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ABSTRACT

Researchers in the field of combinatorial optimization spend a large amount of time test-
ing different algorithms or parameter values to solve a problem. Automatic algorithm configuration
techniques perform the task of determining the best algorithm for a specific problem, and also its
parameter values. In this paper we study the application of automatic methods for solving the un-
constrained binary quadratic programming problem and compare it to a manual tuning process. We
propose a grammar that can generate eight heuristic algorithms based on local search, tabu search,
and constructive approaches, which includes the parameters of these methods. We then use an iter-
ated F-race to find the best instantiation of the proposed grammar. For the manual tuning, we run all
eight heuristics with different values of its parameters to find the best performing methods. We ob-
serve that both automatic and manual approaches can find the best algorithm candidate. However,
the process is easier in the automatic way, since it requires less time and effort.

KEYWORDS. Automatic algorithm configuration. Unconstrained binary quadratic pro-
gramming.

RESUMO

Pesquisadores da área de otimização combinatória dedicam grande parte do tempo tes-
tando diferentes algoritmos ou valores de parâmetros para resolver um problema. Técnicas de
configuração automática de algoritmos se encarregam de determinar o melhor algoritmo para um
problema especı́fico, bem como os valores de seus parâmetros. Este trabalho apresenta um estudo
sobre a aplicação de métodos automáticos para resolver o problema da programação quadrática
binária irrestrita e os compara com um processo de configuração manual. Para isso, é proposta uma
gramática que pode gerar oito heurı́sticas baseadas em busca local, busca tabu e abordagens cons-
trutivas, incluindo seus parâmetros. Este trabalho utiliza o método iterated F-race para encontrar
a melhor instância da gramática proposta. Para a configuração manual, foram executados todas as
oito heurı́sticas com diferentes valores para seus parâmetros, a fim de encontrar o método de me-
lhor desempenho. Foi observado que ambas as abordagens, manual e automática, podem encontrar
o melhor algoritmo. No entanto, o processo automático é facilitado, uma vez que requer menor
tempo e esforço.

PALAVRAS CHAVE. Configuração automática de algoritmos. Programação quadrática
binária irrestrita.

1673



Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

1. Introduction
The process of building heuristics to solve combinatorial optimization problems is com-

plex. There are a variety of heuristic approaches, each one with its own parameters. During the
design of a heuristic algorithm, the researcher has to test different approaches and find the best set
of components for a specific problem (in a process called algorithm configuration), and finally find
a parameter setting, that ideally should be robust, and not overly specific to the test cases. Often it
is not clear from the problem at hand which heuristic strategy is the most promising, and from the
no-free-lunch theorems of Wolpert and Macready (1997) we know that there’s no single strategy
that is always best.

Thus, researchers in this area spend a considerable part of their time testing several meth-
ods, discarding inefficient strategies, and configuring and tuning the promising ones. Furthermore,
important decisions, such as which meta-heuristic strategy to apply, are often taken ad hoc, based
on limited preliminary tests.

Automatic algorithm configuration is a possible way out of this situation. In this approach
the researcher defines the search space of possible heuristic strategies and their feasible configura-
tions, and delegates the task of finding a good algorithm instantiation to automatic approaches.
However, these methods are not simple, because the search space of possible algorithms and pa-
rameters is large. In fact, finding a good instantiation of an heuristic algorithm in an automatic
fashion is a new optimization problem and specific techniques are required.

There are many methods proposed in the literature for the automatic configuration of algo-
rithms. Sabar et al. (2013) propose a generic hyper-heuristic with an adaptive memory for evolving
online search heuristic, and test it on exam timetabling and the capacitated vehicle routing prob-
lem. Mascia et al. (2014) propose an improved mapping from a parameter space to derivations in a
grammar, used for offline configuration via racing and test the method on the one-dimensional bin
packing problem and permutation flowshop scheduling. Bezerra et al. (2016) propose a template
for multi-objective evolutionary algorithms and evolve good heuristics via racing. A very success-
ful method for parameter tuning is ParamILS, an iterated local search in parameter space (Hutter
et al., 2007; Hutter et al., 2009). Other methods for parameter tuning are also proposed, like the
application of genetic algorithms (Grefenstette, 1986; Ansótegui et al., 2009) and racing meth-
ods (Birattari et al., 2002; Balaprakash et al., 2007). Hoos (2012) surveys racing, ParamILS, and
sequential methods for parameter tuning.

There are various applications of these automatic techniques in real problems. Burke et al.
(2012) evolve heuristics for one-dimensional bin packing using a genetic algorithm. Drake et al.
(2013) generate components for a VNS for the vehicle routing problem. Mascia et al. (2013) ap-
ply racing to generate iterated local search algorithms for permutation flowshop scheduling with
weighted tardiness. Messelis and De Causmaecker (2014) use empirical hardness models to au-
tomatically select algorithms for the multi-mode resource constrained project scheduling problem.
Nguyen et al. (2015) automatically design dispatching rules for job shop scheduling using iterated
local search. Chiarandini et al. (2006) apply racing to configure heuristic for the university course
timetabling problem. KhudaBukhsh et al. (2009) and KhudaBukhsh et al. (2016) automatically
build SAT solvers from components.

In this paper we are interested in how an automatic configuration algorithm compares to a
manual tuning. To this end we have chosen unconstrained binary quadratic programming (UBQP),
a well-studied problem in combinatorial optimization with numerous applications for a case study.
We have implemented several heuristic solution strategies for UBQP. They include simple local
searches, a randomized non-monotone local search, and constructive heuristics. We have applied a
typical manual calibration process, by running a set of experiments with each heuristic strategy and
testing a set of previously chosen parameter settings. We also have defined a grammar, that describes
the complete set of algorithm configurations and have run an automatic algorithm configuration
tool. Finally, we compare both strategies, and present some conclusions with respect to automatic
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configuration.
This paper is organized as follows. Section 2 presents the binary quadratic programming

problem. Section 3 presents the heuristic methods implemented in this paper. In Section 4 auto-
matic algorithm configuration process is explained in detail and discussed. Section 5 details the
experiments and results. Finally, concluding remarks and future work are presented in Section 6.

2. Unconstrained Binary Quadratic Programming
Unconstrained binary quadratic programming (UBQP) is a widely used optimization prob-

lem and is defined as

minimize xtQx,

subject to x ∈ {0, 1}n,

where Q is a square symmetric matrix of coefficients and x is a binary vector of unknowns. UBQP
is NP-hard, even if Q is positive semi-definite (Garey et al., 1976), and even checking if an uncon-
strained binary quadratic program has a unique solution, or solving an UBQP which has a unique
solution is NP-hard (Pardalos and Jha, 1992). The problem has multiple applications, for example
in machine scheduling (Alidaae et al., 1994), in solving satisfiability problems (Hansen and Jau-
mard, 1990), and in problems on graphs (Kochenberger et al., 2005; Pardalos and Xue, 1994). If an
optimization problem can be modeled with UBQP, it can be solved by known techniques for UBQP,
without the need of problem-specific components. Kochenberger et al. (2004) show how more than
twenty broad problem classes can be reduced to UBQP.

The main approaches for solving UBQP problems are presented in Kochenberger et al.
(2014). They discuss several exact methods, mainly based on branch-and-bound algorithms. How-
ever, these methods are restricted to instances with a small number of variables, given the com-
plexity of the problem. Heuristic methods can find high quality solutions to medium and large
size instances. Recent studies propose several meta-heuristics like local search, tabu search, simu-
lated annealing, and greedy heuristics. For more details about the UBQP problem, its applications,
methods and theoretical results, we refer the reader to the survey of Kochenberger et al. (2014).

3. Heuristic methods for the UBQP
There are a lot of heuristic methods proposed in the literature to solve optimization prob-

lems. Since we focus on the evaluation of automatic configuration approaches, we adopt simple
trajectory and construction-based heuristics, and do not intend to reach state-of-the-art results.

The first method is a simple local search with first and best improvement strategies, as well
as a randomized version of a local search, which permits moves that lead to a worse solution, with
a small probability. The second approach is a tabu search and a randomized tabu search. The third
one is a greedy randomized adaptive heuristic, which construct solutions iteratively. By applying a
local search at each solution, we obtain a GRASP heuristic. These three approaches give us eight
different algorithms, which are detailed below.

3.1. Local Search
A local search begins at an initial solution and, iteratively, modifies it to improve the

solution quality. This modification is performed by generating the solution neighborhood N(s)
and selecting one of the neighbors that improves the solution. Algorithm 1 presents a simple local
search, where B(s) (line 3) is the subset of N(s) with neighbors better than s. The best solution
found is stored in s∗ (line 6).

Two main strategies are commonly applied for the selection of neighboring solution s′.
The first improvement strategy selects the first neighbor that improves the solution quality, while
the best improvement strategy selects the neighbor that present the best solution quality. These
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Algorithm 1: Local search algorithm
Input: An initial solution s.
Output: The best solution found.

1 s∗ ← s
2 while B(s) is not empty do
3 select s′ ∈ B(s)
4 s← s′

5 if s′ is better than s∗ then
6 s∗ ← s′

7 return s∗

strategies do not select any neighbor if there is none that can improve the current solution and
therefore terminate in local optima.

To overcome this problem, a randomized strategy can be applied. Algorithm 2 shows the
randomized local search. Assuming N(s) the set of neighbors of solution s, and B(s) the set of
better neighbors of solution s, the randomized strategy selects a random solution from N(s) with
probability p, and with probability 1 − p selects a random solution from B(s). This method can
reach better solutions, since it can overcome local optima (Hoos and Stützle, 2004).

Algorithm 2: Randomized local search algorithm
Input: An initial solution s and a probability p.
Output: The best solution found.

1 s∗ ← s
2 repeat
3 select s′ ∈ N(s) or s′ ∈ B(s) according to probability p
4 s← s′

5 if s′ is better than s∗ then
6 s∗ ← s′

7 until stopping criterion holds
8 return s∗

3.2. Tabu Search
The tabu search uses an adaptive memory to guide a local search. The original proposal by

Glover (1986) applies a best improvement local search. If there are no neighbors that can improve
the quality of the current solution, the algorithm accepts worse solutions. A short-term memory
maintaining tabu solutions is used to exclude candidate solutions from the neighborhood, avoiding
cycling. To achieve this, the selected solution or an attribute of the solution is defined as tabu in the
next t iterations. A simple tabu search is presented in Algorithm 3.

The randomized version of the tabu search replaces the best improvement strategy with a
randomized local search, accepting worse solutions with a probability p. Different of the traditional
tabu search, the randomized version has theoretical studies that prove its convergence (Faigle and
Kern, 1992).

3.3. Constructive Approaches
There are many approaches based on the construction of solutions. A widely known

approach are greedy algorithms, which construct a solution component by component. In each step
a solution component is selected. The component that leads to the highest gain in the quality of
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Algorithm 3: Tabu search algorithm
Input: An initial solution s.
Output: The best solution found.

1 Initialize memory M
2 s∗ ← s
3 repeat
4 select s′ ∈ N(s)
5 if acceptable(s′,M ) then
6 s← s′

7 Update memory M
8 if s′ is better than s∗ then
9 s∗ ← s′

10 until stopping criterion holds
11 return s∗

<ALG> ::= <LS> | RLS(<p>) | TS(<t>) | RTS(<p>,<t>) | GRA(<α>) | <GRASP>
<GRASP> ::= GRA(<α>, <LS>)
<LS> ::= FI | BI

<p> ::= [0, 1]

<α> ::= [0, 1]

<t> ::= [0, 1]

Figure 1: Grammar for automatic algorithm configuration. Each derivation of this grammar represents a
heuristic and its parameter settting.

the partial solution is selected, until a complete solution has been constructed. A relaxation of this
method consists of defining a parameter α, and selecting one of the α% best components at each
step. This method is called an α-greedy algorithm.

To improve the solution quality, greedy or α-greedy algorithms can be embedded in a
multi-start method. A number of solutions is constructed, and the best one is returned. We call
this method GRA (Greedy Randomized Adaptive). By applying a local search at each constructed
solution, we can improve its quality further. This method is called GRASP (Greedy Randomized
Adaptive Search Procedure) and was proposed by Feo and Resende (1989).

4. Automatic Algorithm Configuration
We propose the application of automatic configuration techniques to find the best tuning

of components and parameters to the UBQP problem. The algorithmic search space is defined by
the grammar presented in Figure 1. LS is the local search heuristic with first improvement (FI) or
best improvement (BI) strategies, and RLS is the randomized local search. TS is the tabu search
method and RTS is its randomized version. GRA is the greedy randomized adaptive algorithm, and
GRASP is the greedy randomized adaptive search procedure method.

Besides the main components represented in the grammar, some algorithms have specific
parameters. The randomized versions of local search and tabu search have a parameter p that
represents the probability of accepting a worse solution when selecting a neighboring solution. The
tabu searches also have the tabu tenure, representing the number of iterations that a solution or a
solution attribute is declared tabu. Finally, the greedy constructive approaches (GRA and GRASP)
have a parameter α, which relaxes the greedy strategy to a semi-greedy approach. These parameters
are also represented in the proposed grammar and its tuning can be performed by the automatic
configuration approach together with the selection of the best method.
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Figure 2: Operation schema of irace package. Source: López-Ibáñez et al. (2011).

c01 "--codon " i (0,5)
c02 "--codon " i (0,1) | c01 %in% c(0,5)
alpha "--alpha " r (0,1) | c01 %in% c(4,5)
p "--p " r (0,1) | c01 %in% c(1,2)
t "--t " r (0,1) | c01 %in% c(2,3)

Figure 3: Parameters configuration file parameters.txt used for racing with the irace package.

We have implemented a parser for the proposed grammar and a mechanism to make deci-
sions. Due to the simplicity of the grammar, the decisions can be defined directly in the parameters
to be optimized by the irace. However, we implemented a codon-based decider, a commonly used
method (Mascia et al., 2014), which performs well on simple and complex grammars. This tech-
nique is based on a sequence of integer numbers, called codons. When a decision must be made,
the next codon is consumed and decides which option is taken. For options o1, . . . , ok and codon c,
option o1+(c mod k) is chosen. In this way, each sequence of codons leads to a unique derivation in
the grammar, which describes a heuristic algorithm. With the codon-based decision, our grammar
can be easily expanded to more complex heuristic algorithms.

We used an iterated F-race (López-Ibáñez et al., 2011), implemented in the irace package
for GNU R, to automatically find the best algorithm and its parameters. Figure 2 shows its operation
scheme. The irace procedure receives as inputs the set of problem instances and the configuration
files. We define no major settings on the irace configuration file, except the maximum number of
experiments which equals to 2000. The parameter space configuration file defines the parameters
for the racing algorithm to get an instantiation of the proposed grammar and tune its parameters.
hookRun is a procedure that evaluates the grammar instantiation for a given instance. In this work,
hookRun is a script that calls the grammar parser, recompiles the code, and runs it, returning the
best found solution quality. The irace procedure uses this value in the racing method and finds a
good grammar instantiation.

Figure 3 presents the parameter space configuration file used. To define a heuristic algo-
rithm, at most two decisions are made. Thus, we use one first codon to select the main algorithm
(line 1 of Figure 1) and, if necessary, a second codon to decide which specific local search strate-
gies (line 2 and 3 of Figure 1). Besides this, we also tune the parameters of the heuristics using
irace. Thus, p, α, and t are also included in the irace parameters and are used if necessary. These
parameters can assume real values in the interval [0.01, 0.99] and are conditioned on specific values
of the first codon.

5. Experiments and Results
In this section we describe the results of computational experiments. Our main objective

is to compare the results of a manual configuration and the automatic configuration. We have

1678



Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Table 1: Instances used in the computational experiments.

Inst. n d LB UB Inst. n d LB UB

bqp50-1 50 0.1 -2098 -2098 bqp250-1 250 0.1 -45607.0 -45607
bqp50-2 50 0.1 -3702 -3702 bqp250-2 250 0.1 -44810.0 -44810
bqp50-3 50 0.1 -4626 -4626 bqp250-3 250 0.1 -49037.0 -49037
bqp50-4 50 0.1 -3544 -3544 bqp250-4 250 0.1 -41274.0 -41274
bqp50-5 50 0.1 -4012 -4012 bqp250-5 250 0.1 -47961.0 -47961
bqp50-6 50 0.1 -3693 -3693 bqp250-6 250 0.1 -41014.0 -41014
bqp50-7 50 0.1 -4520 -4520 bqp250-7 250 0.1 -46757.0 -46757
bqp50-8 50 0.1 -4216 -4216 bqp250-8 250 0.1 -35726.0 -35726
bqp50-9 50 0.1 -3780 -3780 bqp250-9 250 0.1 -48916.0 -48916
bqp50-10 50 0.1 -3507 -3507 bqp250-10 250 0.1 -40442.0 -40442
bqp100-1 100 0.1 -7970 -7970 bqp500-1 500 0.1 -121588.4 -116586
bqp100-2 100 0.1 -11036 -11036 bqp500-2 500 0.1 -132216.5 -128223
bqp100-3 100 0.1 -12723 -12723 bqp500-3 500 0.1 -134214.1 -130812
bqp100-4 100 0.1 -10368 -10368 bqp500-4 500 0.1 -134781.0 -130097
bqp100-5 100 0.1 -9083 -9083 bqp500-5 500 0.1 -129572.9 -125487
bqp100-6 100 0.1 -10210 -10210 bqp500-6 500 0.1 -126429.5 -121772
bqp100-7 100 0.1 -10125 -10125 bqp500-7 500 0.1 -127136.4 -122201
bqp100-8 100 0.1 -11435 -11435 bqp500-8 500 0.1 -128574.6 -123559
bqp100-9 100 0.1 -11455 -11455 bqp500-9 500 0.1 -125821.6 -120798
bqp100-10 100 0.1 -12565 -12565 bqp500-10 500 0.1 -134352.3 -130619

implemented the heuristic algorithms in C++, and compiled them with GNU g++ version 4.2.1.
All experiments have been done on a PC with a 1,7 GHz Intel Core i5 processor and 4 GB of
main memory. We have chosen 40 instances proposed by Beasley (1998) with 50, 100, 250, 500
variables, with 10 instances per group. These instances are described in Table 1. The table reports
for each instance the number of variables n, the density d (i.e. the fraction of non-zero elements in
the matrix Q), and the best lower bound LB and best upper bound UB, as reported in the BiqMac
library (Wiegele, 2007).

For the manual calibration, we have run an experiment for each main algorithm. We
have executed the two local searches (first and best improvement), the randomized local search
with a parameter p ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, the tabu search with a tabu tenure parameter t ∈
{0.0, 0.25, 0.5, 0.75, 1.0}, where for value t the tabu tenure is T = tn, where n is the number of
variables, and the randomized tabu search with every combination of p ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
and t ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. The results of these runs are shown in Tables 2 to 6. The tables
report for each group of 10 instances of the same size, the average relative deviation in percent from
the best upper bound.

We can see that the local searches have the worst performance, with first improvement
having slightly better results than best improvement with exception of the group of instances with
n = 50 variables. The randomized local search achieves relative deviations close or equal to 0 with
p ≤ 0.25, and p = 0.25 performs best. The−0.0 deviation means that a better quality solution than
the best known quality values was found in some cases. The good performance for p = 0.0 can be
explained by the large number of non-strict local minima in the search, which can be overcome by
accepting moves which lead to solutions of the same quality. The tabu searches also have a good
performance. The traditional tabu search performs best with t = 1 with relative deviations of at
most 0.5, the randomized version performs best with t = 1 and p = 0.0, excluding the case t = 0,
which corresponds to a randomized local search.
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Table 2: Comparison of local searches

Alg. Inst. Rel.dev.(%)

BI bqp50 5.3
BI bqp100 3.6
BI bqp250 2.2
BI bqp500 2.2
FI bqp50 6.7
FI bqp100 3.3
FI bqp250 2.0
FI bqp500 1.7

Table 3: Comparison of randomized local searches

p

Alg. Inst. 0 0.25 0.5 0.75 1

RLS bqp50 0.0 0.0 0.0 0.4 21.0
RLS bqp100 0.0 0.0 0.0 21.4 47.6
RLS bqp250 0.0 0.0 10.7 47.5 69.0
RLS bqp500 0.0 -0.0 28.8 59.3 77.9

For the automatic calibration we performed an iterated F-race with a budget of 2000. We
have used the GNU R package irace for the experiments. The description of the parameters can be
seen in Figure 3. For each parameter setting, an algorithm is generated using the grammar described
above, and the corresponding heuristic is compiled on-the-fly and evaluated in 8 instances (20% of
total instances). We have chosen the instances bqp50-5, bqp50-8, bqp100-5, bqp100-8, bqp250-5,
bqp250-8, bqp500-5, and bqp500-8 for our experiment.

The result of the racing is shown in Figure 4. The four best configuration found by the
automatic configuration procedure are all randomized local searches, which corresponds to a first
codon value equal to 7. The automatic configuration finds four possible values for the parameter
p as the best alternatives for it. Table 7 shows the results of the execution of the randomized local
search with these values of p.

We can see that the results of the randomized local search with the parameters returned
by the automatic configuration performs as well as the manually tuned variant with p = 0.25. The
values of p found by the racing algorithm are close to 0.25. Although both the manual and automatic
tuning process found equivalent configurations, the automatic approach is much more simple and
performs better than the manual tuning.

With the proposed grammar and the racing parameters defined, the task of finding the
best algorithm and parameters is left to irace, which uses statistical methods to explore the search
space. The manual tuning is much more expensive, since it tests all algorithms and the combination

c01 c02 alpha p t
7 NA NA 0.2444 NA
7 NA NA 0.1829 NA
7 NA NA 0.3321 NA
7 NA NA 0.2125 NA

Figure 4: Results of the iterated F-race, with the four best configurations as reported by the irace package.
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Table 4: Comparison of standard tabu search strategies

t

Alg. Inst. 0 0.25 0.5 0.75 1

TS bqp50 3.7 0.0 0.4 1.1 1.3
TS bqp100 2.6 0.1 0.8 1.5 0.1
TS bqp250 1.8 0.5 1.2 1.2 0.0
TS bqp500 1.7 0.9 1.2 1.0 0.1

Table 5: Comparison of randomized tabu search strategies

t

Alg. Inst. p 0 0.25 0.5 0.75 1

RTS bqp50 0.00 4.4 0.0 0.0 0.0 1.7
RTS bqp50 0.25 0.0 0.0 0.0 0.0 0.0
RTS bqp50 0.50 0.0 0.0 0.0 0.5 0.0
RTS bqp50 0.75 0.9 1.8 2.6 4.1 1.3
RTS bqp50 1.00 21.1 22.6 22.4 22.0 22.3
RTS bqp100 0.00 0.8 0.0 0.3 2.3 0.0
RTS bqp100 0.25 0.0 0.0 1.1 3.8 0.0
RTS bqp100 0.50 0.0 1.0 5.0 10.6 0.1
RTS bqp100 0.75 19.1 20.2 21.3 23.5 19.1
RTS bqp100 1.00 47.0 47.3 47.1 47.3 47.1
RTS bqp250 0.00 0.5 0.3 2.4 2.0 0.0
RTS bqp250 0.25 0.0 1.7 7.7 11.6 0.1
RTS bqp250 0.50 3.8 13.0 19.4 26.9 8.8
RTS bqp250 0.75 42.8 44.4 45.1 46.0 43.3
RTS bqp250 1.00 68.7 69.1 69.3 69.0 69.3
RTS bqp500 0.00 0.7 1.0 1.7 1.8 0.1
RTS bqp500 0.25 -0.0 4.2 11.1 13.4 0.7
RTS bqp500 0.50 16.0 23.1 29.3 34.7 20.2
RTS bqp500 0.75 54.0 55.6 55.8 56.5 54.7
RTS bqp500 1.00 77.9 78.1 77.8 77.9 77.8

of different parameter values. After all these experiments finish, the researcher has to compile all
the results and analyze the best strategies. The time spent running all the necessary experiments is
considerable larger than the time for the automatic approach. Moreover, the researcher has to em-
pirically define a limited set of parameter values, while the automatic approach can test continuous
intervals with a lot more precision. Finally, as the set of algorithms or the parameters space grow,
manual tuning becomes impracticable, since it is not possible to test all combinations of algorithms
and parameters to find the best strategy.

6. Conclusion and Future Work
In this paper we study an automatic method to design heuristic algorithms for the uncon-

strained binary quadratic programming problem. We use a grammar-based approach to represent
the components and parameters of a set of heuristic algorithms. We then use iterated F-race to
generate instantiations of the proposed grammar and finding the best candidates. Finally, we com-
pare our automatic approach to a manual procedure of selecting the best algorithm and tuning its
parameters.
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Table 6: Comparison of greedy constructive strategies

α

Alg. Inst. 0 0.25 0.5 0.75 1

GRA bqp50 11.5 12.5 12.9 14.6 18.1
GRA bqp100 2.3 1.6 1.5 2.3 6.6
GRA bqp250 5.9 2.2 1.5 1.3 5.2
GRA bqp500 8.4 3.7 2.7 2.4 5.2
GRASP(BI) bqp50 11.3 11.7 12.6 14.5 18.3
GRASP(BI) bqp100 2.3 1.4 1.5 2.2 6.6
GRASP(BI) bqp250 5.8 2.2 1.5 1.5 5.2
GRASP(BI) bqp500 8.6 3.7 2.7 2.4 5.2
GRASP(FI) bqp50 10.9 11.6 13.0 14.8 18.2
GRASP(FI) bqp100 2.3 1.4 1.5 2.2 6.6
GRASP(FI) bqp250 5.9 2.1 1.4 1.2 5.2
GRASP(FI) bqp500 8.5 3.7 2.7 2.3 5.2

Table 7: Comparison of randomized local searches with the parameter values automatically tuned

p

Alg. Inst. 0.2444 0.1829 0.3321 0.2125

RLS bqp50 0.0 0.0 0.0 0.0
RLS bqp100 0.0 0.0 0.0 0.0
RLS bqp250 0.0 0.0 0.0 0.0
RLS bqp500 -0.0 -0.0 +0.0 -0.0

We observe that both automatic and manual strategies were able to determine the best
heuristic for the proposed problem. However, the manual process was much more expensive in
time and effort, since it was necessary to run experiments for all algorithms and combination of
parameter values. In this work, the manual tuning performed a total of 8000 executions. This
process would be unfeasible with a more complex grammar and a large number of parameters.
Moreover, in the manual tuning we must define a limited set of parameter values. In the automatic
tuning, the parameter values are continuous. In short, the automatic algorithm configuration can
be seen as an important tool in combinatorial optimization, because it can save a lot of time of
researchers in the task of explore the possible methods to solve a problem.

As future work, we will expand the proposed grammar to include new kinds of heuristic
methods. Furthermore, we want to apply the automatic approach to find heuristics to other problems
like Boolean satisfiability and flow shops.
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