
Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Formula Optimizer: fast way to formulate and solve multi-objective
combinatorial optimization problems

Thiago Gomes Nepomuceno, Tiago Carneiro Pessoa1,Thalyson Gomes Nepomuceno2
1ParGO Research Group (Paralellism, Graphs and Optimization)

Mestrado e Doutorado em Ciência da Computação, Universidade Federal do Ceará, Brazil
2Mestrado Acadêmico em Ciência da Computação

Universidade Estadual do Ceará, Brazil
thi.nepo@gmail.com,carneiro@lia.ufc.br, thalyson.uece@gmail.com

ABSTRACT
This work presents the Formula Optimizer, a new software designed to formulate and

solve multi-objective combinatorial optimization problems with no programming expertise and with
low performance loss compared to the state-of-art solvers. In this paper, we describe how this
software was designed, its features and examples of usage. We conducted a set of experiments
comparing our software with a state-of-art framework to solve the bi-objective Travelling Salesman
Problem. Results show that Formula is easier to use, faster to formulate a problem and that Formula
has no big performance loss while solving the problem inside the software itself.

KEYWORDS. Optimization Software. Multi-objective Optimization. Metaheuristics.

Optimization, Artificial Intelligence.
1. Introduction

An Optimization Problem is defined as the task of finding one or more solutions that
minimize (or maximize) one or more objectives that satisfy a set of constraints. When we solve
problems with one objective, usually the optimization method results only in one solution. However,
when we solve multi-objective problems rarely we have only one solution, because multi-objective
problems are a set of conflicting objectives and all objectives need be optimized together and at the
same time. In this way, solving a multi-objective problem is to find a set of solutions with different
trade-offs, called Pareto Optimal Solutions, not dominated solutions or Pareto front.

Many frameworks for solving multi-objective problems by using meta-heuristics have
appeared in the past years [Durillo e Nebro, 2011; Lukasiewycz et al., 2011; Streichert e Ulmer,
2005; Schoenauer et al., 2002]. These frameworks usually bring a set of state-of-the-art optimizers,
a wide set of benchmark problems as well as a set of well-known quality indicators. There are many
different ways to take advantage of these frameworks, such as, understanding the source code from
a specific algorithm before implementing a new one, modifying the code according to some specific
need, formulate a new problem and use the methods already implemented in the framework to solve
it.

Researches interested in the formulation of the problem will, in general, use the frame-
work only to help them to solve their problems. Basically they will repeat the following process:
formulate a problem, implement a new Problem class that represents their problems into the frame-
work, choose a method to solve the problem and evaluate the results using metrics and charts.

The process of implementing the Problem class may be challenging for researches with
low programming skills, because they need to read and understand the documentation of the chosen
framework. This process, on the other hand, may be too much repetitive to more advanced users.
In order to help solving this problem, we present a new software called Formula Optimizer.

Formula is a software that helps researchers to focus on their formulations without the
need of programming skills. In this paper, we present many advantages of using it by showing the

335

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

process to solve the bi-objective Travelling Salesman Problem. Then, we compare the Formula’s
performance with jMetal [Durillo e Nebro, 2011] framework, one of the most complete framework
for solving multi-objective combinatorial optimization problems. According to the results, Formula
is easier to use, faster to formulate a new problem and Formula has no big performance loss while
solving the problem inside the software itself.

This work is organized as follows: Section 2 presents some related works and preliminary
concepts necessary to a good understanding of this paper. Section 3 presents the Formula software
and, in Section 4, we present a comparison of formulating a multi-objective problem with Formula
versus formulating with jMetal and in Section 5 a computational evaluation of the proposed software
is performed. Section 6 presents a discussion about the results obtained. Finally, we present in
Section 7 the final considerations and we discuss about some features that are expected in the
future.

2. Related Works
Currently, there are many frameworks for solving multi-objective combinatorial optimiza-

tion problems available on the literature. Essentially these frameworks are a set of implementations
of multi-objectives evolutionary algorithms, mutations, crossovers, selections, set of example prob-
lems and a class to perform analysis of results. Some state-of-art frameworks are discussed further.

Opt4J [Lukasiewycz et al., 2011] is a Java-based framework that has the implementation
of evolutionary algorithms, differential evolution, particle swarm optimization and simulated an-
nealing. This framework also includes a set of benchmark problems, such as ZDT, DTLZ, WFG
and the knapsack problem. Evolving Objects [Schoenauer et al., 2002] is a C++ evolutionary com-
putation library that allows the users to write stochastic optimization algorithms faster. It has a
implementation of solution representation, algorithm paradigms, selection, crossover and mutation.

Eva [Streichert e Ulmer, 2005] is also a Java-based framework. This framework has a
Graphical User Interface (GUI) that allows the user to interact with the framework functionali-
ties. The jMetal [Durillo e Nebro, 2011] is an object-oriented Java-based framework for multi-
objective optimization with meta-heuristics. It is one of the state-of-the-art frameworks to solve
multi-objective combinatorial optimization problems by using meta-heuristics and one of the most
complete frameworks. It has a huge set of algorithms, benchmark problems and operators (selec-
tion, crossover and mutation).

All the examples cited above allow the users to formulate and solve multiobjective com-
binatorial optimization problems fast, compared with the work and time necessary to code an algo-
rithm, solution representation, crossover, selection, mutation and the problem itself from scratch.
However all these frameworks requires programming effort, thus, programming expertise. Based
on it, we propose a new way to formulate and solve multi-objective combinatorial optimization
problems, which needs no programming effort and, if compared to the state-of-art solvers, has low
performance loss.

3. Formula Optimizer
Formula Optimizer is a software that has the mission of allowing researchers to formulate

and solve multi-objective problems without programming expertise and with minor performance
loss. The software is divided into seven modules as showed in Figure 1.

The gray modules contain features that are usually present in a common framework:

• Import Problem: import a Java file that contains a problem implemented using another frame-
work (like jMetal);

• Run Algorithm: run a set of parameters of the algorithm (a configuration);

• Run Experiments: run a set of configurations, e.g., to make a set of experiments to a scientific
paper;

336

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Figure 1: Modules of the Formula Optimizer

• Utilities: contains utilities tools. For example, a tool that given a set of files that contains
different Pareto fronts, returns a Pareto front of the solutions present in all files.

The yellow modules are designed to create charts and tables of results that are usually
present in many Genetic Algorithm (GA) works, like population charts, metrics charts and tables
comparing results from different algorithms.

The core module is the Create Problem. This module allows the researcher to formulate
a problem and solve it without any programming expertise and without leaving the software. As
showed in Figure 2, in order to create a new problem using the GUI, the user should follow the
following steps: create all need variables, choose how should be the mathematical formula of his
formulation, choose the solution vector representation (Integer, Real, Binary, etc.) and choose a
lower bound and upper bound value of each variable that the solution vector can assume (to Integer
and Real solutions).

Figure 2: GUI of the Create Problem module.

After creating the formulation, the user should click on the Build button and Formula
automatically creates all needed files and the problem is ready to be solved. This process also

337

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

creates some Java files, each of this files contains a Java class that is completely compatible with the
correspondent optimization framework (until the release of this paper, only the jMetal framework
is supported). So, at this point, the user may continue to use the features of Formula or continue his
research on his preferred framework. This feature is important not only to give freedom of choice
to the user, but allows the user to integrate the solutions resulted from the algorithm into their own
software easily, sometimes just solving the problem is not the final goal.

Some formulations cannot (or are not easy to) be formulated with only basic mathematical
symbols. To solve this problem we added a Add custom code feature where the user can add
Java code to be executed right after his mathematical formulation to each objective or constraint,
add complex Java types (like Lists and Map, for example) or even add any codes directly on the
constructor of his problem. This way, any problem that use one of the solutions representations
present on the Formula can be formulated and solved into the software. Until the release of this
paper, the Formula supports: Integer, Double, Binary and Permutation solutions. This means that
each variable of the solution vector can be of the integer type, real type, binary type or the entire
solution vector will be a permutation that contains the numbers from 0 to N − 1, where N is the
size of the solution vector.

After formulating and building the problem, the user may want to solve it using one of the
optimization algorithms. Formula allows the user to choose among different meta-heuristics like
the NSGA-II [Deb et al., 2000], MoCell [Nebro et al., 2009], SPEA2 [Zitzler et al., 2001], MOPSO
[Coello e Lechuga, 2002] and many more will be added in the future.

To solve a problem, the user needs to define a configuration, that is the object that holds
all parameters needed to execute the meta-heuristic. Each configurations will have a name, the
maximum number of evaluations (stop criteria of the algorithm), population size, crossover ratio,
mutation ratio, algorithm to be executed, problem to be solved, the instance files, the method to
generate the initial population, selection operator, crossover operator, mutation operator, the pattern
of the output file and how many times this configuration should be executed. The GUI that create a
new configuration is showed in the Figure 3.

Figure 3: Create a new Configuration

We will describe how solve the problem using the Run Experiment module (the Run Al-
gorithm module is a simpler version of it). The GUI of the Run Experiments module is showed in
the Figure 4, in this GUI the user can create different configurations and, after that, choose which
configurations will be executed in this experiment. When the user clicks on Run button, Formula

338

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

Optimizer will execute all the configurations sequentially and the progress bars will give a feed-
back to the user that can follows in which point of the experiments the execution already is. After
Formula finish the execution to each instance, the results will already be available on the project
folder, that holds all files needed to each project on the Formula Optimizer, like the problems, the
solutions and general configuration file.

Figure 4: GUI of the Run Experiments module

After formulating and solving the problem, the researcher evaluates the results using
charts and quality metrics, which can be done using the Charts and Results module. In the Fig-
ure 5 the Charts GUI can be seen. For example, to generate a population chart the user need to
provide the title, label of the x axis, label of the y axis, the populations files and which objective
will be in each axis (case the problem have more than two objectives).

Figure 5: GUI of the Charts module

Thus, Formula provides to the user a set of tools that allows to formulate a problem, carry
a complete experimentation with different algorithms and parameters and evaluate the results using
charts and tables of result.

339

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

3.1. Aspects of implementation
The main part of Formula implementation is the Create Problem module, that allow the

user to formulate a problem using only a GUI. The most important part is translate the formulation to
a Java code, then use this Java code to solve the problem using the Formula or a external framework.

The translation is done using a template that will be filled with some informations. The
basic informations are: solution type, upper and lower bound and size of the chromosome. After
it, Formula will create a code to each objective and constraint. A Builder class will receive the
formulation of the objective or constraint and create a code to each one. Each variable of the
formulation will be represented in the code and each sum or product will have a associated variable
storing the resulting value. The result of this process is a Java class that represent the formulation
of the problem and can be understood be any programmer.

This code will be used by the Formula in the Run Algorithm and Run Experiments modules
when the user is using a method to solve the created problem. A second option is export it as a Java
file and use it in a external framework.

So, in a high level, the implementation consist in fill basic information about the problem
and translate the information about the formulation of each objective and constraint, creating a
correspondent code to each one, after this process we will have a Java class that represents the
desired problem.
4. Evaluation

In this Section, we present the evaluation of the proposed software, in terms of problem
formulation and computational performance. This Section is organized as follows: first, we describe
the evaluation methodology, then, we compare the effort evolved into formulating a problem by
using Formula Optimizer vs. jMetal. The following section presents the computational evaluation,
in order to show that the user can solve problems inside Formula, without considerable performance
loss. Finally, we present the results and an analysis of the results achieved.
4.1. Evaluation Methodology

Formula Software was created based on the premise that it is possible to formulate multi-
objective problems easily than the state-of-art solvers, with no programming expertise, and solve
them with low performance loss. To show that Formula archive its goals, we will perform two
evaluations: we will show that it is easier to formulate multi-objective problems by using Formula,
then, we will compare the performance of Formula vs. jMetal.

On the first experiments, we will show the necessary steps to formulate the multi-objective
Travelling Salesman Problem (TSP) [Shi e Li, 2009], the problem of finding a shortest Hamiltonian
cycle though a given number of cities in such a way that each city is visited only once, is one
of the most disseminated and studied combinatorial optimization problem, having plenty of real-
world applications [Cook, 2012], justifying our choice. Its multi-objective version will be discussed
further.

The second experiment will be a computational evaluation comparing the performance
between Formula vs. jMetal. This experiment will only evaluate the Runtime of the algorithms,
because both approaches use the same algorithms to solve the same instances. So, metrics like
Hipervolume [Zitzler, 1999] and Spread [Azarm e Wu, 2001] do not make sense. We will perform
two different versions of tests, the first one is without the Algorithm Progress Bar, which means
that the user will can’t see if the execution is close to end or not, and in the second version we allow
the use of the Algorithm Progress Bar.

The instances used in this study comes from the instance generator proposed by Cirasella
et al. [2001], which creates instances of the Asymmetric Travelling Salesmen Problem using prop-
erties found in real-world situations. Two classes of instances, defining a representative set of
properties, were selected: crane, that represents stacker crane operations, and disk, modeling the
movements of the reading head of a hard disk. We created instances with 100, 500 and 1000 cities
using each generator. In order to generate the multi-objective instance, one matrix cost MN×N was
generated per objective. Each cost cij represents the cost of going from the city i to the city j.

340

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

4.1.1. Testing environment
The testing environment has the following characteristics:

1. Operating system: Windows 10, 64 bits;

2. Processor: Intel Core i5-3210M @2.50GHz with two cores and 8 GB RAM;

3. Java(TM) SDK (build 1.8.0 65).

4.2. Formulating the Multi-objective Travelling Salesman Problem
In the Multi-objective Travelling Salesman [Shi e Li, 2009] are given a set of n cities (i =

1, . . . , n) where for each pair of cities (i, j), there are associated costs M1
ij and M2

ij , representing
the two kinds of costs involved when moving from city i to city j. A solution for the Multi-objective
TSP is a permutation x1, x2, . . . , xn of the cities that minimizes the two cost functions. Formally,
we have the following objective functions:

minf1(x) = (

n−1∑
i=1

M1
xixi+1

) +M1
xnx1

, minf2(x) = (

n−1∑
i=1

M2
xixi+1

) +M2
xnx1

. (1)

4.2.1. Using the jMetal for formulating the multi-objective TSP
In order to formulate the multi-objective TSP by using JMetal, the first step is to create

a new Problem class that inherits from the core Problem class of the jMetal. After that, the
programmer will create all variables that will be necessary for his problem inside this class. For
the multi-objective TSP, the programmer will need at least two different distance matrix, one to
each objective. The next step is to create a constructor and attribute a correct value to all variables
present on the core JMetal Problem class. To be aware of each variable, the programmer can use
the documentation or see the examples present on the framework itself.

The programmer must create a way to receive a instance file and read the instance, at-
tributing the correct value to each problem variable. On the multi-objective TSP, it is necessary to
read the number of cities and the two distance matrices. The two last steps are override the evaluate
and the evaluateConstraint functions, that calculate the value of the solution fitness and calcu-
late how many (and how much) constraints the solution violated respectively. So, in the evaluate
function, the programmer needs to code the formulation of the problem and set the value to each
objective, and in the evaluateConstraint function, the programmer wants to know if the solution
breaks any problem constraint and, if it does, how many constraint were violated and how much
it was violated. For the multi-objective TSP, there are no constraints, because the Permutation
solution type already deal with it.

The next step is choosing the algorithm to solve the problem, where the programmer
needs to create a algorithm object, create a problem object, pass to the algorithm object, choose all
parameters (maximum evaluation, crossover, mutation, selection, etc.), execute the algorithm and
store the result population.

4.2.2. Using the Formula Software
The first step to formulate the multi-objective TSP by using Formula is clicking on the

Create problem button, after that, the user will inform the name of the problem and the quantity of
objectives and constraints, in this case, as we are formulating the TSP, we have two objectives and
zero constraints. In this point, we have a problem, but we have no data about the problem, so, we
will create the both objectives of the multi-objective TSP formulation.

To create the problem formulation, the user must create each variable that is necessary
and use the GUI to inform the proper formulation. This process is similar to the use a common

341

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

calculator software. After informing the objectives, the user should inform the type of variable and
the lower value and upper value to each variable in the solution vector.

Formula already creates two variables that are common to all problems: X and N. The X
variable always represents the solution vector and the N variable always represents the size of the
solution vector.

The last step to formulate the multi-objective TSP by using Formula, is informing how the
instance file will present the values. To do that, the user will inform to Formula the order in which
the variables will be presented in the instance file. After this short process, we have a problem ready
to be solved using the Formula Software or exported to a preferred framework. The GUI resulted
from this process can be seen in Figure 2.

5. Performance Evaluation
The first set of experiments is showed in Table 1. To each algorithm we use different

quantity of evaluations (stop criteria) and different size of population to solve a crane instance
with 1000 cities. The name in the Configuration column of the Table 1 correspond to algo-
rithm maxEvaluations sizeOfPopulation. In the second set of experiments, showed in the Table 2,
we used the configuration that use maxEvaluations = 500, 000 and sizeOfPopulation = 128
to solve multiples instances and the name in the Configuration column of the Table 2 correspond to
algorithm generator numberOfCities.

The statistical evaluation of the results used the two-sample t-test with a significance
level equal to 5%. The null hypothesis for both approaches is that the Runtime distributions are
independent random samples from normal distributions with equal means and equal but unknown
variances. The alternative hypothesis is that the means are not equal.

Tables 1 and 2 presents the results for the Runtime metric to both algorithms, NSGA-II
and MoCell, in both approaches, jMetal and Formula. Each table entry shows three values: the
mean, the standard deviation and the p-value obtained with the t-test. For all tests the reference
sample is the one achieved by jMetal. The t-test of each column always matches with the jMetal
algorithm result. Each table cell indicates, using a symbol, if the hypothesis has been rejected (7)
or not (X).

Runtime
Configuration jMetal Formula Formula with

progress bar

NSGA-II 100000 128 5793.93333
(2566.81902)

6270.73333
(915.02342)
7[0.00001]

7082.43333
(2448.45489)
7[0.00000]

NSGA-II 100000 256 7287.10000
(1508.10102)

7544.20000
(4149.22195)
X[0.09432]

7781.76667
(2339.58829)
7[0.00000]

NSGA-II 500000 128 28880.20000
(3320.36787)

28801.60000
(8587.17120)
X[0.80256]

39970.63333
(13057.71944)

7[0.00000]

NSGA-II 500000 256 32523.23333
(1894.12496)

33202.23333
(7171.56854)
7[0.01085]

42860.66667
(7650.52970)
7[0.00000]

MoCell 100000 128 6090.36667
(936.63812)

6738.80000
(2976.40266)
7[0.00000]

8416.16667
(2570.23621)
7[0.00000]

MoCell 100000 256 6076.73333
(936.14415)

6757.40000
(1358.63579)
7[0.00000]

8367.23333
(2539.16037)
7[0.00000]

MoCell 500000 128 29439.26667
(1927.50353)

32062.10000
(5352.29509)
7[0.00000]

42793.53333
(12738.22364)

7[0.00000]

MoCell 500000 256 29935.20000
(2799.43294)

31935.76667
(8885.78614)
7[0.00000]

40680.43333
(5455.03981)
7[0.00000]

Table 1: Multiples configurations experiment

Runtime
Configuration jMetal Formula Formula with

progress bar

NSGA-II crane 100 4912.23333
(1152.95246)

5495.56667
(2975.78114)
7[0.00000]

5590.33333
(972.54134)
7[0.00000]

NSGA-II crane 500 12951.06667
(2168.27255)

12898.03333
(3453.70076)
X[0.70295]

19233.16667
(6534.64813)
7[0.00000]

NSGA-II crane 1000 28880.20000
(3320.36787)

28801.60000
(8587.17120)
X[0.80256]

39970.63333
(13057.71944)

7[0.00000]

NSGA-II disk 100 5520.30000
(2657.23358)

4823.33333
(1541.84132)
7[0.00000]

5150.16667
(1318.76085)
7[0.00065]

NSGA-II disk 500 13550.10000
(2075.32617)

12234.13333
(1945.55737)
7[0.00000]

19158.80000
(6788.04160)
7[0.00000]

NSGA-II disk 1000 29410.56667
(5385.49323)

28891.60000
(7413.46540)
X[0.10072]

39993.96667
(14119.54734)

7[0.00000]

MoCell crane 100 3385.66667
(1385.81769)

4931.50000
(2846.40993)
7[0.00000]

4897.33333
(2025.10954)
7[0.00000]

MoCell crane 500 13374.83333
(1815.43553)

15119.80000
(2716.19233)
7[0.00000]

19044.23333
(6925.51697)
7[0.00000]

MoCell crane 1000 29439.26667
(1927.50353)

32062.10000
(5352.29509)
7[0.00000]

42793.53333
(12738.22364)

7[0.00000]

MoCell disk 100 3356.80000
(2355.13966)

4144.56667
(1289.40504)
7[0.00000]

4700.53333
(1863.93333)
7[0.00000]

MoCell disk 500 13375.73333
(2101.51418)

14081.06667
(2257.69924)
7[0.00000]

19205.06667
(6877.19259)
7[0.00000]

MoCell disk 1000 29712.60000
(3726.78993)

31555.26667
(6277.92863)
7[0.00000]

42640.20000
(11650.28389)

7[0.00000]

Table 2: Multiples instances experiment.

342

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

6. Discussion
This ability to export a formulation is specially important to commercial applications,

because they will solve the problem as a part of a bigger system. But, if the goal is do a complete
experimentation about a new formulation, all the problem can be solved inside the Formula using a
Graphical User Interface (GUI).

To solve the problem using the jMetal we need to read and understand the documentation,
learn how to use a algorithm to solve the problem and how use the experiment module to carry the
experiments (or the programmer can create a own Java class that do it). Using Formula, the user
will use the Run Experiments GUI and create the proper configuration, using the GUI showed in
the Figure 3, to their experiments. After created all the configurations needed to the experiment, the
user should add them to be executed and click the Run button.

The Formula method is good to create experiments with up ten or twenty configurations.
Even with the Clone configuration feature, where the user can clone a configuration and modify only
a small part of the parameters, the process to create fifty different configurations become tough and
the traditional method, creating a Java class or a script, should work better in this case. We will
probably add a way to create scripts inside the Formula to solve this problem in the future.

In his current state, Formula allows the user to formulate a new problem using the GUI,
import a problem coded in a external framework, solve the problem by using a custom configura-
tion, make a complete experimentation with many different types of configurations and evaluate the
results using charts and tables. Thus, the whole process to solve a multi-objective problem (formu-
late, solve and evaluate results) can be done inside the Formula, but the user have the freedom to,
after the formulation step, continue his experiment on his preferred framework. This can be useful
for users that have programing expertise, but they want to formulate their problems fast and, then,
tune the code generated by Formula Optimizer, according to their needs.

How it was expected, in our tests, the jMetal is the fastest one, because the GUI present
in the Formula have a associated cost in memory and CPU usage. Formula with the progress bar
have the worst performance because the progress bar is update in every generation of the Genetic
Algorithm. But as we can see in the Tables 1 and 2 the increase in the time using the Formula Op-
timizer, when compared with the jMetal framework, is low and represent a 6% increase in average
without use the progress bar and 11% allowing the progress bar.

7. Conclusions
This work has presented a new way to formulate multi-objective combinatorial optimiza-

tion problems by using a software called Formula Optimizer. The proposed software accomplishes
its mission, that is, to allow users with no programming expertises to formulate their problems
quickly and solve multi-objective combinatorial optimization problems with low performance loss,
inside formula itself, if compared to the state-of-art solvers. Formula Optimizer showed also to be
useful for users with programming skills, that want to formulate their problems fast and, then, tune
the code generated by Formula Optimizer, according to their needs.

The whole process to solve a multi-objective problem (formulate, solve and evaluate re-
sults) can be done inside the Formula, however, the overhead involved in using the Formula Opti-
mizer, when compared with the jMetal framework, is low and represents a 6% increase in average,
without use the progress bar, and 11% allowing the progress bar, which is not a big overhead, if
compared to the benefits of formulating the multi-objective combinatorial optimization problem
fast and using a Graphical User Interface.

A first future research direction is to make Formula available to be tested by the scientific
community. Besides that, genetic algorithms and meta-heuristics have been successful parallelized
along the years, allowing the researches to solve bigger instances or just to solve instances quickly.
Thus, an other future research direction is, based on the formulation given by the user, to generate
code for diverse heterogeneous and parallel architectures, such as Advanced Vector Extensions
(AVX), present on mainstream multi-core computers, and for Graphics-process unities, by using

343

Anais do XLVIII SBPO
 Simpósio Brasileiro de Pesquisa Operacional

Vitória, ES, 27 a 30 de setembro de 2016.

APIs such as CUDA and OpenCL, which will allow Formula Optimizer to run codes on different
heterogeneous systems, from mobile phones to computational clusters.

References
Azarm, S. e Wu, J. (2001). Metrics for Quality Assessment of a Multiobjective Design Optimization

Solution Set. Journal of Mechanical Design, 123(1):18–25.

Cirasella, J., Johnson, D., McGeoch, L., e Zhang, W. (2001). The asymmetric traveling salesman
problem: Algorithms, instance generators, and tests. Algorithm Engineering and Experimenta-
tion, p. 32–59.

Coello, C. A. C. e Lechuga, M. S. (2002). Mopso: a proposal for multiple objective particle swarm
optimization. In Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress
on, volume 2, p. 1051–1056.

Cook, W. (2012). In pursuit of the traveling salesman: mathematics at the limits of computation.
Princeton University Press.

Deb, K., Agrawal, S., Pratab, S., e Meyarivan, T. (2000). A fast elitist non- dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. Parallel Problem Solving from
Nature VI Conference.

Durillo, J. J. e Nebro, A. J. (2011). JMetal: A Java framework for multi-objective optimization.
Advances in Engineering Software, 42(10):760–771. ISSN 09659978.

Lukasiewycz, M., Glaß, M., Reimann, F., e Teich, J. (2011). Opt4J: A Modular Frame-
work for Meta-heuristic Optimization. URL http://dl.acm.org/citation.cfm?id=
2001808\backslashnhttp://doi.acm.org/10.1145/2001576.2001808.

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., e Alba, E. (2009). MOCell: A Cellular
Genetic Algorithm for Multiobjective Optimization. International Journal of Intelligent Systems,
24(7):726–746. ISSN 0884-8173. URL http://dx.doi.org/10.1002/int.v24:7$\
backslash$nhttp://doi.wiley.com/10.1002/int.20358.

Schoenauer, M. K., Merelo, J. J., Romero, G., e M. (2002). Evolving Objects: A General Purpose
Evolutionary Computation Library. Artificial Evolution, 2310:829—-888. URL http://www.
lri.fr/{˜}marc/EO/EO-EA01.ps.gz.

Shi, L. e Li, Z. (2009). An improved pareto genetic algorithm for multi-objective tsp. In Wang, H.,
Low, K. S., Wei, K., e Sun, J., editors, ICNC (4), p. 585–588. IEEE Computer Society. ISBN 978-
0-7695-3736-8. URL http://dblp.uni-trier.de/db/conf/icnc/icnc2009-4.
html#ShiL09.

Streichert, F. e Ulmer, H. (2005). JavaEvA A Java based framework for Evolutionary Algorithms -
Manual and Documentation -. Technical report, University of Tubingen, Tubingen.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and Appli-
cations. PhD thesis, Swiss Federal Institute of Technology (ETH).

Zitzler, E., Laumanns, M., e Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. p. 95–100.

344

