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ABSTRACT
We analyse the value of process flexibility in the context of a deterministic lot sizing

problem with backlogging, where several types of products can be made on several alternative
resources. The lot sizing problem consists in determining the quantity of products to be produced
in each period of a finite time horizon, in order to meet a given demand and to minimize total
costs. When multiple parallel resources are present, the standard assumption is that each product
can be produced on any of the resources, i.e. we have complete resource flexibility. However, it
may be very costly in practice to install resources that have complete flexibility, especially if the
products are very different. Therefore, it might be interesting to only implement a limited amount
of flexibility where each resource can produce only certain types of items. In order to study the
value of such process flexibility, we perform several analyses.
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1. Introduction
The literature on flexibility covers a wide spectrum of issues ranging from strategic de-

cisions such as capacity planning [Fine and Freund, 1990; Jordan and Graves, 1995] to detailed
operational issues such as the number of tool changes [Tang and Denardo, 1988a]. The concept
of process flexibility in a supply chain defines the type of products that can be manufactured on
various alternative resources such as plants or machines. Making decisions about process flexibility
is a very complex task, first because the benefits of flexibility are very difficult to calculate and se-
cond because the number of possible product assignment configurations grows exponentially with
the number of items and alternative resources. Since total process flexibility can be very expensive,
it is very important to study ways to implement a limited amount of flexibility to balance the costs
and the benefits.

[Jordan and Graves, 1995] analysed the value of manufacturing process flexibility in a
stochastic model with a single period and single stage production environment where multiple pro-
ducts can be produced on different capacitated plants. Each plant can be either dedicated to one
specific product or flexible to produce several different products. Demand is random and it is possi-
ble that some of the demand will be lost if there is insufficient capacity. More flexibility will allow
one to satisfy more of the total demand. The main insight from the paper is that almost all of the
benefits of flexibility, can be achieved by implementing only a small amount of flexibility, but in
a smart way. To analyse the value of process flexibility, [Jordan and Graves, 1995] introduced the
concept of ”chaining”. A ”chain”is a group of items and plants which are all connected, directly
or indirectly, by product assignment decisions. Within a chain, a path can be traced from any item
or plant to any other item or plant via the product assignment links. The key idea behind chaining
is that excess capacity can be shifted - to some extend - along the chain. The benefits of flexibility
do not come only from having more items assigned per plant, but also from creating longer chains.
The intuition behind this concept is easy to grasp. In the stochastic context presented in [Jordan and
Graves, 1995], the longer the chain of items and plants, the greater the opportunities are for shifting
capacity for building items with lower than expected demand to those with higher than expected
demand.

This chaining principle has, to the best of our knowledge, not yet been explored in a lot
sizing context. Therefore, the main objective of this work is to analyse the trade-off between the
benefits of process flexibility and its cost in a lot sizing context. More specifically, we analyse the
value of process flexibility in the context of the deterministic lot sizing problem with backlogging
which consists basically of determining the size of production lots, i.e. the amounts of each item
to be produced in each of the periods in the planning horizon, in a way that minimizes total costs,
respects the resource availability and meets the known demand of the items.

The work is organized as follows. In Section 2, we provide the mathematical models for
the lot sizing problem with plant flexibility. Section 3 presents the analysis of process flexibility on
a classical formulation and shows the computational results considering the chaining concepts. In
Section 4, we present the development and computational results considering the formulation with
process flexibility as a decision variable. Finally in Section 5, we present our conclusions.

2. Mathematical Models for the Lot Sizing Problem with Process Flexibility
In this section, we present two different models for the lot sizing problem with multiple

resources and limited flexibility. We first present a formulation that is based on the classical formu-
lation of the lot sizing problem with unrelated parallel machines, i.e. the setup costs and times are
different for some product on different machines. This formulation is based on the formulation of
[Trigeiro et al., 1989] for the single machine problem, and has been studied in [Toledo and Armen-
tano, 2006], [Fiorotto and de Araujo, 2014] and [Fiorotto et al., 2015]. Subsequently, we present a
new optimization model that considers the possibility of investing in flexibility and determines the
optimal flexibility configuration for a given budget.
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We observe that in the multi-plant models, if there is no production transfer between the
plants, then the model represents a parallel machine problem. Each plant corresponds to a machine.
As the proposed models are based on parallel machines problems and these models are widely
researched in lot sizing literature, from now on, without loss of generality we will use parallel
machines instead multi-plant.

There are many studies in the literature on the lot sizing problem with parallel machi-
nes considering complete machine flexibility. For the problem with identical machines, [Lasdon
and Terjung, 1971] propose a heuristic for a lot sizing and scheduling problem without setup time.
[Carreno, 1990] also proposes a heuristic for this problem with setup time and constant demand.
[Jans, 2009] proposes new constraints to break the symmetry that is present due to the identical
machines and tests his approach using a network reformulation for the problem. For the unrelated
parallel machines case, [Toledo and Armentano, 2006] relax the capacity constraints and propose
a Lagrangian heuristic to solve the problem. [Fiorotto and de Araujo, 2014] use a network refor-
mulation of the problem and instead of the capacity constraints, they relax the demand constraints
using Lagrangian relaxation and also propose a heuristic to find feasible solutions. [Fiorotto et al.,
2015] present hybrid methods using Lagrangian relaxation and Dantzig-Wolfe decomposition and
find better lower and upper bounds compared to [Toledo and Armentano, 2006] and [Fiorotto and
de Araujo, 2014].

Although the lot sizing problem on parallel machines with a limited amount of flexibility
is a natural and more realistic extension of the standard assumption, there has only very limited
research been done on this topic. In their application in the tire industry, [Jans and Degraeve, 2004]
discuss a problem where not all types of tires can be produced on all types of heaters. [Xiao et
al., 2015] propose a hybrid Lagrangian and simulated annealing based heuristic for the capacitated
parallel machine lot sizing and scheduling problem where not all machines are eligible to produce
all items. Moreover, they consider that for each item there is a machine preference increasing the
quality of the items and the machine reliability.

2.1. Lot Sizing on Parallel Machines with Limited Flexibility

The problem will first be modeled as a single stage lot sizing model with multiple parallel
machines and multiple products, where a specific product can be made on some machine(s), but
possibly not on some others. The formulation that has been proposed for the parallel machine
problem with total flexibility (see e.g., [Toledo and Armentano, 2006]) can easily be adapted to
include limited flexibility.

For the mathematical formulation of the problem, we consider the following sets and in-
put parameters:
I = {1, ..., n}: set of items;
J = {1, ..., r}: set of machines;
T = {1, ...,m}: set of periods;
Ij : set of items i that can be produced on machine j;
Ji: set of machines j that can produce item i;
dit: demand of item i in period t;
sditτ : the sum of the demand for item i, from period t until period τ (τ ≥ t);
hcit: unit inventory cost of item i in period t;
bcit: unit backlog cost of item i in period t;
scijt: setup cost for item i on machine j in period t;
vcijt: production cost of item i on machine j in period t;
stijt: setup time for item i on machine j in period t;
vtijt: production time of item i on machine j in period t;
Capjt: capacity (in units of time) of machine j in period t.
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The decision variables are then defined as follows:
xijt: number of units produced of item i on machine j in period t;
yijt: binary setup variable, indicating the production or not of item i on

machine j in period t;
sit: quantity of inventory of item i at the end of period t;
bit: quantity of backlog of item i at the end of period t.

The mathematical formulation of the problem is then as follows:

Min
∑
j∈J

∑
i∈Ij

∑
t∈T

(scijtyijt + vcijtxijt) +
∑
i∈I

∑
t∈T

(hcitsit + bcitbit) (1)

Subject to:

si,t−1 + bit +
∑
j∈Ji

xijt = dit + sit + bi,t−1 ∀i ∈ I, t ∈ T (2)

xijt ≤ min{(Capjt − stijt)/vtijt, sdi1m}yijt ∀j ∈ J, i ∈ Ij , t ∈ T (3)∑
i∈Ij

(stijtyijt + vtijtxijt) ≤ Capjt ∀j ∈ J, t ∈ T (4)

yijt ∈ {0, 1}, xijt ≥ 0 ∀j ∈ J, i ∈ Ij , t ∈ T (5)

sit ≥ 0, si0 = 0, sim = 0, bit ≥ 0, bi0 = 0 ∀i ∈ I, t ∈ T (6)

The objective function (1) minimizes the total setup, production, inventory and backlog
costs. The constraints (2) guarantee the inventory balance in each period. Demand that cannot be
satisfied on time can be backlogged. Next are the machine setup constraints (3) and the capacity
limits (4). In order to make the formulation stronger, we limit the production for each item in
constraints (3) by both the sum of the demand and the maximum possible production with the
available capacity. Finally, constraints (5) and (6) define the variables domains.

Observe that if Ji = J, ∀i ∈ I , then we have the total flexibility case. If |Ij | = 1, ∀j ∈ J
then this indicate that all machines are dedicated to one product, and the problem can be separated
per item.

2.2. Lot Sizing with Process Flexibility as a Decision Variable
A related question that came up was if we can do better than the long chain with the same

number of additional flexibility links. In order to check this we developed another new model that
finds the best flexibility configuration given a limited number of additional links or a limited budget.

Therefore, we consider the possibility of investing in flexibility. The investment of up-
grading a machine for a specific product becomes a binary decision variable and there is a global
budget on the investment decisions. Such a model will enable us to check the structure of the
optimal flexibility configuration for various levels of the global budget.

For the mathematical formulation of the problem, we consider the following additional
parameters:
fcij : flexibility investment cost for producing item i on machine j;
Fmax: budget to invest in flexibility.

The additional decision variables are then defined as follows:
zij : binary variable, indicating that machine j can produce item i or not.

Mathematical formulation:

Min
∑
j∈J

∑
i∈I

∑
t∈T

(scijtyijt + vcijtxijt) +
∑
i∈I

∑
t∈T

(hcitsit + bcitbit) (7)
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Subject to:

si,t−1 − bi,t−1 +
∑
j∈J

xijt = dit + sit − bit ∀i ∈ I, t ∈ T (8)

xijt ≤ min{(Capjt − stijt)/vtijt, sditm}yijt ∀j ∈ J, i ∈ I, t ∈ T (9)∑
i∈I

(stijtyijt + vtijtxijt) ≤ Capjt ∀j ∈ J, t ∈ T (10)

yijt ≤ zij ∀j ∈ J, i ∈ I, t ∈ T (11)∑
i∈I

∑
j∈J

fcijzij ≤ Fmax (12)

yijt ∈ {0, 1}, zij ∈ {0, 1}, xijt ≥ 0 ∀j ∈ J, i ∈ I, t ∈ T (13)

sit ≥ 0, si0 = 0, sim = 0, bit ≥ 0, bi0 = 0, ∀i ∈ I, t ∈ T (14)

The objective function (7) and constraints (8)-(10) are similar to the previous formulation.
The constraints (11) guarantee that a machine can be set up to produce a specific item in a specific
period only if this machine has the flexibility to produce this item. Constraint (12) limits the budget
for investing in flexibility. We model the flexibility investment as part of a budget constraint, instead
of putting it in the objective function. This will allow us to trace the trade-off between the level of
flexibility and the operational costs. Due to constraints (11) and (12) the binary condition on the
variables zij can be relaxed.

Note that we have not imposed in the models that the backlog of the last period must be
equal to zero (bim = 0). In other words, we consider the possibility of not satisfying all demand.
We are not imposing the backlog to be zero in the final period because we will test several instances
with different levels of capacity. Therefore, if we required that bim = 0, we would have many
infeasible instances.

3. Analysis of Process Flexibility Configurations
We will analyse the concept of process flexibility in a lot sizing context. The base case

for the comparison is the case in which each machine is dedicated to exactly one specific product.
In the deterministic lot sizing case, the value of flexibility will be apparent if for this base case
(i.e., with only dedicated machines), not all of the demand can be satisfied on time leading to costly
backorders. In such a case, adding flexibility (i.e. some machines can produce several types of
products instead of just one) can decrease the amount of backlog and hence the total cost. A first
objective is to analyse the effect of long chains, such as proposed in [Jordan and Graves, 1995], and
compare this against several other cases such as the base case with only dedicated machines, the case
with random flexibility where there is no specific pattern in the augmented flexibility, and the case
of total flexibility where each machine can make every product. A second objective is to analyse
how different parameters such as the number of machines and items, the backlog costs, the setup
costs and setup times have an impact on the value of flexibility. The value of this manufacturing
flexibility will next be compared to the value of increasing capacity on dedicated machines.

3.1. Setup of the Computational Tests
Using the ideas proposed by [Jans, 2009], we adapted a standard data set proposed by

[Trigeiro et al., 1989] which was originally proposed to test the single-machine capacitated lot-
sizing problem with setup times. This standard set is used in many computational experiments
as a benchmark test set [Belvaux and Wolsey, 2000; Van Vyve and Wolsey, 2006; Degraeve and
Jans, 2007; de Araujo et al., 2015]. We used the problem sets F1 − F20 and G51 − G60. The
F1− F20 set contains 20 instances with 6 items and 15 periods. The G51−G60 set consists of 5
instances with 12 items and 15 periods and 5 instances with 24 items and 15 periods. For F1−F20,
G51−G55 and G56−G60, the original capacity level was set at 728, 1456 and 2912, respectively.
For each of the 30 problem instances, we created identical parallel machine problems, i.e. the
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capacities are the same for each machine, and for a given item, the setup time, unit production time
and setup cost are the same on each machine. Note that in these [Trigeiro et al., 1989] instances,
the unit production costs are not considered. Furthermore, the demand is different in different time
periods, but the average demand per period for each item is equal to 100. Our base case is the case
with dedicated machines, i.e. each machine can make exactly one product, and hence we have as
many machines as we have products. We set the backlog costs for each item equal to 100 times
the inventory holding cost. The choice of the capacity levels was based on preliminary tests to
have a broad range of problems so that the solutions have different levels of backlog. As such,
by changing the capacity level each original single-machine test problem resulted in 12 different
parallel machine test problems. As a result, 360 different test problems were created.

For each instance, we tested the effect of using different flexibility configurations. Figure
1 shows an example with 6 items, 6 machines and 4 of the 5 flexibility configurations that we will
analyse in this section. The first case (case (a)) is the dedicated case. In cases (b) and (c), we have
added additional links to increase the flexibility. The number of additional links (on top of the base
case) is equal to the number of items. However, the flexibility was added in different ways. In case
(b) we have 3 clusters of 2 machines, whereas in case (c) we have a long chain. The goal is to show
the impact of the same level of flexibility when it is being added in different ways. In the final case
(d), all the flexibility links are present. In the case of 12 and 24 machines this figure is extended in
a straightforward way. For the clustered configuration, we have 6 clusters of 2 machines for the 12
machine case, and 12 clusters of 2 machines for the 24 machine case.

Figura 1: Flexibility configuration for 6 items.

The random flexibility configuration is not presented in Figure 1. In this random flexibi-
lity configuration, we add the same amount of links as in the clustered and the long chain, i.e. 6
additional links for the 6 machine case, 12 additional links for the 12 machine case and 24 additio-
nal links for the 24 machine case. The additional links are added randomly. Since there are many
ways in which links can be added randomly to the dedicated case, we generated 10 different random
flexibility configurations. We also note that there are many different long chains and clustered con-
figurations possible, by changing the sequence of the items. Therefore, we generated 10 different
long chains and clustered configurations, by changing the order of the items randomly and keeping
the same structure of links between machines and items.

Formulation (1)-(6) (with the appropriate configuration of the links) is used to analyse the
following cases: dedicated, clustered, random, long chain and total flexibility. The formulations
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were modeled in C++ using the concert technology and CPLEX 12.6 as solver. The tests were
done on a computer with 2 Intel(R) Xeon(R) X5675 processors, 3.07GHz with 96GB of RAM and
the Linux operating system. Moreover, when solving the formulation (1)-(6), we have limited the
computational time in all instances to 600 seconds.

3.2. Discussion of the Computational Results
In Table 1 we consider different levels of capacity (Cap) and give the average upper

bounds found for all flexibility configurations. We set the upper bounds found by the formula-
tion with dedicated machines to 100% and calculate the other values relative to this. For each of
the Clustered, Random and Long chain, we generated 10 different configurations. The upper bound
(UB) reported are averages over these ten configurations. We also report the minimum upper bound
(min) and maximum upper bound (max) obtained over these 10 configurations.

Just as in [Jordan and Graves, 1995], we observe that the value of flexibility depends on
the capacity level. For all forms of flexibility (clustered, random, long chain and total flexibility),
we observe that the benefits of flexibility are the highest for medium levels of capacity, but these
benefits follow an inverted U-shape and are lower for high and low levels of capacity. Upon further
analysis, our results clearly show that:

1) The benefits of the long chain are very close to the ones obtained by total flexibility for
high levels of capacity. However, for low capacity levels (i.e. lower than 100), the long chain still
has a substantial performance difference compared to the total flexibility. When the capacity levels
becomes smaller, the performance difference between these two configurations typically increases,
and reach up to approximately 13% for the lowest capacity level and 24 items. The reason is that in
the optimal solution with full flexibility and low capacity levels, some items might not be produced
at all because the backlog cost of that item is lower than for other items. In such a case it is better to
focus on first satisfying the demand of the products with a high backlog cost (all other thing being
equal). The long chain provides less flexibility and leads possibly to results where focusing solely
on satisfying the products with high backlog costs is not possible. This happens for example if
there are many products with a low backlog cost in the system, and some machines will have to be
linked to two products which both have a low backlog cost (and thereby forcing some production
of a product with low backlog cost).

2) By comparing the performance of the random and long chain configuration, we see that
the difference between the benefits is on average 3.11% in favor of the long chain. This difference
is minimal for low or very high capacity levels, but higher for the capacity levels in between. The
random configuration is substantially worse than the average chain typically for the capacity levels
100 to 130. We observe a link with the variability within the random configuration. At capacity
levels of 100 to 130, we observe indeed the highest difference between the best and worst random
configuration, whereas this difference becomes smaller when the capacity is lower.

3) The clustered approach is overall much worse than the other approaches (including the
average random one). The performance difference between the clustered and average long confi-
guration is 12.2% overall. Only at the lowest capacity levels, the difference between the clustered
approach and the random approach or average chain is very small (less than 1%).

This analysis shows that choosing well where adding flexibility is as important as the
amount of flexibility (i.e. the number of links). Furthermore, the results show the importance of
studying the process flexibility for lot sizing problems especially for problems where the capacity
is tight and is not enough to meet demand without backlog.

In Table 2 we show the averages of the gaps (columns Gap) and computational times in
seconds (columns T(s)) of the results obtained. We see that the problem with only dedicated machi-
nes is much faster to solve than any other flexible configuration. Among the flexible configurations,
the clustered configuration is the easiest to solve, the random flexibility and long chain have on ave-
rage a similar time performance and the total flexibility presents the worst performance on average.
With respect to the optimality gaps, we observe that it is zero or very small for the dedicated and
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Dedicated Clustered Random Long chain Total
items Cap UB max min av. max min av. max min av. UB

150 100 98.69 97.76 98.34 98.07 97.48 97.69 97.48 97.48 97.48 97.48
140 100 77.50 67.83 71.26 69.69 62.73 65.12 62.83 62.59 62.67 62.57
130 100 62.38 46.15 53.05 46.26 29.99 36.83 30.08 29.93 30.00 29.66
120 100 69.47 58.41 62.00 51.73 31.40 42.90 31.87 31.45 31.57 30.76
110 100 79.54 70.36 73.12 64.91 46.90 57.80 47.29 46.92 47.05 46.37

6 100 100 77.73 72.51 74.29 64.47 53.74 60.56 54.75 53.74 54.33 52.41
90 100 75.29 72.23 73.56 65.72 61.11 63.84 62.66 60.97 61.91 57.62
80 100 76.08 72.33 73.93 70.23 68.74 69.43 70.06 67.52 68.73 62.70
70 100 78.83 75.00 76.85 76.91 74.87 75.62 76.58 74.11 75.37 67.94
60 100 83.33 80.41 81.94 83.14 81.18 81.89 82.36 80.79 81.79 72.82
50 100 87.28 84.96 86.14 86.97 85.28 86.00 86.53 85.19 86.03 76.54
40 100 93.45 91.79 92.35 92.63 92.05 92.25 92.82 91.91 92.37 82.94

150 100 87.85 80.59 83.56 84.19 79.47 80.64 79.59 79.46 79.48 79.45
140 100 58.40 45.67 53.20 51.77 40.39 43.23 40.59 40.26 40.41 40.19
130 100 55.18 32.01 42.37 40.59 12.86 21.83 13.15 12.60 12.85 12.51
120 100 68.16 46.21 55.73 47.15 22.04 32.90 22.81 21.92 22.24 21.51
110 100 74.12 61.51 68.67 60.08 40.88 50.11 44.01 38.41 41.57 37.36

12 100 100 78.46 67.21 73.45 70.62 52.38 61.20 59.39 50.67 54.99 45.96
90 100 79.46 68.95 75.07 77.10 61.28 68.63 68.72 61.04 64.62 54.42
80 100 81.43 72.72 77.48 79.98 70.64 74.71 76.21 69.45 72.49 62.27
70 100 83.88 76.74 80.40 82.27 77.62 79.58 80.80 76.65 78.49 68.40
60 100 85.87 80.47 83.35 85.10 80.74 83.44 84.27 81.44 83.04 72.50
50 100 88.43 84.00 86.63 88.12 84.69 86.75 87.59 85.22 86.61 75.66
40 100 91.63 89.06 90.62 92.17 89.39 90.86 91.44 89.53 90.52 80.05

150 100 86.16 80.07 82.00 82.23 78.28 79.20 78.42 78.25 78.31 78.28
140 100 60.18 39.21 51.66 37.52 27.83 30.86 28.08 27.75 27.91 27.86
130 100 62.50 42.74 54.25 29.79 11.49 18.00 11.39 10.49 10.86 16.09
120 100 69.59 55.02 63.44 41.42 29.15 32.44 28.46 26.60 27.33 26.96
110 100 76.42 66.74 71.82 53.75 44.02 48.44 47.16 43.01 45.45 39.65

24 100 100 79.07 69.56 73.48 61.91 53.74 58.19 59.26 52.24 55.97 45.41
90 100 80.59 70.75 74.29 69.79 62.83 66.01 68.11 61.48 64.86 50.94
80 100 81.82 72.74 76.53 75.19 70.37 72.90 74.44 69.94 72.27 59.33
70 100 83.22 75.82 79.48 80.29 76.38 78.56 79.15 75.77 77.93 66.10
60 100 85.65 80.11 83.27 85.58 81.97 83.41 84.30 80.99 82.81 72.19
50 100 88.87 84.78 87.46 89.59 86.54 87.57 88.63 85.67 87.19 74.71
40 100 92.36 90.43 91.42 92.88 90.69 91.58 91.75 90.62 91.21 77.42

Tabela 1: Comparison of upper bounds for different configurations

clustered configuration. On the other hand, for the total flexibility case, the gaps are very signifi-
cant for some capacity levels, especially for the instances with 12 and 24 items. Note that the gaps
resulting from optimizing a given long chain are significantly smaller for most instances than those
resulting from optimizing the total flexibility. This explains why in Table 1 for some instances with
24 items, the long chain solution is better than the total flexibility solution.

Dedicated Clustered Random Long chain Total
itens Cap Gap T(s) Gap T(s) Gap T(s) Gap T(s) Gap T(s)

150 0 0.03 0 3.73 0 75.16 0 59.21 0 20.80
140 0 0.02 0 3.98 0.2 73.13 0 27.88 0.1 68.28
130 0 0.01 0 6.18 0.9 291.63 0.8 282.35 2.5 381.16
120 0 0.01 0 23.35 2.6 476.30 4.3 514.66 7.6 583.49
110 0 0.01 0 13.85 0.2 215.89 0.2 130.58 1.8 515.08

6 100 0 0.01 0 7.64 0.1 75.44 0 4.84 0.5 384.96
90 0 0.01 0 3.05 0.1 18.23 0 1.60 0.2 230.25
80 0 0.01 0 1.11 0 0.36 0 0.34 0.1 146.86
70 0 0.01 0 0.14 0 0.03 0 0.04 0.1 105.16
60 0 0.01 0 0.02 0 0.02 0 0.02 0 1.90
50 0 0.01 0 0.05 0 0.04 0 0.04 0 4.82
40 0 0.01 0 0.03 0 0.04 0 0.04 0 0.03

150 0 0.08 0 47.25 0.2 325.52 0.3 346.62 0.2 237.31
140 0 0.06 0 27.28 0.3 409.58 0.3 476.11 0.4 473.34
130 0 0.04 0.2 82.33 3.7 496.90 4.5 544.91 7.9 600
120 0 0.03 0.3 139.63 4.6 579.47 8.8 600 14.8 600
110 0 0.03 0.1 79.59 0.5 365.72 0.6 279.87 2.6 600

12 100 0 0.03 0 44.89 0.1 146.33 0.1 66.79 0.9 600
90 0 0.02 0 14.86 0 10.68 0 5.93 0.5 600
80 0 0.02 0 3.00 0 1.10 0 0.65 0.2 509.58
70 0 0.03 0 0.94 0 0.37 0 0.28 0.1 333.75
60 0 0.03 0 0.10 0 0.07 0 0.07 0.1 157.01
50 0 0.03 0 0.07 0 0.06 0 0.07 0 0.96
40 0 0.03 0 0.06 0 0.06 0 0.06 0 0.37

150 0 0.19 0.1 139.74 0.3 573.86 0.3 550.73 0.4 600
140 0 0.18 0.4 250.87 0.9 600 0.6 600 1.4 600
130 0 0.14 0.3 329.87 8.1 600 9.7 600 27.8 600
120 0 0.14 0.4 395.73 5.3 600 6.5 600 20.3 600
110 0 0.11 0.2 340.07 0.7 542.75 0.8 545.05 4.3 600

24 100 0 0.12 0.1 248.45 0.1 205.73 0.1 151.97 2.4 600
90 0 0.12 0 39.33 0 9.28 0 7.05 0.8 600
80 0 0.12 0 4.77 0 1.52 0 1.79 0.3 600
70 0 0.13 0 1.14 0 0.47 0 0.47 0.2 487.52
60 0 0.13 0 0.20 0 0.19 0 0.19 0 88.25
50 0 0.12 0 0.19 0 0.18 0 0.20 0 12.78
40 0 0.11 0 0.13 0 0.12 0 0.14 0 4.05

Tabela 2: Average gaps and CPU time for different configurations
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Aiming to further analyse the effect of the chaining concept, Table 3 shows the structure
of the solutions for all instances considering the flexibility configurations addressed. We present

the total backlog calculated as
n∑
i=1

m∑
t=1

bit (columns back.), the average percentage of capacity uti-

lization (columns CU) in the solutions and the number of setups (columns setup).
Regarding the total number of backlog we see that the total flexibility and long chain

have very similar levels for most instances. On the other hand, the clustered and the dedicated
configurations have much higher levels of backlog for some instances. Note that a higher number of
backlog does not necessarily mean a worse total production cost. For example, when the capacity
is equal to 70 or 80, the long chain configuration presents on average less backlog than the total
flexibility. However, the total production cost of the long chain is significantly higher than the total
flexibility (see Table 1). This happens because of the difference in backlog cost between items.
Table 3 also shows that the overall percentage of capacity utilization and number of setups is very
similar for the long chain and total flexibility when the capacity level is higher than 50. It is also
in line with [Jordan and Graves, 1995]. However, when the capacity level is equal to 50 or 40 we
may have links in the chain configuration that cannot be used because of the length of the setup
times. The reason is that in the data set used, the setup times can be up to 50 for some items. If this
happens, then the item cannot be produced if the available capacity is 50 or less. Note that for the
long chain there is some available capacity and the number of setups is less than 90, 180 and 360
for the instances with 6, 12 and 24 items (machines), respectively, which correspond to one setup
on each machine per period. On the other hand, we see that there are considerable differences in
the capacity utilization and the number of setups considering the results obtained with dedicated
machines and clustered configurations. Note that the capacity is better utilized for the long chain
and total flexibility configurations and the difference compared to the dedicated machine reaches
45.05% for some instances with 24 machines (Cap = 40). Moreover, we do see that the number
of setups increases significantly for some instances in the long chain and total flexibility. It makes
sense that the more we use the flexibility compared to the dedicated case, the more setups will be
performed.

4. Analysis of Process Flexibility as a Decision Variable
The investment in flexibility is usually part of a wider investment program to be imple-

mented over a certain period of time and include important decisions in order to increase the benefits
obtained. In this section we analyse and compare the benefits of investing in flexibility with the costs
to implement it.

To decide where to add flexibility, we compared various configurations, including the
chain concept discussed in Section 3. Based on the computational results in Section 3 we observed
that a small amount of flexibility, if added in the right way, can reach almost all the benefits obtained
by total flexibility for many instances. However, we also observed that the chain principle does not
perform very well for the instances with very tight capacity. The objective of this section is to see if
we can do better than the long chain, given the same (or lower) number of links. We use formulation
(7)-(14) to determine the optimal configuration for a given number of links. As such, we trace the
trade-off between the benefits of flexibility and the level of flexibility.

4.1. Computational Results
The formulation (7) − (14) was also modeled in C++ using the concert technology and

CPLEX 12.6 as solver. We have considered the same data sets which were proposed in Section 3.1
(sets F1− F20, G51−G55 and G56− 60) and the same capacity levels. Note that in constraints
(12) we have considered fcij = 1 and Fmax equal to the number of links we are allowed to
add. It is also important to note that in these data sets, we are considering identical machines so to
avoid symmetrical solutions we have fixed the dedicated configuration before solving all instances.
In other words, we add the the constraints zii = 1 ∀i in the formulation. Moreover, due to the
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Dedicated Clustered Random Long chain Total
items Cap back. CU setup back. CU setup back. CU setup back. CU setup back. CU setup

150 4 80.1 79 2 80.2 80 1 80.2 80 0 80.2 80 0 80.2 80
140 268 86.3 83 55 86.9 84 17 87.1 85 1 87.2 85 0 87.2 85
130 1278 92.5 87 620 93.8 89 257 95.0 90 83 95.3 91 87 95.4 91
120 3818 97.3 89 3022 98.4 91 2653 99.5 92 2465 99.7 93 2473 99.8 94
110 8217 99.5 90 8093 99.7 91 8324 99.8 92 8544 99.9 92 8557 99.9 92

6 100 14371 99.9 90 14608 99.8 91 14891 99.8 91 14825 99.9 91 14953 99.9 91
90 21166 100 90 21279 99.9 90 21168 99.9 91 21142 99.9 90 21100 99.9 91
80 28182 100 90 27749 99.8 90 27539 99.9 90 27296 99.9 90 27500 99.9 90
70 35292 100 90 34408 99.9 90 34100 99.9 90 34001 99.9 90 34133 99.9 90
60 42434 100 90 40295 99.9 90 40065 99.9 90 40720 99.9 90 39531 99.9 90
50 48344 90.7 82 45754 98.3 88 45522 98.1 88 46144 98.4 89 44107 99.9 90
40 56113 81.4 73 53674 91.7 82 53431 94.5 85 54004 94.2 85 51748 99.9 90
150 122 79.7 157 21 80.0 158 6 80.0 158 0 80.1 159 00 80.1 159
140 881 85.9 166 263 86.7 168 38 87.2 170 6 87.3 170 10 87.2 170
130 3490 91.3 172 2073 93.9 178 617 94.8 181 79 95.5 183 9964 95.8 186
120 9067 95.5 177 7445 98.3 181 5946 99.0 185 5172 99.7 187 5210 99.8 192
110 17394 98.5 179 17194 99.5 182 17003 99.8 184 17308 99.8 184 17422 99.9 187

12 100 28701 99.7 180 29991 99.8 182 29877 99.9 182 31297 99.9 182 32279 99.9 186
90 41946 99.9 180 43644 99.9 183 42680 99.9 182 45135 99.9 181 46047 99.9 184
80 55874 100 180 56598 99.8 181 54815 99.9 181 57255 99.9 181 57846 99.9 183
70 70070 100 180 69037 99.8 181 67332 99.9 180 69173 99.9 180 67730 99.9 182
60 84369 99.9 180 79973 99.9 180 78627 99.9 180 80017 99.9 180 78424 99.9 181
50 98712 85.0 153 90803 100 180 90244 98.2 177 89672 96.7 174 87564 99.8 180
40 110923 68.3 123 102379 93.3 168 102749 89.8 162 102110 91.5 165 97044 99.8 180
150 257 80.0 316 36 80.2 318 8 80.2 318 0 80.2 318 0 80.2 318
140 2221 86.2 332 946 87.0 336 97 87.4 340 5 87.5 340 1 87.5 342
130 8979 91.6 343 5885 93.5 352 1510 95.5 364 395 96.1 367 1236 96.0 368
120 21414 95.5 350 17834 98.1 363 14335 99.5 371 13420 99.7 371 13874 99.4 373
110 39508 98.3 357 38440 99.7 365 38868 99.8 367 38321 99.8 368 40799 99.8 373

24 100 63107 99.6 359 64366 99.8 363 64934 99.9 364 63794 99.9 364 66372 99.7 369
90 89610 99.9 360 91640 99.7 363 90597 99.9 362 89853 99.9 362 93305 99.9 366
80 117670 100 360 117558 99.7 362 115373 99.9 361 115688 99.9 361 118503 99.9 365
70 146175 100 360 141827 99.9 362 139553 99.9 360 139135 99.9 360 140871 99.9 364
60 174795 100 360 164319 99.8 360 162232 99.9 360 160703 99.9 360 162217 99.9 362
50 203482 84.1 303 187775 100 360 187069 97.1 350 185398 97.2 350 175477 99.8 360
40 227641 54.9 198 210429 86.7 312 211018 79.7 287 208870 80.7 291 195728 99.8 360

Tabela 3: General structure of the solutions

complexity of the model, we consider again the computational time limit equal to 36000 seconds
(10 hours). We observe that even with this increase in the processing time, the solver does not find
the optimal solution for many of the instances analysed, which shows the difficulty of solving this
problem.

In Table 4 we present a detailed comparison between the results obtained by the average
long chain and the model considering the flexibility as a decision variable. An overall analysis of
the results shows that only a very small amount of flexibility is necessary to get almost the same
benefits as the total flexibility for all instances. The results obtained by the flexibility as a decision
variable are very similar to the results obtained by the total flexibility for all instances. Therefore,
although the long chain configuration does not obtain almost all benefits, in terms of production
cost for instances with very tight capacity, the number of links considered is enough to find these
benefits.

In Table 4, for the model considering the flexibility as a decision variable we present the
results with half (Flex.(l = m/2)) and the same additional number of links (Flex.(l = m)) required
to build a long chain. Table 4 confirms that the long chain is not a good flexibility configuration
to use for the instances with very low capacity. For the capacity levels between 90 and 40 the
model considering the flexibility as a decision variable finds substantially better results than the
best long chain by adding only half of the links. When allowing the same number of links as in
the long chain (Flex.(l = m)), the difference with the best long chain becomes even bigger at the
low capacity levels, and reaches 12.8% for the instance with 24 items and a capacity level equal to
40. This significant difference is due the fixed structure considered by the long chain configuration
(2-flexibility). The structure of the solutions of the model considering the flexibility as a decision
variable shows that, specially for the instances with capacity levels equal to 100 or lower, some
items with high backlog cost and low setup time should be linked to more than 2 machines and it
reaches 7 links for some instances. On the other hand, some items with low backlog cost and high
setup times are only linked to the machine fixed to build the dedicated case and, given the limited
budget, it seems not beneficial to add a second link.
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Long chain B. chain Flex.(l = m/2) Flex.(l = m) Total
items Cap av. UB UB UB UB

150 97.48 97.48 97.48 97.48 97.48
140 62.67 62.59 62.62 62.57 62.57
130 30.00 29.93 31.26 29.66 29.66
120 31.57 31.45 36.55 30.70 30.76
110 47.05 46.92 51.44 46.35 46.37

6 100 54.33 53.74 56.14 52.42 52.41
90 61.91 60.97 60.55 57.64 57.62
80 68.73 67.52 64.48 62.75 62.70
70 75.37 74.11 69.80 67.97 67.94
60 81.79 80.79 74.86 72.85 72.82
50 86.03 85.19 78.98 76.62 76.54
40 92.37 91.91 86.07 82.95 82.94
150 79.48 79.46 79.46 79.45 79.45
140 40.41 40.26 40.32 40.21 40.19
130 12.85 12.60 14.08 12.67 12.51
120 22.24 21.92 24.53 21.70 21.51
110 41.57 38.41 40.49 37.72 37.36

12 100 54.99 50.67 49.17 46.16 45.96
90 64.62 61.04 58.06 54.54 54.42
80 72.49 69.45 65.49 62.31 62.27
70 78.49 76.65 71.30 68.48 68.40
60 83.04 81.44 75.00 72.56 72.50
50 86.61 85.22 78.93 75.71 75.66
40 90.52 89.83 82.48 80.13 80.05
150 78.31 78.25 78.36 78.53 78.28
140 27.91 27.75 29.34 28.07 27.86
130 10.86 10.49 22.21 13.74 16.09
120 27.33 26.60 35.60 29.74 26.96
110 45.45 43.01 47.03 41.35 39.65

24 100 55.97 52.24 51.11 46.91 45.41
90 64.86 61.48 55.51 51.67 50.94
80 72.27 69.94 62.08 59.82 59.33
70 77.93 75.77 68.15 66.30 66.10
60 82.81 80.99 74.32 72.24 72.19
50 87.19 85.67 77.54 74.78 74.71
40 91.21 90.62 80.40 77.85 77.42

Tabela 4: Comparison between long chain and flexibility as decision variable

5. Conclusion
In this work, the chain principle and process flexibility were studied in the context of

deterministic lot sizing problem. In this deterministic environment the value of flexibility appears
in case not all the demand can be satisfied on time and the company has to resort to backlogging.
In order to better analyse the benefits of the long chain and process flexibility we propose a new
optimization models where we consider the possibility of investing in flexibility. Our computatio-
nal experiments show that, in terms of total production costs, the long chain configuration obtains
almost all benefits of the total flexibility for the instances where the capacity level is not tight.
However, if the capacity level is tight, the long chain configuration does not present good results.
Although the long chain does not perform very well for some instances, analysing the model pro-
posed with the possibility of investing in flexibility, we see that only a small amount of flexibility
is typically enough to find almost all benefits of the total flexibility. Moreover, for some instances
with tight capacity levels, adding only half of the links required to build a long chain is enough
to find better results than the solution found by the best long chain. Finally, we also see that the
benefits of process flexibility show decreasing marginal utilities when we add additional links.
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