutation, respectively. If there are 
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not more improvements applying GPI moves, the algorithm executes L randomly perturbations 
through the pairwise moves over the current solution in order to run off from local optima. 
During the execution of the proposed algorithm, each new GPI move performed along ' is firstly 
evaluated by computing C��GH
.'I, D/ for the modified permutation '′ using the set K of 
augmented jobs found in the calculation of C��.'/. This calculation is used as a fast 
underestimation of the value of C��.'I/. If this cost does not improve the robust cost of  ', then 
the move is rejected. Otherwise, an exact evaluation of the move is proceeded, causing a rejection 
of the move if the exact robust cost no longer improves the current solution. A preliminary 
experiment with an instance of 40 jobs showed that this mechanism reduces the overall running 
time by a factor of 43.   

 
Algorithm 1 Iterated local search for robust 1|| ∑ �
�
 (Adapted from [Rodrigues et al 2008]) 

• � ← 0;  P ← 0; '∗ ← a permutation following the EDD rule  

• .�∗, D∗/  ← C��.'∗/   

• While Q < S ∗ T  

- If   U = V or U =  W then   
� X ← a random permutation;  U ← V 

- .�, D/  ←  C��.'/ ; �I ←  −∞ 

- While ZI < Z  

� For each GPI move over '  

o 'I ← GPI move over '   

o .�I, D/   ← C��GH
.'I, D/   

o If  �I < � Then .�I, DI/ ← C��.'′/  

o If  �I < � Then  ' ← 'I  ;  � ←  �I ;  D ← DI  

� If  � < �∗ Then  '∗ ← 'I;  �∗ ←  � ;  D∗ ← D  

- Perform L randomly chosen 2-change moves over '  

- ' ← 2-change move over '  

-  � ← � + 1 ; P ← P + 1  

 
Given a permutation ', the corresponding robust cost and the associated set K of 

augmented jobs are calculated as follows. For each \ = 1, … , �, and ] = 0, … ,min{], \}, let Â_,` 
be the set of all possible sums of  ] deviations from jobs '&, … , '_, that is, 

Â_,` = !∑ �̂

∈- | ( ⊆ {1, … , \}, |(| = ]#. 

Let also �̅.', \/ = ∑ �̅+d_e%& . We define �∗.\, ], f/ as the largest cost of the partial 
schedule .'&, … , '_/ augmenting exact ] jobs so that the sum of deviations of the augmented 
jobs is exactly f. The proposed dynamic programming algorithm calculates the value 
of �∗.\, ], f/ for each \ = 1, … , �, ] = 0, … , min{], \} and f ∈ Â_,e using the following 
recursion: 

�∗.\, ], f/ =
gh
i
hj

�_ ∗ max!0 , �̅+k − �+k#                          l� \ = 1, ] = 0 m�� f = 0      
�_ ∗ max!0 , �̅+k + �̂+k − �+k#              l� \ = 1, ] = 1 m�� f = �̂+k   
min!�∗n\ − 1, ] − 1, f − �̂+op , �∗.\ − 1, ], f/#  +                                 

 �_ ∗ max!0, �̅.', \/ + f − �+o#    l� \ > 1                               
 

After each GPI move and before the computation of the robust cost by dynamic 
programming, the cost of the current solution is calculated considering the augmented jobs of the 
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previous schedule as this gives a lower bound on the robust cost of the solution. If the obtained 
cost does not improve, the exact cost evaluation can be skipped. This procedure was adopted in 
order to avoid unnecessary dynamic programming calculations and, consequently, reduce the 
CPU time to compute an entire robust solution. 

 
4. Computational experiments 
 

The experiments consider only instances with � = 100 jobs. We set K = 100, L = 3,M = 10 and Γ = 10. We performed 300 perturbations over the current solutions in order to 
change the search space to the algorithm. For each new sequence randomly generated, we 
evaluate 1.565 x 106 GPI moves in the current sequence. We consider a scenario in which the 
jobs’ processing times are augmented only 50% of to their nominal values, that is �̂
 = s0.5 ∗ �̅
v.  
The reported times were obtained with an Intel® CoreTM i7 3.4 GHz processor. The algorithm 
was developed in C++ language. 

The experiments were performed on available instances for this problem in OR-Library. 
[Crauwels et al 1998] have generated this set of instances as follows: integers value for both 
processing times �
 and weights �
 were obtained from uniform distributions over [1, 100] and 
[1, 10], respectively. The relative range of due dates (RDD) and the average tardiness factor (TF) 
are likely to define the problem “hardness”. That way, after having computed A = ∑ �
$
%&  and 
selected from the set {0.2, 0.4, 0.6, 0.8, 1.0} the values for RDD and TF, all due dates �
 are 
generated from the uniform distribution [A.1 − �2 − {||/2/, A.1 − �2 + {||/2/]. The 
authors generated five problems for all the 25 possible combinations of RDD and TF, yielding 
125 instances to a given �. Since our objective is evaluating the behavior of the robust schedules 
against their deterministic versions regarding to tardiness, in this analysis we discard those 
groups of instances in which deterministic costs are zero.  

The results obtained in this paper were compared to those reached by the deterministic 
optimal solution. Thus, in order to evaluate the quality of the robust scheduling, we run 10,000 
simulations on both deterministic and robust solutions of each instance considering a random 
triangular distribution for processing times. In practice, this probability density function is more 
effective on turning into parameter estimates (minimum, maximum and most likely values) the 
decision-maker’s subjective viewpoints than other probabilities functions [Stein and Keblis 
2009]. The most likely values are the nominal processing times of the jobs, and the maximum 
and minimum values are symmetric in a range of [-50%; +50%] around �89 .  

Table 1 summarizes the results of robust and simulated costs to all groups of instances. 
All data are presented as average values of their respective groups. The percentages shown in 
table are deviations from the average cost of deterministic optimal solutions. The two last 
columns point out the average total CPU time and the average time to reach the best solution for 
each instance group, respectively. It is important to notice that the robust costs of the robust 
heuristic solutions are clearly better when compared to the robust costs of the deterministic 
optimal solutions, which may be observed in all instances groups evaluated. Indeed, those 
findings are relevant and are not so obvious since the optimization on robust schedules does not 
ensure optimality. 

Another important observation refers to the simulated data. For instance, in an 85%-
percentile, one may observe that 62% of groups presents their heuristic robust costs smaller than 
the robust cost of deterministic optimal solutions. For a 95%-percentile, 90% of the groups have 
their heuristic robust costs smaller, and at the 99%-percentile we reach 100% of the instances 
groups following this behavior. Despite the good results obtained, one could perceive the 
disadvantage in robust approach if the intended objective is to optimize average cost, once the 
deterministic simulated average cost had a better performance for most instances with larger 
values of TF. On the other hand, it is not possible to determine whether the underperformance of 
robust schedules is due to the “hardiness” associated to the instances or whether the robust 
method is not the best approach to this instance group. In contrast, groups 1, 6 and 15, in which 
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TF is smaller, the robust approach shows itself with advantages on deterministic solutions. 
Indeed, in real situations the decision-maker would be willing to deal with small delays rather 
than infeasible or too delayed schedules.  

Figures 1 to 3 presents a graphical view of the simulations performed on both robust 
heuristic and deterministic solutions. A vertical straight dashed line on the same color of its 
respective distribution indicate the average value to each kind of simulated solution (robust 
heuristic and deterministic optimal). The abscissa axis represents the percentage distance from 
the average cost of the optimal deterministic solution for the indicated group. Thus, Figure 1 
illustrates an instance group where the simulated values for the heuristic robust solutions are not 
only better in the average but also have a short tail than simulated costs of deterministic ones. 
Figure 2 points out a case where simulated costs of both solutions are almost equivalent. In 
Figure 3, it is possible to notice that the distributions of the simulated costs are very different 
from each other, prevailing a clear advantage to the heuristic when the distribution tails are 
confronted. 

 

 

Figure 1 – Robust solution simulations for instance group 1.  

 

 

Figure 2 – Robust solution simulations for instance group 10.  
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Figure 3 – Robust solution simulations for instance group 16. 

 
5. Conclusion and future developments 

 
In this paper we presented a heuristic approach to deal with the robust version of the 

single machine total weighted tardiness scheduling problem. The proposed algorithm considered 
the uncertain nature of data over the processing times and the budgeted uncertainty set was 
assumed to model the variability and to control the level of conservatism on the values. The 
heuristic presented good performance in computing robust costs when compared to those 
obtained straight from the optimal deterministic solutions. Furthermore, as denoted in the 
simulated results, the robust algorithm is better on average if there are few delayed jobs in a 
schedule and is moderately worse on most of the cases. However, by considering the probabilistic 
guarantee from which a solution will not surpass a certain limit, the simulated results evince the 
better performance of the robust schedule.  

For the next steps, we will develop further investigations by considering slack in the 
processing times, by evaluating the simulation’s behavior to other probability distributions rather 
than the triangular and by comparing the proposed algorithm with other similar approaches in 
literature for the same problem. Moreover, we intend to apply other values of parameter Γ in the 
uncertainty set to evaluate eventual improvements or worsening in the obtained solutions. 
Finally, we will try to derive a theoretical probabilistic guarantee on the deviation from the robust 
cost since the well-known theorem of [Bertsimas and Sim 2004] only applies to linear objective 
functions. 
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227.7
   

12
0.6

0.6
61-65

85,544.2
  

163.6%
56.8%

24.7%
35.0%

75.3%
63.3%

119.9%
75.9%

171.0%
85.8%

590.0
   

347.3
   

13
0.8

0.6
66-70

315,179.2
   

42.4%
19.4%

5.5%
11.1%

36.8%
40.3%

51.5%
44.8%

66.0%
49.2%

763.4
   

449.0
   

14
1.0

0.6
71-75

607,101.8
   

17.0%
10.1%

1.8%
3.3%

10.4%
9.0%

15.6%
11.6%

21.3%
14.4%

1,032.2
 

496.3
   

15
0.4

0.8
81-85

656.6
   

11,718.1%
2,028.1%

2,009.7%
1,265.3%

4,777.3%
1,621.5%

9,334.4%
1,987.3%

15,700.9%
2,322.9%

533.5
   

204.9
   

16
0.6

0.8
86-90

67,259.2
  

233.2%
71.9%

38.8%
49.4%

105.8%
76.6%

172.1%
85.2%

248.3%
93.5%

670.8
   

402.3
   

17
0.8

0.8
91-95

295,368.4
   

47.5%
21.1%

6.6%
9.2%

25.1%
21.5%

38.0%
25.0%

52.1%
28.5%

832.3
   

412.7
   

18
1.0

0.8
96-100

576,902.0
   

19.8%
10.8%

2.0%
2.8%

20.4%
19.4%

27.4%
24.0%

34.5%
27.5%

884.5
   

461.2
   

19
0.6

1.0
111-115

132,623.0
   

123.2%
45.6%

21.0%
25.8%

71.0%
52.1%

106.3%
58.4%

143.7%
65.4%

759.9
   

393.1
   

20
0.8

1.0
116-120

300,435.0
   

44.0%
18.7%

6.4%
13.0%

28.5%
38.3%

41.9%
44.9%

55.6%
49.7%

755.8
   

455.8
   

21
1.0

1.0
121-125

486,114.2
   

20.5%
13.0%

3.1%
4.0%

22.5%
21.1%

31.4%
24.4%

39.9%
27.6%

878.6
   

362.8
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