

Frustração de Arestas e Conjuntos Independentes de (3,6)-Fullerenes*

Diego de Souza Nicodemos

Colégio Pedro II e COPPE – Sistemas, Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro – RJ – Brasi nicodemos@cos.ufrj.br

Sulamita Klein

IM e COPPE-Sistemas, Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro - RJ - Brasil sula@cos.ufrj.br

Luerbio Faria

Departamento de Matemática – Universidade do Estado do Rio de Janeiro (Uerj) Rio de Janeiro – RJ – Brasil luerbio@cos.ufrj.br

RESUMO

Grafos (3, 6)-fullerenes são grafos planares, 3-conexos, cúbicos cujas faces têm tamanho 3 ou 6. Determinar o menor número de arestas a serem deletadas de um grafo de modo a obter um subgrafo gerador bipartido é conhecido na literatura [Došlić e Vukičević, 2007] como o *Problema de Frustração de Arestas*. Neste trabalho, abordamos os Problemas da Frustração de Arestas e do Conjunto Independente Máximo em grafos (3, 6)- fullerenes. Mostramos que todo grafo (3, 6)-fullerene com n vértices torna-se bipartido após a retirada de no máximo $\sqrt{\frac{4}{3}n}$ arestas e possuem um conjunto independente com pelo menos $\left(n/2 - \sqrt{n/3}\right)$ vértices. Caracterizamos também a classe de grafos que torna estes limites justos.

PALAVRAS CHAVE. Frustração de Arestas, Conjuntos Independentes, Grafos (3, 6,)-Fullerenes.

Tópicos (Teoria de Grafos e Otimização Combinatória)

ABSTRACT

A (3, 6)-fullerene graph is a cubic bridgeless plane graph with all faces of size 3 or 6. Determining the smallest number of edges that have to be deleted from the graph to obtain a bipartite spanning subgraph is known in the literature [Došlić e Vukičević, 2007] as the *Bipartite Edge Frustration Problem*. In this paper, we investigate the Bipartite Edge Frustration Problem and the Maximal Independent Set Problem in (3, 6)-fullerene graphs. We show that every graph (3, 6)-fullerene on n vertices becomes bipartite after deleting at most $\sqrt{\frac{4}{3}n}$ edges and has an independent set with at least $\left(n/2 - \sqrt{n/3}\right)$ vertices. Both bounds are sharp, and we characterise the extremal graphs.

KEYWORDS. Edge Frustration, Odd Cycle Transversals, Fullerene Graphs.

Paper topics (Graph Theory and Combinatorial Optimization)

^{*}Parcialmente fomentado pelo CNPq e FAPERJ.

1. Introdução

Em 1985, um grupo de cientistas liderados por *Kroto, Smalley e Curl* descobriu experimentalmente uma molécula altamente simétrica, estável, composta apenas por átomos de carbono e até então diferente dos demais alótropos¹ de carbono. Esta nova molécula, concebida em laboratório, recebeu o nome de *fullerene*. As *moléculas de fullerene* são matematicamente modeladas por grafos: os átomos das moléculas correspondem aos vértices dos grafos e as ligações entre os átomos correspondem às arestas dos grafos.

Formalmente falando um grafo fullerene é um grafo planar, 3-conexo, cúbico cujas faces têm tamanho 5 ou 6. Pela fórmula de Euler todo *grafo fullerene* possui exatamente 12 faces pentagonais (faces de tamanho 5).

Segundo Došlić e Vukičević [Došlić e Vukičević, 2007] uma aresta $e \in E$ é dita frustrada com respeito à bipartição (V_1, V_2) de V se ambas as extremidades de e pertencem à mesma classe da bipartição. O menor número de arestas a serem deletadas de um grafo de modo a obter um subgrafo gerador bipartido é conhecido na literatura como o Problema da Frustração de Arestas e é representado pelo parâmetro τ_{odd} . Klein, Faria e Stehlik [Klein et al., 2012] mostraram que todo grafo fullerene com n vértices torna-se bipartido após a remoção de no máximo $\sqrt{12n/5}$ arestas.

Se, em um grafo fullerene, substituimos as 12 faces pentagonais por faces triangulares (faces de tamanho 3) obtemos um grafo (3, 6)-fullerene. Os grafos (3, 6)-fullerenes mantêm-se cúbicos, 3-conexos e planares.

Lema 1.1 Todo grafo (3,6)-fullerene possui exatamente 4 faces triangulares (faces de tamanho 3).

 $\begin{array}{l} Demonstração. \ {\rm Seja}\ G\ {\rm um}\ {\rm grafo}\ {\rm fullerene\ com}\ t\ {\rm faces\ triangulares\ e\ }h\ {\rm faces\ hexagonais.}\\ {\rm Então\ }G\ {\rm possui\ }t\ +\ h\ {\rm faces,\ }\frac{3t+6h}{2}\ {\rm arestas\ e\ }\frac{3t+6h}{3}\ {\rm vértices.}\ \ {\rm Como\ }G\ {\rm \acute{e}\ um\ grafo\ planar\ e\ }conexo\ {\rm então\ pela\ Fórmula\ de\ Euler,\ }\frac{3t+6h}{3}\ +\ t\ +\ h\ =\ \frac{3t+6h}{2}\ +\ 2.\\ {\rm Portanto,\ }t\ =\ 4.\end{array}$

O resultado central deste trabalho, Teorema 1.2, fornece uma cota superior para o Problema da Frustração de Arestas em grafos (3, 6)-fullerenes.

Teorema 1.2 Se G é um grafo (3, 6)-fullerene com n vértices, então $\tau_{odd}(G) \leq \sqrt{\frac{4}{3}n}$. A igualdade mantém-se se e somente se $n = 12k^2$, para algum $k \in \mathbb{N}$, e $Aut(G) \cong T_d$.

Figura 1: Tetraedro representando o menor grafo (3, 6)-fullerene. As arestas tracejadas, ao serem deletadas, tornam o remanescente grafo bipartido. Portanto, $\tau_{odd}(G) = 2$.

¹Substâncias simples são aquelas formadas por um único elemento químico. Substâncias simples e distintas compostas pelo mesmo elemento químico são chamadas de *alótropas*.

Um conjunto de vértices $X \subseteq V(G)$ é *independente* se o grafo induzido por X não tem arestas. Em outras palavras, X é um *conjunto independente* se não há arestas entre qualquer par de vértices de V(X). O Problema do Conjunto Independente Máximo corresponde a determinar o maior conjunto independente (de vértices) de um grafo. O tamanho do maior conjunto independente de G é o *número independente* de G denotado por $\alpha(G)$.

O corolário a seguir é uma consequência imediata do Teorema 1.2.

Corolário 1.3 Se G é um grafo (3,6)-fullerene com n vértices, então $\alpha(G) \ge n/2 - \sqrt{n/3}$. A igualdade mantém-se se e somente se $n = 12k^2$, para algum $k \in \mathbb{N}$, $e \operatorname{Aut}(G) \cong T_d$.

Informalmente falando, o Corolário 1.3 diz que um grafo planar, 3-conexo, cúbico ou tem um conjunto independente "grande"ou tem uma face de tamanho "grande".

O restante do artigo está dividido da seguinte maneira. Na seção 2, discutimos conceitos básicos e fundamentais da teoria de grafos e conceitos específicos para a abordagem dos Problemas da Frustração de Arestas e do Conjunto Independente Máximo. Na seção 3, introduzimos a ideia de remendos e fossos. Na seção 4, provamos o Teorema 1.2 e o Corolário 1.3.

2. Preliminares

Um grafo G = (V(G), E(G)) consiste de um conjunto não vazio V(G) de vértices e de um conjunto E(G) de arestas, de modo que cada aresta $e \in E(G)$ é um par não ordenado de vértices distintos. Neste trabalho, todos os grafos considerados são simples, isto é, não possuem arestas paralelas ou laços.

Um grafo é *finito* quando seus conjuntos de vértices e arestas são finitos, caso contrário ele é um grafo *infinito*.

O grau de um vértice $v \in G$, representado por d(v), é o número de arestas incidentes à v. Em qualquer grafo, o número de vértices de grau ímpar é par. Um grafo é k-regular se todos os seus vértices têm grau k. Um grafo 3-regular é chamado de grafo cúbico. Uma triangulação planar infinita 6-regular é um grafo infinito, 6-regular cujas faces são triângulos.

Um grafo H = (U, F) é um subgrafo de um grafo G = (V, E) quando $U \subseteq V$ e $F \subseteq E$, e denotamos por $H \subseteq G$. Um subgrafo $H \subseteq G$ é gerador se H contém todos os vértices de G. Dado um conjunto de vértices $U \subseteq V$, dizemos que o subgrafo H = (U, F) do grafo G = (V, E) é induzido por U quando todas as arestas de G com extremidades em U pertencem à F, e denotamos por H = G[U] o subgrafo $H \subseteq G$ induzido por $U \subseteq V$. Se G = (V, E) é um grafo e $J \subset E$, então G - J é o subgrafo de G obtido a partir da remoção das arestas em J.

Um grafo G = (V, E) é *bipartido* quando é possível particionar o seu conjunto de vértices V em dois subconjuntos X e Y de modo que todas as suas arestas têm uma extremidade em X e a outra extremidade em Y. A partição (X, Y) é chamada de *bipartição* do grafo G = (V, E). Uma caracterização para os grafos bipartidos é a ausência de ciclos ímpares, isto é, um grafo é bipartido se e somente se ele não possui ciclos de comprimento ímpar. Para maiores detalhes o leitor é convidado a consultar [Bondy e Murty, 1976].

Um grafo G é *conexo* quando existe um caminho entre qualquer par de vértices de G, caso contrário dizemos que G é desconexo. Um grafo é dito 3-*conexo* se a remoção de quaisquer 2 de seus vértices não o torna desconexo.

Definimos a k-vizinhança aberta de um subconjunto $X \subseteq V(G)$ em G como sendo o conjunto $N_G^k(X) = \{v \in V(G) \mid d_G(v, X) = k\}$. Quando k = 1 temos a vizinhança aberta usual de um subconjunto $X \subseteq V(G)$ em G, denotada por $N_G(X) = N_G^1(X)$. A k-vizinhança fechada de um subconjunto $X \subseteq V(G)$ em G é definida por $N_G^k[X] = \{v \in V(G) \mid d_G(v, X) \leq k\}$. Para k = 1 temos a vizinhança fechada usual de um subconjunto $X \subseteq V(G)$ em G, denotada

por $N_G[X] = N_G^1[X]$. Para $X = \{x\}$ abreviamos as notações de vinhanças aberta e fechada, escrevendo $N_G^k(x)$ e $N_G^k[x]$.

Um grafo $G \notin planar$ se existe uma representação (desenho, imersão) de G no plano de modo que as arestas se encontrem somente nos vértices, isto é, de modo que as arestas não se cruzem. Uma tal representação de $G \notin$ dita plana ou planar. Dado um grafo planar G definimos o grafo dual de G, representado por G^* , da seguinte forma: a cada face f de G corresponde um vértice f^* de G^* , e a cada aresta e de G corresponde uma aresta e^* de G^* de modo que dois vértices f^* e g^* de G^* são ligados por uma aresta e^* se e somente se as faces $f \in g$ em G são separadas pela aresta e. Sabe-se que o grafo dual de um grafo planar \notin um grafo planar. Uma representação planar divide o plano em regiões chamadas *faces*. Existe sempre uma única face chamada *externa* ou *infinita*, que não está limitada (tem área infinita).

A fronteira ou ciclo exterior de uma face de um grafo planar conexo é um passeio fechado de arestas que limita e determina a face. O grau de uma face f é o comprimento do passeio fechado que determina sua fronteira. A soma dos graus das faces de um grafo planar é igual ao dobro do seu número de arestas. Num grafo conexo planar com f faces, n vértices e m arestas, vale n + f - m = 2 que é conhecida como Relação (ou Fórmula) de Euler [Bondy e Murty, 1976].

Definição 2.1 *Um grafo* (3, 6)-fullerene é um grafo planar, 3-conexo, cúbico cujas faces têm tamanho 3 ou 6. As faces de tamanho 3 são chamadas de faces triangulares e as faces de tamanho 6 são chamadas de faces hexagonais.

O grafo dual de um (3, 6)-fullerene é uma triangulação planar sem laços ou arestas paralelas e todos os seus vértices têm graus 3 ou 6. No dual de um (3, 6)-fullerene os vértices de grau 3 são também chamados de vértices defeituosos.

3. Remendos e Fossos

Por toda esta seção, G é uma triangulação planar com todos os vértices de grau menor que 6. Sejam um grafo G e um conjunto de vértices $T \subseteq V(G)$ tal que |T| é par. Uma T-junção de G (do inglês T-join of G) é um subconjunto $J \subseteq E(G)$ tal que T é o conjunto dos vértices de grau ímpar em G[J].

É fácil ver que se T é o conjunto dos vértices de grau ímpar de G e J é uma T-junção de G então |T| é par e cada vértice de G - J tem grau par. O tamanho da menor T-junção de G é denotado por $\tau(G, T)$, como mostra a Figura 2.

Figura 2: O conjunto $T = \{t_1, t_2, p_1, p_2\}$ é o conjunto de todos os vértices de grau ímpar de G. As arestas tracejadas representam a menor T-junção de G. Neste exemplo, $\tau(G, T) = 2$

Seja $\delta_G(X)$ o conjunto de arestas em um grafo G tal que cada aresta em $\delta_G(X)$ apresenta exatamente um extremo em $X \subseteq V(G)$. Um conjunto C de arestas de G é um *corte de aresta* de G se $C = \delta_G(X)$, para algum $X \subseteq V(G)$. Sejam $X \subseteq V(G)$ e T o conjunto dos vértices de grau ímpar de G. Um T-corte (do inglês T-cut) é um corte de aresta $\delta_G(X)$ tal que $|T \cap X|$ é ímpar. Acompanhe a Figura 3.

Figura 3: Dois exemplos de *T*-cortes, com $T = \{t_1, t_2, p_1, p_2\}$. As arestas tracejadas à esquerda representam o *T*-corte obtido a partir do conjunto $X = \{t_1, p_1, t_2, s_1, h_1\}$ e as arestas tracejadas à direita representam o *T*-corte obtido a partir do conjunto $X = \{p_1, s_2\}$.

Um *empacotamento* de *T*-cortes de *G* (do inglês packing of *T*-cuts of *G*) é uma coleção disjunta $\delta(\mathcal{F}) = \{\delta(X) \mid X \in \mathcal{F}\}$ de *T*-cortes de *G*, onde \mathcal{F} é a família composta por todos os subconjuntos de vértices de *G*. Se *T* é o conjunto dos vértices de grau ímpar de *G*, então denotaremos por $\nu(G, T)$ a cardinalidade do empacotamento de *T*-cortes de *G* com a maior quantidade de cortes $\delta(X)$. Veja Figura 4.

Figura 4: O conjunto das arestas tracejadas representa um empacotamento de T-cortes gerados pelos conjuntos $\{t_1, t_2\} \in \{s_1, s_2\}$.

Um *conjunto minimal em relação à inclusão* (do inglês inclusion-wise minimal) é um conjunto dentre uma coleção de conjuntos que não contém qualquer outro conjunto da coleção. Dado um empacotamento de *T*-cortes, um *T*-corte $\delta_G(X)$ é um conjunto minimal em relação à

inclusão quando $\delta_G(X)$ não contém qualquer T-corte do empacotamento de T-cortes.

Uma família \mathcal{F} é dita *laminar* se para cada par $X, Y \in \mathcal{F}$, tem-se $X \subseteq Y, Y \subseteq X$, ou $X \cap Y = \emptyset$. Fiorini, Hardy e Reed Fiorini et al. [2007] mostraram que para todo grafo bipartido G e para cada subconjunto $T \subseteq V(G)$ tal que |T| é par, existe um empacotamento de T-cortes em G^{\triangle} que é laminar, ótimo e consiste apenas de conjuntos minimais em relação à inclusão.

Seja G^* o dual de um (3, 6)-fullerene. O grafo G^* não é bipartido, pois suas faces são todas triangulares. O grafo $G^{*'}$ obtido subdividindo as arestas de G^* é bipartido, pois todas as suas faces têm tamanho 6.

Seja $G^{*\Delta}$ o grafo obtido, a partir de $G^{*\prime}$, adicionando três novas arestas dentro de cada face de $G^{*\prime}$, incidentes a cada um dos 3 vértices de grau 2, como mostra a Figura 5. Chamamos $G^{*\Delta}$ de *refinamento* de G^* . Todos os vértices em $V(G^{*\Delta}) - V(G^*)$ têm grau 6 em $G^{*\Delta}$, portanto se Dé o conjunto dos vértices defeituosos de G^* , então D é também o conjunto dos vértices defeituosos de $G^{*\Delta}$. A Figura 5 ilustra estas definições.

Figura 5: Em (a), uma face da triangulação G^* . Em (b), sua subdivisão $G^{*'}$ e, em (c), seu refinamento $G^{*\Delta}$. O Lema 3.1 foi provado por Klein, Faria e Stehlik [Klein et al., 2012].

Lema 3.1 Para toda triangulação planar G e todo subconjunto $T \subseteq V(G)$ tal que |T| é par, $\tau(G,T) = \frac{1}{2}\nu(G^{\Delta},T)$. Além disso, existe um empacotamento de T-cortes em G^{Δ} que é laminar, ótimo formado por conjuntos minimais em relação à inclusão.

Um subgrafo 2-conexo $H \subset G$ tal que todas as faces de H, exceto a face exterior, são triângulos, é chamado de *remendo* de G (do inglês patch of G). Se C é o ciclo exterior (ou fronteira) de H, D(H) é o conjunto dos vértices defeituosos de H e $\sum_{u \in D(H) \cap V(H-C)} (6 - d(u)) = c$, então H é um *c-remendo de* G. Definimos a *área* A(H) de H como o número de triângulos em H.

Figura 6: As arestas tracejadas representam as arestas do remendo H de G. No interior de H há um vértice de grau 3 e nove vértices de grau 6, logo $\sum_{u \in D \cap V(H-C)} (6 - d(u)) = 3$. Portanto, H é um 3-remendo de G. Assim como os vértices de grau 6 no interior de H, os vértices da fronteira de H não influenciam na classificação do remendo. Além disso, A(H) = 27.

Se G é um grafo (3,6)-fullerene, então G^{*} é uma triangulação planar com exatamente 4 vértices de grau 3. Neste caso, os possíveis tipos de remendos de G^* são os 3-remendos, os 6-remendos, os 9-remendos e os 12-remendos.

Sejam $X \subset V(G)$ e G[X] um remendo de G. Um fosso de largura k em G ao redor do remendo G[X] (do inglês moat of width k in G surrounding patch G[X]) é um subconjunto de E(G) definido como:

$$\delta_G^k(X) = \bigcup_{i=0}^{k-1} \delta_G\left(N^i[X]\right).$$

Em particular, $\delta^1_G(X) = \delta_G(X)$. Se $\sum_{v \in X} (6 - d(v)) = d$, então $\delta^k_G(X)$ é um d-fosso de largura k, como mostra a Figura 7.

Figura 7: Em ambas figuras os subgrafos induzidos pelo conjunto $X = \{a, b, c, d\}$ representam 3-remendos de G. O conjunto de arestas tracejas à esquerda é um fosso de largura 1 e o conjunto de arestas tracejadas à direita é um fosso de largura 2. Ambos são 3-fossos, pois foram gerados por 3-remendos de G.

Semanticamente um fosso de largura k, $\delta_G^k(X)$, é o conjunto de todas as arestas pertencentes aos caminhos começando na fronteira do remendo G[X] até os vértices que distam k do conjunto X.

Se G^* é o dual de um (3,6)-fullerene, então os possíveis tipos de fossos de G^* são os 3-fossos, os 6-fossos, os 9-fossos e os 12-fossos.

Para todo fosso $\delta_G^k(X)$ corresponde um conjunto $|\delta_G^k(X)|$ de faces triangulares. Dizemos que as faces incidentes a pelo menos uma aresta de $\delta_G^k(X)$ são *geradas* pelo fosso $\delta_G^k(X)$. Se G é um (3,6)-fullerene, então o número de arestas em um 3-fosso de G^* é facilmente

determinado pelo Lema 3.2

Lema 3.2 Sejam G um grafo (3, 6)-fullerene, G^* o dual de G e D o conjunto dos vértices defei-tuosos de G^* . Se $d_{G^*}(u) = 3$, e nenhuma aresta de $\delta^{k-1}(u)$ é incidente a vértices do conjunto $D - \{u\}$, então $|\delta_{G^*}^k(u)| = 3k^2$.

Demonstração. É fácil observar que
$$|\delta(N^k[u])| = 3(2k+1)$$
.
Portanto, $|\delta^k(u)| = \sum_{i=0}^{k-1} |\delta(N^i[u])| = 3 \sum_{i=0}^{k-1} (2i+1) = 3k^2$.

4. Resultados Centrais

A versão dual do problema da frustração de arestas em um grafo G é a de determinar o menor número de arestas a serem deletadas do dual G^* de modo que todos os vértices do grafo remanescente tenham grau par. O problema da frustração de arestas para os grafos (3, 6)-fullerene será resolvido através de sua versão dual. O menor número de arestas a serem deletadas de um grafo G de modo que o grafo remanescente não possua vértices de grau ímpar é denotado por $\tau(G)$. Veja a Figura 8.

Figura 8: Em (a), uma triangulação planar G^* contendo um vértice de grau 3 e três vértices de grau 5. As arestas tracejadas em (b), representam um menor conjunto de arestas que se removidas de G^* farão com que o grafo remanescente não tenha vértices de grau ímpar. Em (c), o grafo remanescente após a remoção das arestas vermelhas. Neste exemplo, $\tau(G^*) = 4$.

Já discutimos que quando G é um grafo (3, 6)-fullerene o seu correspondente dual G^* é uma triangulação planar cujos vértices têm graus 3 ou 6 e existe pelo Lema 3.1, um empacotamento de T-cortes em $G^{*\triangle}$ que é laminar, ótimo, consistindo apenas de conjuntos minimais em relação à inclusão. Chamamos um tal empacotamento de um *empacotamento de fossos de T*-cortes que, neste caso, é composto apenas de 3-fossos de G^* .

Teorema 4.1 Seja G^* o grafo dual de um (3, 6)-fullerene. Se f é o número de faces de G^* e T é o conjunto dos vértices de grau ímpar de G^* , então $\tau(G^*, T) \leq \sqrt{4f/3}$. A igualdade mantém-se se e somente se $f = 12k^2$, para algum $k \in \mathbb{N}$, e $Aut(G^*) \cong T_d$.

Demonstração. Seja $G^{*\triangle}$ o refinamento de G^* . Assim $G^{*\triangle}$ é uma triangulação planar com 4f faces e todos os vértices de graus 3 ou 6. Pelo Lema 3.1, existe um empacotamento de fossos $\delta_{G^{*\triangle}}(\mathcal{F})$. Seja m_3 o número de arestas em um 3-fosso de $\delta_{G^{*\triangle}}(\mathcal{F})$. Definimos o vetor de incidência $\vec{r} \in \mathbb{R}^4$ da seguinte maneira: para cada vértice $u \in T$, seja r_u a largura do 3-fosso centrado em u.

Definimos o produto interno $\langle \cdot, \cdot \rangle$ em \mathbb{R}^4 por $\langle \vec{a}, \vec{b} \rangle = \sum_{u \in T} a_u b_u$. Também definimos a norma $\| \cdot \|$ por $\|\vec{a}\| = \langle \vec{a}, \vec{a} \rangle$.

Além disso, a *desigualdade de Cauchy-Schwarz* garante que dados $\vec{u}, \vec{v} \in \mathbb{R}^4$ vale a relação $\langle \vec{u}, \vec{v} \rangle^2 \leq \|\vec{u}\|^2 \cdot \|\vec{u}\|^2$, com igualdade sendo verificada quando os vetores forem linearmente dependentes.

Pela otimalidade de $\delta_{G^{*\triangle}}(\mathcal{F})$,

$$\tau(G^*, T) = \frac{1}{2}\nu(G^{*\Delta}, T) = \frac{1}{2}\left\langle \vec{r}, \vec{1} \right\rangle, \text{ sendo } \vec{1} = (1, 1, 1, 1).$$
(1)

Para provar a desigualdade no Teorema 4.1, é suficiente encontrar uma cota superior para $\langle \vec{r}, 1 \rangle$ em função de f. Para fazer isto, computaremos uma cota inferior para m_3 em função do vetor \vec{r} , e então usaremos o fato de que m_3 não pode exceder 4f, que é o número de faces de $G^{*\Delta}$.

Suponha que $\delta^{r_u}_{G^{*} \vartriangle}(u)$ é um 3-fosso de $\delta_{G^{*} \circlearrowright}(\mathcal{F})$, para algum $u \in P$. Lembre-se que pelo Lema 3.2,

$$\left|\delta^{r_u}_{G^{*\,\mathrm{d}}}(u)\right| = 3r_u^2,$$

logo somando sobre todos os 3-fossos,

$$m_3 = 3\sum_{u \in T} r_u^2 = 3 \|\vec{r}\|^2.$$
⁽²⁾

O grafo $G^{*\Delta}$ tem 4f triângulos, e os 3-fossos geram m_3 triângulos de $G^{*\Delta}$. Estes triângulos são mutuamente disjuntos.

Usando (2),

$$4f \ge m_3 \ge 3 \|\vec{r}\|^2.$$

Consequentemente temos,

$$\sqrt{\frac{4f}{3}} \ge \|\vec{r}\|. \tag{3}$$

Portanto, por (1), (3) e pela desigualdade de Cauchy-Schwarz,

$$\tau(G^*, T) = \frac{1}{2} \langle \vec{r}, 1 \rangle \le \frac{1}{2} \|\vec{r}\| \|1\|.$$
(4)

Como $\vec{1} = (1, 1, 1, 1)$, segue que $||1|| = \sqrt{4} = 2$ e, portanto,

$$au(G^*, T) \le \frac{1}{2} \|\vec{r}\| \|1\| = \|\vec{r}\|.$$

Concluímos que,

$$\tau(G^*, T) \le \sqrt{\frac{4f}{3}}.$$

Para provar a parte final do Teorema 4.1, suponha que $\tau(G^*, T) = \sqrt{\frac{4}{3}f}$. Desta maneira a igualdade deve manter-se em (4), desta maneira $r_u = r_v$ para cada $u, v \in T$. Portanto $4f = 3 \cdot 4r_u^2$, assim $f = 3r_u^2$. Como f é par (pois nos (3,6)-fullerenes a quantidade de vértices é dada por n = 4 + 2h, onde h é o número de faces hexagonais), segue que $r_u = 2k$, e portanto $f = 12k^2$, para algum $k \in \mathbb{N}$. Para ver que $Aut(G^*) \cong T_d^2$, note que o grafo G^* pode ser construído a partir do tetraedro regular a partir da inserção em cada face de um 3-remendo da forma $G^*[N^k[u]]$.

Para a volta, se G^* é uma triangulação planar com $f = 12k^2$ faces, com todos os vértices de graus 3 ou 6, e $Aut(G^*) \cong T_d$, então G^* pode ser construído a partir do tetraedro regular inserindo em cada face um 3-remendo da forma $G^*[N^k[u]]$. Como consequência $d(u,v) \ge 2k$, para cada par de vértices distintos em T, assim $\tau(G^*,T) \ge 4k = \sqrt{\frac{4}{3}f}$.

²O automorfismo de um grafo é uma maneira de mapear um grafo a partir dele mesmo, não alterando suas estruturas geométricas, isto é, preservando as relações entre seus vértices e arestas. Um grupo é um conjunto dos automorfismos de um objeto nele mesmo. T_d é um grupo de alta simetria que contém todas as operações de simetria de um tetraedro regular.

Aplicando o Teorema 4.1 ao grafo dual, obtemos a prova do Teorema 1.2.

Prova do Teorema 1.2. Seja G um grafo planar, cúbico, 3-conexo com n vértices e com todas as faces de tamanho 3 ou 6. O grafo dual de G é uma triangulação planar com n faces e todos os vértices de graus 3 ou 6. Sejam T o conjunto dos vértices de grau ímpar de G^* , J^* uma T-junção mínima de G^* , e J o conjunto de arestas de G que corresponde à J^* . Como $G^* - J^*$ não tem vértices de grau ímpar, $G - J = (G^* - J^*)^*$ é bipartido, e pelo Teorema 4.1, $|J| = |J^*| \le \sqrt{\frac{4n}{3}}$, com igualdade se e somente se $n = 12k^2$, para algum $k \in \mathbb{N}$, e $Aut(G) \cong T_d$.

Um conjunto de vértices de um grafo G = (V, E) é um *conjunto transversal (de vértices)* de ciclos ímpares de G se este conjunto intersepta cada ciclo ímpar de G.

Prova do Corolário1.3.

Seja G um grafo planar, cúbico, 3-conexo com n vértices e com todas as faces de tamanho 3 ou 6. O grafo dual de G é uma triangulação planar com n faces e todos os vértices de graus 3 ou 6. Todo grafo G contém um conjunto transversal (de vértices) de ciclos ímpares U tal que $|U| \leq \tau_{odd}(G)$, logo $\alpha(G) \geq \alpha(G-U) \geq \frac{1}{2}n - \frac{1}{2}\tau_{odd}(G)$. Portanto, pelo Teorema 1.2, $\alpha(G) \geq \frac{1}{2}n - \sqrt{\frac{1}{3}n}$, para cada grafo G = (3, 6)-fullerene.

Seja T o conjunto dos vértices de grau ímpar de G^* . Quando J^* é uma T-junção mínima de G^* , cada face de G^* é incidente a no máximo uma aresta de J^* . Isto significa que o conjunto de arestas $J \subset E(G)$ correspondente à J^* é um emparelhamento de G. Portanto, pelo Teorema 1.2, a igualdade mantém-se se, e somente se, $n = 60k^2$, para algum $k \in \mathbb{N}$, e $Aut(G) \cong T_d$.

A Figura 9 exibe um grafo (3, 6)-fullerene em que os limites estipulados nos Teorema 1.2 e Corolário 1.3 são justos.

Figura 9: Grafo (3,6)-fullerene contendo 12 vértices. As arestas tracejadas e os vértices em forma de diamante satisfazem os problemas da frustração de arestas e do conjunto independente máximo para este grafo. Neste exemplo, $\tau(G) = \sqrt{\frac{4 \cdot 12}{3}} = 4 \text{ e } \alpha(G) = \frac{12}{2} - \sqrt{\frac{12}{3}} = 4$.

Referências

Bondy, J. A. e Murty, U. S. R. (1976). Graph theory with applications. Macmillan/Elsevier, Canada.

- Došlić, T. e Vukičević, D. (2007). Computing the bipartite edge frustration of fullerene graphs. *Discrete Applied Mathematics*, 155(10):1294–1301.
- Fiorini, S., Hardy, N., Reed, B., e Vetta, A. (2007). Approximate min-max relations for odd cycles in planar graphs. *Mathematical Programming, Series B*, 110(1):71–91.
- Klein, S., Faria, L., e Stehlík, M. (2012). Odd cycle transversals and independent sets in fullerene graphs. *SIAM Journal of Discrete Mathematic*, 48(3):1458–469.