
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

IMPROVING THE COMPUTATIONAL EFFICIENCY OF
TEACHING-LEARNING BASED OPTIMIZATION FOR JOB SHOP
SCHEDULING PROBLEMS BY ELIMINATING UNNECESSARY

OBJECTIVE FUNCTION CALLS

Leonardo Ramos Rodrigues
Instituto de Aeronáutica e Espaço - IAE

Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP, Brasil, 12228-904
leonardolrr@iae.cta.br

João Paulo Pordeus Gomes, Saulo Anderson Freitas de Oliveira
Universidade Federal do Ceará

Rua Campus do Pici, sn, Fortaleza, CE, Brazil, 60440-554
jpaulo@lia.ufc.br, sauloafoliveira@lia.ufc.br

Lucas Sousa de Oliveira, Takashi Yoneyama
Instituto Tecnológico de Aeronáutica - ITA

Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP, Brasil, 12228-900
lsoliveira459@gmail.com, takashi@ita.br

ABSTRACT
This paper presents a method to improve the computational efficiency of TLBO in combi-

natorial optimization problems. Our goal is to eliminate unnecessary calls to the objective function
in order to reduce simulation time. A common approach to solve combinatorial problems with
TLBO is the use of priority vectors. Each priority vector is mapped into a solution by sorting
its elements. However, different vectors can be mapped into the same solution. We insert a new
step, called Change Verification, which consists in comparing the solutions generated from both
the current and the modified priority vectors. The objective function is called only if the solutions
are different from each other. Experiments with benchmark instances of the job shop scheduling
problem were carried out to evaluate the proposed method. The proposed method outperformed
the original TLBO in all instances, providing an average reduction in simulation time and objective
function calls of 11.7% and 12.2%, respectively.

KEYWORDS. Teaching-Learning Based Optimization. Combinatorial Optimization. Meta-
heuristics.

Paper topic: MH - Metaheuristics. OC - Combinatorial Optimization

1969



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

1. Introduction

Among all metaheuristic methods available in the literature, the recently proposed Teaching-
Learning Based Optimization (TLBO) algorithm is one of the most promising [Rao et al., 2011].
TLBO is a population based algorithm that simulates the teaching-learning process observed in a
classroom. It has achieved remarkable performances in different optimization problems (see Sahu
et al. [2015], Sapathy et al. [2013] and Rao et al. [2012]) with the advantage of the absence of
hyperparameters [Rao and Patel, 2012].

In recent years, several works have proposed variants of the TLBO algorithm to improve
different aspects of the original formulation. In Rao and Patel [2012], the authors proposed an elitist
TLBO. The elitism preserves the best candidates of each iteration and thus prevents the loss of a
possible good solution. Using more than one teacher and adapting the teaching factor are some of
the modifications proposed in Rao and Patel [2013] in order to improve both the exploration and
the exploitation capacity of TLBO. Chen et al. [2015] incorporated local learning and self-learning
methods in the TLBO algorithm, to the same end.

Although TLBO was originally proposed for optimizing mechanical design problems, it
has been successfully used in combinatorial optimization problems. In Baykasoǧlu et al. [2014],
the authors investigated the performance of TLBO in several instances of both the flow shop and
the job shop scheduling problems. For the flow shop scheduling problem, the authors compared
the performance of TLBO with the Novel Particle Swarm Optimization (NPSO) and the Hybrid
Particle Swarm Optimization (HPSO). For the job shop scheduling problem, the authors compared
the performance of TLBO with the Beam Search Algorithm (BSA) and the GRASP algorithm,
among others. The performance of TLBO was comparable to the best known performances from
the literature. The authors concluded that TLBO is an effective algorithm to solve combinatorial
optimization problems.

Despite the numerous variants of TLBO, no previous work addressed the problem of its
computational efficiency. Since TBLO is a population based algorithm, it evaluates all candidate
solutions at each iteration, which can be considerably time-consuming depending on the objective
function. In this paper, we propose a variant of the TLBO with reduced computational cost by ex-
ploring particularities of combinatorial problems. Numerical experiments with twenty benchmark
instances of the job shop scheduling problem are carried out to evaluate the performance of the
proposed method. Experiments using the original version of the TLBO algorithm are also carried
out to establish a reference baseline. Promising results were obtained.

Scheduling problems are amongst the most challenging combinatorial optimization prob-
lems. Therefore, investigating the performance of TLBO in solving these problems can give us a
good idea of its capability to solve other combinatorial optimization problems.

The remaining sections of this paper are organized as follows. Section 2 introduces
the teaching-learning based optimization algorithm and describes the formulation of the job shop
scheduling problem. Section 3 presents the proposed method to improve the computational effi-
ciency of the TLBO algorithm. Section 4 illustrates the application of the proposed method in
twenty benchmark instances of the job shop scheduling problem. Concluding remarks are presented
in section 5.

2. Theoretical Background

2.1. Teaching-Learning Based Optimization Algorithm

The Teaching-Learning Based Optimization (TLBO) algorithm has been recently pro-
posed as a novel population oriented metaheuristic algorithm based on the teaching-learning pro-
cess observed in a classroom [Rao et al., 2011]. This algorithm simulates the influence of a teacher
on the output of a group of students in a class. The TLBO algorithm is divided into two main parts:
the Teacher Phase and the Student Phase, also known as the Learner Phase [Rao and Patel, 2013].

1970



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

During the Teacher Phase, students learn from the teacher, while in the Learner Phase students learn
through the interaction among themselves.

There is a solution X associated with each student, which corresponds to a possible solu-
tion for the optimization problem under consideration. Also, there is a result f(X) associated with
each solution (or student), which can be obtained by evaluating the solution X using the objective
function f(·). In the job shop scheduling problem considered in this paper, a solution X corre-
sponds to a sequence of tasks for each machine and the associated result f(X) corresponds to the
makespan, which is the time spent in order to process all jobs.

At the end of each iteration, the stop criteria are checked. Different stop criteria may be
adopted. Some of the most commonly adopted stop criteria are the maximum number of iterations,
the maximum number of successive iterations without any improvement, the maximum simulation
time and the maximum number of function evaluations.

The student with the best solution in the population is considered as the Teacher. A
flowchart describing the steps for implementing the TLBO algorithm are presented in Figure 1
[Rao et al., 2011]. The Teacher Phase and the Student Phase are described in the next sections.

2.1.1. Teacher Phase:

In this phase, the algorithm simulates the learning of the students from the teacher (best
solution). During this phase, the teacher makes an effort to increase the mean result of the class.

Consider a group of n students. Let Mi be the mean solution of the students and Ti be the
teacher at iteration i. The teacher Ti will make an effort to move Mi to its own level. Knowledge
gain is based on the quality of the teacher and the quality of students in the class. The difference
Di between the solution of the teacher, XT i, and the mean solution of the students, Mi, can be
expressed according to Equation (1).

Di = ri(XT i − TF ·Mi) (1)

where ri is a random number in the range [0, 1] for iteration i and TF is a teaching factor for iteration
i, which is randomly set to either 1 or 2 according to Equation (2).

TF = round(1 + rand(0,1)) (2)

where rand(0,1) is number randomly chosen from a uniform distribution between 0 and 1, and
round(·) is a function that rounds its input to the nearest integer.

Based on the difference Di, the existing solution of each student k in iteration i, Xki, with
k ∈ {1,2, . . . ,n}, is updated in the teacher phase according to Equation (3):

X+
ki = Xki +Di (3)

where X+
ki is the updated value of Xki.
If f(X+

ki) is better than f(Xki), X+
ki is accepted and replaces Xki. Otherwise, X+

ki is
discarded.

2.1.2. Student Phase:

In this phase, the algorithm simulates the learning of the students through interaction with
one another. During this phase, students gain knowledge by discussing with students who have
more knowledge [Rao and Patel, 2013].

Consider a pair of students y and z. Let Xyi and Xzi be the solutions of students y and
z at iteration i, respectively. If f(Xyi) is better than f(Xzi), the solution of student z is updated
according to Equation (4). Then, X+

zi will replace Xzi if f(X+
zi) is better than f(Xzi). Similarly, if

1971



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figure 1: Flowchart for the TLBO algorithm [Rao et al., 2011]

f(Xzi) is better than f(Xyi), the solution of student y is updated according to Equation (5). Then,
X+

yi will replace Xyi if f(X+
yi) is better than f(Xyi).

X+
zi = Xzi + ri(Xyi −Xzi) (4)

X+
yi = Xyi + ri(Xzi −Xyi) (5)

During the Student Phase, a partner is randomly chosen to be paired with each student.
Therefore, if a population of n students is considered, then n pairs of students are evaluated.

2.2. Job Shop Scheduling Problem

The job shop scheduling problem is one of the best known and most difficult problem in
the scheduling area [Cruz-Chavez et al., 2007]. It is classified into the NP-complete group [Garey
et al., 1976].

A job shop scheduling problem consists of a set of j jobs and m machines. Each job
contains an ordered list of operations, and each operation must be processed on a specific ma-
chine. Each job must go through the machines in the specified sequence to be completely processed
[Baykasoǧlu et al., 2014]. The operation belonging to the j-th job which is executed on machine
m is denoted by u(m,j) and has a duration d(m,j). The goal is to find a schedule that minimizes
the makespan (the completion time of all jobs). The job shop scheduling problem considers the
following constraints on jobs and machines [Baykasoǧlu et al., 2014], [Blazewicz et al., 1996]:

1972



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

• All jobs are independent, and available for processing at time zero.

• Each job can be performed only on one machine at a time.

• Processing times are deterministic and independent.

• Setup times and removal times are included in processing times.

• Transportation times are negligible.

• Operations cannot be interrupted (preemption is not allowed).

• Every machine can execute only one operation at a time.

• The execution order of the operations for each job must be respected.

• All machines are always available (i.e. failures do not occur).

• There are no precedence constraints among operations of different jobs.

Let J = {1, . . . ,j} be the set of jobs, M = {1, . . . ,m} be the set of machines and
U = {0,1, . . . ,j×m, (j×m)+1} be the set of operations to be scheduled, where 0 and (j×m)+1
are dummy initial and final operations, respectively. Also, let du and fu be real numbers that denote
the duration and the finish time of operation u, respectively.

The operations are interrelated by two kinds of constraints. First, the precedence con-
straints, which force the execution of each operation u to start only after all predecessor operations,
Pu, are completed. Second, operation u can only be scheduled if the machine it requires is idle.

Let A(t) be the set of operations being processed at time t ∈ R, and au,m be a binary
variable which assumes value 1 if operation u is required to be processed on machine m and zero
otherwise. A schedule may be represented by a vector of finish times F =

[
f0, . . . ,f(j×m)+1

]
. The

job shop scheduling problem can be formally stated as follows [Gonçalves et al., 2005]:

Minimize: f(j×m)+1 (6)

Subjected to:

fu − du ≥ fx, ∀x ∈ Pu (7)∑
u∈A(t)

au,m ≤ 1, m ∈M ; t ≥ 0 (8)

fu ≥ 0, u = 1, . . . ,(j ×m) + 1 (9)

where Equation (6) is the objective function which minimizes the makespan, Equation (7) repre-
sents the precedence relations between operations, Equation (8) imposes that one machine can only
process one operation at a time, and Equation (9) imposes non negative finishing times.

2.2.1. Solution Representation for the Job Shop Scheduling Problem

The solution representation adopted in this paper for the job shop scheduling problem is
based on the priority matrix approach [Baykasoǧlu et al., 2014]. Let Xk be an m × j real-number
matrix which represents the solution of student k for a job shop scheduling problem containing m
machines and j jobs, i.e.:

1973



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Xk =


x11 x12 · · · x1j
x21 x22 · · · x2j

...
...

. . .
...

xm1 xm2 · · · xmj



where each element xri, with 1 ≤ r ≤ m and 1 ≤ i ≤ j represents the priority of the operation
belonging to the i-th job that is executed by the r-th machine.

The total number of possible schedules (considering both feasible and infeasible sched-
ules) for a job shop scheduling problem with m machines and j jobs is (j!)m, which makes it ex-
tremely difficult to find the optimum solution using an exhaustive search even for small instances of
the problem. To reduce the search space, feasible schedules are classified into four types [Gonçalves
et al., 2005]:

• Inadmissible schedules: These schedules contain excessive idle times. Inadmissible sched-
ules may be improved by forward-shifting operations until no excess idle times exist.

• Semi-active schedules: These schedules can be obtained by sequencing the operations as
early as possible. Semi-active schedules contain no excess idle time. However, they can be
improved by shifting some operations to the front without delaying others.

• Active schedules: In this type of schedule, no operation can be started earlier without delay-
ing some other operation or violating a precedence constraint. An optimal schedule is always
an active schedule, so the search space can be safely limited to the set of all active schedules.

• Non-delay schedules: In this type of schedule, no machine is kept idle when it could start
processing an operation. Non-delay schedules are always active.

Figure 2 shows the relationship among the different types of schedules. It is only neces-
sary to limit the search space to the set of active schedules since optimal solutions are guaranteed
to be active schedules [French, 1987]. In this paper, in order to convert the priority matrix Xk into
an active schedule, the G&T algorithm is be used. The G&T algorithm is briefly described below
[Giffler and Thompson, 1960].

Figure 2: Relationship among schedule types

1974



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

2.2.2. The G&T Algorithm
Giffler and Thompson [1960] developed a recursive algorithm to generate active schedules

systematically. The notation adopted in the G&T algorithm is as follows:

• u(m,j) is the operation belonging to the j-th job that must be executed on the m-th machine.

• S is the partial schedule which contains all operations already scheduled.

• Z is the set of operations that can be scheduled, i.e. the set of operations without predecessor
restrictions.

• e(m,j) is the earliest time at which operation u(m,j) belonging to Z can be started.

• d(m,j) is the duration (or execution time) of operation u(m,j).

• f(m,j) is the earliest time at which operation u(m,j) belonging to Z can be finished, i.e.
f(m,j) = e(m,j) + d(m,j).

With the notation defined, the steps to implement the G&T algorithm are described in
Algorithm 1:

Algorithm 1 G&T algorithm
1: Step 1: Initialize S = ∅ and Z to the subset of all operations without predecessors.
2: while Z 6= ∅ do
3: Step 2: Find the operation u(m,j)+ ∈ Z with the earliest possible completion time f(m,j)+ and

the machine m+ on which u(m,j)+ shall be executed.
4: Step 3a: Identify the subset of operations Y ∈ Z such that all operations in Y are executed on

machine m? and for which e(m,j) < f+.
5: Step 3b: Choose the operation u(m,j)++ from Y with the largest priority value.
6: Step 3c: Add u(m,j)++ to S.
7: Step 3d: Assign e(m,j)++ as the starting time of operation u(m,j)++.
8: Step 4: Delete u(m,j)++ from Z and include its immediate successor, if any, in Z.
9: end while

To illustrate the application of the G&T algorithm, consider a job shop scheduling prob-
lem with 3 jobs and 3 machines. The sequence of operations for each job are as follows:

j1 = [(2,3),(1,7),(3,2)]

j2 = [(1,2),(3,5),(2,4)]

j3 = [(2,5),(3,4),(1,5)]

where each pair (m,d) for each job ji represents the machine m in which the operation shall be
executed and the duration d of the operation. The operations of each job must be executed in the
presented order. For instance, in this example job j1 is processed in machine m2 for 3 time units,
then in machine m1 for 7 time units, and finally in machine m3 for 2 time units.

Also, consider the following priority matrix:

Xk =

 0.11 4.70 0.67
6.17 9.23 1.23
4.19 3.01 3.47


where each element xmj represents the priority of the operation belonging to the j-th job which
requires to be executed by the m-th machine.

1975



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Initialization:
Step 1: S = ∅ and Z = {u(2,1),u(1,2),u(2,3)}.

Iteration 1:
Step 2: f(2,1) = 3, f(1,2) = 2 and f(2,3) = 5. Therefore, f? = 2 and m? = 1.
Step 3: Y = {u(1,2)}. Operation u(1,2) is added to S, with e(1,2) = 0.
Step 4: u(1,2) is deleted from Z and u(3,2) is added to Z. For the next iteration, Z = {u(2,1),u(3,2),u(2,3)}.

Iteration 2:
Step 2: f(2,1) = 3, f(3,2) = 7 and f(2,3) = 5. Thus, f? = 3 and m? = 2.
Step 3: Y = {u(2,1),u(2,3}. Operation u(2,1) has the highest priority (6.17) and is added to S,
with e(2,1) = 0.
Step 4: u(2,1) is deleted from Z and u(1,1) is added to Z. For the next iteration, Z = {u(1,1),u(3,2),u(2,3)}.

Iteration 3:
Step 2: f(1,1) = 10, f(3,2) = 7 and f(2,3) = 8. Thus, f? = 7 and m? = 3.
Step 3: Y = {u(3,2)}. Operation u(3,2) is added to S, with e(3,2) = 2.
Step 4: u(3,2) is deleted from Z and u(2,2) is added to Z. For the next iteration, Z = {u(1,1),u(2,2),u(2,3)}.

Iteration 4:
Step 2: f(1,1) = 10, f(2,2) = 11 and f(2,3) = 8. Thus, f? = 8 and m? = 2.
Step 3: Y = {u(2,2),(2,3)}. Operation u(2,2) has the highest priority (9.23) and is added to S,
with e(2,2) = 7.
Step 4: u(2,2) is deleted from Z. No operation is added to Z because u(2,2) is the last operation
of job j2. For the next iteration, Z = {u(1,1),u(2,3)}.

Iteration 5:
Step 2: f(1,1) = 10 and f(2,3) = 16. Thus, f? = 10 and m? = 1.
Step 3: Y = {u(1,1)}. Operation u(1,1) is added to S, with e(1,1) = 3.
Step 4: u(1,1) is deleted from Z and u(3,1) is added to Z. For the next iteration, Z = {u(3,1),u(2,3)}.

Iteration 6:
Step 2: f(3,1) = 12 and f(2,3) = 16. Thus, f? = 12 and m? = 3.
Step 3: Y = {u(3,1)}. Operation u(3,1) is added to S, with e(3,1) = 10.
Step 4: u(3,1) is deleted from Z. No operation is added to Z because u(3,1) is the last operation
of job j1. For the next iteration, Z = {u(2,3)}.

Iterations 7, 8 and 9:
Now, all operations that have not been scheduled belong to job j3. Therefore, in iterations 7, 8 and
9 the operations of job j3 will be scheduled following the sequence of job j3, i.e. u(2,3), u(3,3)
and u(1,3).

Figure 3 shows the Gantt chart for the solution, which has a makespan of 25.

1976



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figure 3: Gantt chart for the flow shop example

3. Proposed Method
When the priority vector approach is used, the priority vector associated with student k,

denoted by Xk, must be converted into a job sequence S to be evaluated by the objective function,
as described in section 2.2.1.

Each priority vector leads to a unique job sequence. However, two or more different
priority vectors will lead to the same job sequence if their elements are in the same descending order.
Consider the two priority vectors v1 = [.98, .23, .51, .48] and v2 = [.67, .02, .54, .17]. Although the
vectors are different, their elements are in the same descending order (i.e., the first element has the
highest value, followed by the third, the fourth and the second elements). Therefore, both priority
vectors v1 and v2 are mapped into the same sequence [1,3,4,2].

The main idea behind the method proposed in this paper is to insert one additional step,
called Change Verification, in order to compare the job sequences obtained from the updated and
the original priority vectors of each student in both the Teacher Phase and the Student Phase. The
TLBO algorithm calls the objective function only if the troubleshooting strategies differ from each
other.

The goal is to eliminate unnecessary calls to the objective function. The reason is that
some objective functions may have high computational costs [Hawe and Sykulski, 2006]. The
Change Verification step consists in comparing two vectors. This task has a lower computational
cost when compared to the computation of the makespan, which is the objective function for the
job shop scheduling problem considered in this paper.

When the computational cost of the objective function is high, the computational cost
saved by eliminating the unnecessary calls to the objective function compensates the computational
cost added by the Change Verification step.

4. Numerical Experiments
Numerical experiments using twenty benchmark instances of the job shop scheduling

problem were carried out in order to evaluate the performance of the proposed method in terms of
total computational time. All the experiments reported in this paper were carried out on a personal
computer with Intel R© CoreTM i3, 1.9 GHz processor and 4GB RAM, running Windows 8. The
algorithm was coded in Matlab R©. Table 1 summarizes the main characteristics of each benchmark
instance used in the experiments. These instances were obtained from the OR-Library.

The population size, denoted by PS, is the only parameter required by the TLBO algo-
rithm. The stop criterion used in the experiments was the maximum number of generations, denoted
by GN . The population size PS used in each benchmark instance was 5× j, where j is the number
of jobs. A maximum number of generations of 400 was used for all benchmark instances.

Table 2 shows the makespan obtained for all benchmark instances using the chosen values
for GN and PS. For each benchmark instance, a Monte Carlo method with 20 iterations was carried
out for both the original TLBO and the proposed method. Column BKS shows the Best Known
Solution reported in the literature for each instance. The average and the best makespan computed
for each instance using both the original TLBO and proposed method are presented. The minimum
values for both the average and the best makespan are shown in bold. It can be observed that

1977



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Table 1: Main features of the job shop benchmark instances used in the experiments

Instance Jobs Machines Instance Jobs Machines
abz5 10 10 la31 30 10
abz7 20 15 la35 30 10
ft06 6 6 la36 15 15
ft20 20 5 orb05 10 10
la06 15 5 orb09 10 10
la11 20 5 swv01 20 10
la12 20 5 swv04 20 10
la16 10 10 swv05 20 10
la22 15 10 swv16 50 10
la26 20 10 yn1 20 20

both the original TLBO and the proposed method presented similar performances. This result was
expected because the proposed method only eliminates the objective function calls that would not
lead to better new solutions. Therefore, the quality of the final solution is not affected.

Table 2: Performance comparison between original TLBO and the proposed method in terms of makespan

Instance BKS
Basic TLBO Proposed TLBO
Avg. Best Avg. Best

abz5 1234 1344.3 1313 1354.9 1305
abz7 656 831.5 809 831.8 818
ft06 55 56.5 55 57.1 55
ft20 1165 1231.2 1195 1227.0 1193
la06 926 926.8 926 926.2 926
la11 1222 1222.3 1222 1223.3 1222
la12 1039 1042.3 1039 1039.8 1039
la16 945 1016.8 995 1017.5 980
la22 927 1107.9 1058 1102.1 1060
la26 1218 1456.0 1397 1465.2 1410
la31 1784 1950.1 1919 1952.5 1900
la35 1888 2037.8 1975 2033.9 1990
la36 1268 1490.3 1440 1500.3 1430

orb05 887 966.2 931 961.9 933
orb09 934 1011.3 975 1020.5 989
swv01 1407 1687.4 1636 1690.0 1660
swv04 1470 1768.1 1725 1752.0 1704
swv05 1424 1734.3 1697 1727.8 1680
swv16 2924 2966.6 2939 2956.8 2926

yn1 884 1112.8 1098 1119.7 1094

Table 3 shows the average total simulation time, the average time spent running the ob-
jective function and the average number of objective function calls for both the original TLBO and
the proposed method. For the latter, the average time spent running the Change Verification step is
also presented.

It can be noticed that the proposed method presented a better performance for all instances
in terms of simulation time and objective function calls when compared to the original TLBO
algorithm. The average reduction provided by the proposed method in total simulation time and
objective function calls were 11.7% and 12.2%, respectively. Also, the average simulation time

1978



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

spent running the Change Verification routine is extremely low in comparison with the average
total simulation time of the proposed method.

Table 3: Performance comparison between original TLBO and the proposed method in terms of computa-
tional times (in seconds) and number of objective function calls

Instance

Basic TLBO Proposed TLBO
Total Obj. funct. Objective Total Obj. funct. Change Objective

simulation simulation function simulation simulation simulation function
time (s) time (s) calls time (s) time (s) time (s) calls

abz5 191.6 191.0 30050 157.1 155.7 0.14 25063
abz7 1336.6 1335.3 60100 1237.7 1233.5 0.32 56195
ft06 39.9 39.5 18030 25.6 25.1 0.05 11099
ft20 478.7 477.5 60100 438.5 435.1 0.30 54150
la06 241.7 240.8 45075 199.5 197.4 0.18 34956
la11 476.8 475.7 60100 411.2 408.0 0.28 51961
la12 475.3 474.2 60100 423.6 420.4 0.27 53326
la16 194.2 193.7 30050 171.0 169.3 0.15 24425
la22 477.8 477.9 45075 442.9 440.1 0.24 41504
la26 916.1 914.8 60100 852.9 848.9 0.34 56496
la31 2278.7 2276.6 90150 2078.5 2071.3 0.57 84901
la35 2331.4 2329.2 90150 2101.0 2093.2 0.60 84928
la36 742.2 741.1 45075 687.2 683.9 0.29 41572

orb05 187.8 187.3 30050 157.0 155.6 0.12 24710
orb09 190.2 189.7 30050 166.4 164.9 0.14 26248
swv01 960.1 948.9 60100 874.7 870.6 0.35 56461
swv04 979.7 978.4 60100 892.4 888.2 0.36 48991
swv05 948.9 947.6 60100 889.1 885.0 0.34 56501
swv16 7875.2 7871.0 150250 7116.8 7099.4 1.08 141677

yn1 1799.9 1798.3 60100 1648.5 1643.0 0.44 56311

5. Conclusions

This paper presents a method to improve the computational efficiency of the TLBO algo-
rithm in combinatorial problems in terms of simulation time. The proposed method is applicable
when the priority vector approach is adopted.

Twenty different benchmark instances of the job shop scheduling problem were used in
the numerical experiments to evaluate the performance of the proposed method. Simulations using
the original version of the TLBO algorithm were also carried out to establish a reference baseline.

The results show that the proposed method outperformed the original TLBO algorithm in
terms of simulation time and objective function calls in all benchmark instances. One important
characteristic of the proposed method is that it does not affect the final solution of the algorithm
since it only eliminates those calls to the objective function that would not lead to better solutions.

The proposed method becomes more attractive as the computational cost of the objective
function increases. In these situations, the computational cost saved by eliminating the unnecessary
calls to the objective function becomes more relevant. The simulation time required to run the
Change Verification step is very small.

A possible extension for this paper is to evaluate the performance of the proposed method
in different combinatorial problems. Another possibility is to investigate the use of the Change
verification step in other metaheuristic optimization algorithms.

1979



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

References
Baykasoǧlu, A., Hamzadayi, A., and Köse, S. Y. (2014). Testing the performance of teaching

learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job
shop scheduling cases. Information Sciences, 276:204–218.

Blazewicz, J., Domschke, W., and Pesch, E. (1996). The job shop scheduling problem: Conven-
tional and new solution techniques. European Journal of Operational Research, 93:1–33.

Chen, D., Zou, F., Li, Z., Wang, J., and Li, S. (2015). An improved teaching-learning-based opti-
mization algorithm for solving global optimization problem. Information Sciences, 297:171–190.

Cruz-Chavez, M. A., Martinez-Rangel, M. G., Hernandez, J. A., Zavala-Diaz, J. C., and Diaz-Parra,
O. (2007). Scheduling algorithm for the job shop scheduling problem. In Electronics, Robotics
and Automotive Mechanics Conference (CERMA 2007), p. 336–341.

French, S. (1987). Sequencing and Scheduling: An Introduction to the Mathematics of the Job
Shop. Wiley & Sons, Chichester.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129.

Giffler, B. and Thompson, G. L. (1960). Algorithms for solving production-scheduling problems.
Operations Research, 8(4):487–503.

Gonçalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic algorithm for
the job shop scheduling problem. European Journal of Operational Research, 167(1):77–95.

Hawe, G. I. and Sykulski, J. K. (2006). The consideration of surrogate model accuracy in single-
objective electromagnetic design optimization. In International Conference on Computational
Electromagnetics (CEM), p. 1–2.

Rao, R. V. and Patel, V. (2012). An elitist teaching-learning based optimization algorithm for solv-
ing complex constrained optimization problems. International Journal of Industrial Engineering
Computations, 3:535–560.

Rao, R. V. and Patel, V. (2013). An improved teaching-learning-based optimization algorithm for
solving unconstrained optimization problems. Scientia Iranica, 20:710–720.

Rao, R. V., Savsani, V. J., and Vakharia, D. P. (2012). Teaching-learning-based optimization: An
optimization method for continuous non-linear large scale problems. Information Sciences, 183:
1–15.

Rao, R. V., Vakharia, D. P., and Savsani, V. J. (2011). Teaching-learning-based optimization: a novel
method for constrained mechanical design optimization problems. Computer-Aided Design, 43:
303–315.

Sahu, B. K., Pati, S., Mohanty, P. K., and Panda, S. (2015). Teaching-learning based optimiza-
tion algorithm based fuzzy-PID controller for automatic generation control of multi-area power
system. Applied Soft Computing, 27:240–249.

Sapathy, S. C., Naik, A., and Parvathi, K. (2013). A teaching learning based optimization based on
orthogonal design for solving global optimization problems. SpringerPlus, 2(130).

1980


