
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Univariate Marginal Distribution Algorithm and Random Variable
Neighbourhood Descent Applied to the Vehicle Routing Problem with Private

Fleet and Common Carrier

William Higino
williamhigino@gmail.com

Antonio Augusto Chaves
antonio.chaves@unifesp.br

Vinı́cius Veloso de Melo
vinicius.melo@unifesp.br

UNIFESP
São José dos Campos

ABSTRACT
Among the different classes of Vehicle Routing Problems are the Vehicle Routing Pro-

blems with Profits (VRPPs), where it is not mandatory to service all the customers. A relatively new
VRPP is the VRPPFCC (Vehicle Routing Problem with Private Fleet and Common Carrier). In this
problem, it is sometimes useful to directly serve only part of the shipping demand, outsourcing the
rest of it to other companies. This paper presents the combination between the Univariate Marginal
Distribution Algorithm (UMDA) and Random Variable Neighbourhood Descent (RVND), a local
search procedure, in the solution of the VRPPFCC. The implementation uses a vector of random
keys as solution representation; thus a decoding heuristic is also developed, converting random keys
to actual solutions for the VRPPFCC. Computational tests and conclusions focus on the comparison
of the effectiveness of the methods, comparing the obtained solutions to the best known solutions
for the problem.

KEYWORDS. Univariate Marginal Distribution Algorithm. Random Variable Neighbourhood
Descent. Vehicle Routing Problem with Private Fleet and Common Carrier.

Logistics and Transport; Metaheuristics; Probabilistic Models

1763



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Introduction
According to [Toth e Vigo, 2014], Vehicle Routing Problems (VRPs) consist in, for an

existing set of transport requesting customers and a given vehicle fleet, determining a set of routes
to serve the transport requests with minimal costs. In a practical way, it means deciding which
vehicles should serve which customer and in which sequence, so that all the routes are concluded
with minimal financial cost or execution time.

A particular class of VRPs is the Vehicle Routing Problems with Profits (VRPPs). They
are characterized by the lack of obligatoriness in the service of all customers. Instead, a profit or
loss rate to the service of each customer is defined.

Considering the use of third-party shipping companies, outsourcing costs are usually
higher than costs of the direct service. However, as stated by [Toth e Vigo, 2014], using the propri-
etary fleet has higher costs in some specific cases, with customers located in difficult access areas,
as occurs in the Small Package Shipping industry. Thus, the Vehicle Routing Problem with Pri-
vate Fleet and Common Carrier (VRPPFCC) is concerned both with the selection of outsourced
customers and with the routing of vehicles in the private fleet.

Formally, as indicated by [Chu, 2005] and [Bolduc et al., 2008], the VRPPFCC consists
in the service of a set of customers in a way that each customer is served only once, all the routes
associated with the proprietary fleet start and finish in the deposit, each vehicle of the private fleet
executes only one route, the demand served by each route is within the designated vehicle capacity,
and the total cost is minimized.

Essentially, the total cost minimization consists in two simultaneous elements. First, the
identification of which customers are more profitable if directly served and which have a better
profitability if outsourcing is required. The second element consists in the routing process using the
private fleet vehicles to directly serve the selected customers [Toth e Vigo, 2014].

The VRPPFCC has a few previous applications since its introduction. In [Chu, 2005], the
first application of the problem, a simple heuristic was applied to five local instances. Essentially,
the customers with lowest outsourcing costs are outsourced until the left customers can be directly
served by the proprietary fleet. An initial solution is then constructed with the unserved customers,
using [Clarke e Wright, 1964] savings heuristic, before going through intra-route and inter-routes
local search procedures.

[Bolduc et al., 2008] modelled the problem as an heterogeneous VRP. The approach also
included an initial solution based on [Clarke e Wright, 1964] savings heuristic. Different local se-
arch procedures were applied afterwards, including 4-opt*, 2*-interchange, 2-add-drop, and swap.
In the study, new homogeneous and heterogeneous instances were adapted, including up to 483
customers.

[Côté e Potvin, 2009] and [Potvin e Naud, 2011] proposed tabu searches to the problem.
The first was successful to most homogeneous instances. The second approach, using ejection
chains neighbourhoods, achieved good results for both homogeneous and heterogeneous instances.
However, both tabu search applications had a considerably higher execution time than the previous
algorithms.

[Stenger et al., 2013] implemented a VNS (Variable Neighbourhood Search) algorithm
with cyclic improvements, also considering variations of the problem with multiple depots and
non-linear outsourcing costs.

The last approach, in [Vidal et al., 2015], used an exhaustive solution representation with
implicit customer selection. A set of customers in a given order was set to each vehicle. Then, a
local search determined which customers should be directly served, and which should be outsour-
ced. In the local search, 2-opt, 2-opt*, path relocation, swap, and cross exchange neighbourhood
structures were used. Three heuristic frameworks were used to evaluate the solution representation:
A multi-start local-improvement search (MS-LS), an adaptation of [Prins, 2009] ILS (Iterated Local
Search), and UHGS (Unified Hybrid Genetic Search), an advanced population-based method with

1764



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

diversity management adapted from [Vidal et al., 2014]. The solution representation presented a
good performance, specially with the UHGS approach, where most homogeneous instances had the
best solution found or improved.

This paper details an application of an Estimation Distribution Algorithm, the Univariate
Marginal Distribution Algorithm (UMDA), in the solution of the VRPPFCC. The method is im-
plemented using an array of real values ∈ [0 : 1] to represent solutions. The UMDA iteratively
generates statistic models based on the population, and uses the models to sample new solutions for
the problem.

A heuristic to decode the arrays into VRPPFCC solutions was developed and used in
both methods, evaluating how close the solutions generated by the method are to the best known
solutions. Using domain knowledge about the problem, the heuristic aims to convert any array of
real values into a reasonable solution.

Aligned to the UMDA, there is an implementation of the Random Variable Neighbourhood
Descent (RVND), a local search procedure aiming to find better solutions in the proximity of the
search space, using a set of different inter and intra-route neighbourhood structures.

The remaining sections of this paper are organized as follows. Section 2 summarizes the
problem mathematical model. In section 3, UMDA is explained, as well as the solution representa-
tions and decoding algorithms. In section 4, the RVND local search procedure is detailed. Section
5 details the conducted tests, using instances obtained from the literature, to compare the methods,
and explains the results. Section 6 presents the conclusions from this study and mentions future
research directions.

Mathematical Model for VRPPFCC
In [Bolduc et al., 2008], the VRPPFCC was formulated as a heterogeneous VRP, as des-

cribed below.

N The quantity of served customers.

V The set of nodes V = {0, 1, 2, ..., n}, where 0 indicates the depot, and {1, 2, ..., n} represents
each of the N customers.

C Set C = (cijk), where cijk represents the travel costs between customers i and j in vehicle k.

q The set with each customer’s demand, q = {q1, ..., qn}, where qi denotes the demand of
customer i.

m The maximum number of vehicles available.

Q The maximum capacity of each vehicle, being Qk the capacity of vehicle k.

f The set of fixed costs of each vehicle, f = {f1, ..., fm}, where fi denotes the fixed cost for
each vehicle, if used.

e The set of outsourcing costs, e = {e1, ..., en}, where ei denotes the cost to outsource the
service of customer i.

xijk =

{
1 if the vehicle k visits customer j immediately after customer i
0 otherwise

i, j ∈ N, i 6= j, k = 1, 2, ...,m

yik =

{
1 if customer i is served by vehicle k
0 otherwise

1765



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

zi =

{
1 if customer i is outsourced
0 otherwise

uik = An upper bound for the cargo in vehicle k right after leaving customer i.

Minimize
m∑
k=1

fky0k +
n∑

i=0

n∑
j=0
j 6=i

m∑
k=1

cijkxijk +
n∑

i=1

eizi (1)

subject to

n∑
j=1

m∑
k=1

x0jk =
n∑

i=1

m∑
k=1

xi0k ≤ m (2)

n∑
j=0
j 6=h

xhjk =
n∑

i=0
i6=h

xihk = yhk (3)

h ∈ {0, ..., n}; k ∈ {1, ...,m}

zi +
m∑
k=1

yik = 1 i ∈ {1, ..., n} (4)

n∑
i=1

qiyik ≤ Qk k ∈ {1, ...,m} (5)

uik − ujk +Qkxijk ≤ Qk − qj (6)

i, j ∈ {1, ..., n}; i 6= j; k ∈ {1, ...,m}

xijk ∈ {0, 1} (7)

i, j ∈ {0, ..., n}; i 6= j; k ∈ {1, ...,m}

yik ∈ {0, 1} i ∈ {0, ..., n}; k ∈ {1, ...,m} (8)

zi ∈ {0, 1} i ∈ {0, ..., n} (9)

uik ≥ 0 i ∈ {1, ..., n}; k ∈ {1, ...,m} (10)

Each term in Equation 1 represents part of the total cost. The first consists in the fixed
costs incurred in the used vehicles. In the second, the travel costs from the depot to the served
customers, and back to the depot are calculated for each vehicle. The third term consists in the sum
of outsourcing costs, incurred on the outsourced customers. Constraints 2 limit the number of used
vehicles as m. The constraints in Eq. 3 assert the same vehicle k arrives and leaves customer h.
In Eq. 4 it is assured that each customer is served only by the private fleet, or by the outsourced
company’s fleet. Constraints in Eq. 5 limit the demand services by each vehicle as, at most, its
capacity. The constraints in Eq. 6 eliminate sub-routes. Constraints in Eq. 7, 8, and 9 define the
decision variables as binary. Finally, Eq. 10 states that the cargo of the vehicle after leaving each
customer will never be negative.

1766



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

UMDA
The Univariate Marginal Distribution Algorithm (UMDA), proposed in [Pelikan e Mühlen-

bein, 1998], is an Estimation of Distribution Algorithm (EDA, [Larranaga, 2002]).
EDAs are evolutionary algorithms based on the original GAs. Traditional GAs use cros-

sover and mutation genetic operators to generate solutions. However, those operators do not gua-
rantee that good schemas [Holland, 1975] will be kept, occasionally violating the Building Blocks
Hypothesis (as noted in [Grefenstette, 1993]). This motivated the creation of a new type of al-
gorithms, named Probabilistic Model Building Genetic Algorithms (PMBGAs), later renamed as
EDAs.

In summary, EDAs are population-based algorithms which generate probabilistic models
based on promising solutions to guide their search, while looking for improved solutions. At each
iteration of the algorithm, the probabilistic model is updated, based on the current promising soluti-
ons. The population is then renewed by sampling the last generated model. Since the generation of
new individuals is based on the probabilistic model, no crossover or mutation operators are required.

Figure 1 shows the basic workflow of EDAs. First, a probability model is built, based on
N individuals from the population. The model is then used to generate the new population. The
process is repeated, generating a new model and new samples at each iteration.

Figura 1: EDAs workflow (adapted from [Bengoetxea, 2002]).

The UMDA is an EDA that assumes each variable to be independent. For each position
i ∈ {0, ..., n − 1} from an individual with length n, a univariate marginal frequency pi(xi) is
defined. pi(xi) indicates the number of strings that have xi on the ith position in the population P .
The distribution of the parents is then estimated as stated in Equation 11:

p(X) =
n−1∏
i=0

pi(xi) (11)

New individuals are created by sampling the generated distribution. For each position i,
a value is sampled to the ith position. It is set to a with the probability of pi(a). Once all new
individuals have been created, the population is evaluated, and promising individuals are used to
update the probabilistic model.

In this work, UMDA was used to determine real values ∈ [0 : 1] for each position in the
solution array. We assumed that each independent variable follows a normal distribution. Therefore,

1767



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

our model has a pair of parameters for each position i, named mean (µ) and standard deviation (σ),
estimated from the selected (promising) solutions. Using the mean and standard deviation, a normal
distribution was used to sample a new population at each generation.

Solution Decoding
In the experiments, solutions were represented as arrays of real numbers between 0 and 1.

We created a procedure to decode such arrays as solutions for VRPPFCC, defining routes for the
served customers, and which customers should be outsourced.

The decoding procedure, detailed in Algorithm 1, uses the sorted Random Keys array to
indicate the order in which the customers should be evaluated and included in the routes. Each
customer has its cost of being directly served compared to the outsourcing cost, and in case out-
sourcing indicates a lower cost, the customer is not included in the route of any of the vehicles in
the proprietary fleet.

Algorithm 1 Solution decoder
1: function DECODESOLUTION(randomKeysSolution)
2: routes← list(vehicles)
3: for each vehicle in vehicles do
4: routes(vehicle)← list()
5: end for
6: outsourcedCustomers← list()
7: customersOrder ← order(randomKeysSolution)
8: customers← customers[customersOrder]
9: for each customer in customers do

10: bestV ehicle, bestPosition← getLowestCostV ehicleAndPosition(routes, customer)
11: if bestV ehicle >= 1 then
12: routes(bestV ehicle).insert(customer, bestPosition)
13: else
14: outsourcedCustomers.push(customer)
15: end if
16: end for
17: return routes
18: end function

In the evaluation of direct service costs, the vehicle setup costs are not considered, even
if the customer will be the first one serviced by the vehicle. Since the setup cost of vehicles is
relatively high, considering it in the comparison with outsourcing costs would, in most cases, force
all customers to be outsourced. Thus, we consider only the travel costs. Each customer has its
travel costs calculated, considering every possible position it could be inserted in the given moment.
Regarding the customer’s demands, the capacity of each vehicle was also considered to assure
that the routes respect the vehicles capacities. The lowest cost vehicle and position evaluation is
explained in Algorithm 2.

The decoded routes were represented using matrices. Each vehicle route was represented
by a row, with the order of visited customers for the corresponding vehicle. The outsourced custo-
mers were not indicated in any of the routes, being deduced to be outsourced during the evaluation
function calculation.

1768



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Algorithm 2 Lowest cost vehicle and position evaluation
1: function GETLOWESTCOSTVEHICLEANDPOSITION(routes, customer)
2: customerDemand← demands[customer]
3: lowestCost, outsourcingCost← externalCosts[customer]
4: lowestCostV ehicle, lowestCostPosition← 0
5: for each vehicle in vehicles do
6: vehicleCustomers← routes(vehicle)
7: usedCapacity ← sum(demands[vehicleCustomers])
8: exceedsCapacity ← (customerDemand+ usedCapacity) > capacities[vehicle]
9: if !exceedsCapacity then

10: for each position in length(vehicleCustomers) do
11: prevCustomer ← vehicleCustomers[position− 1]
12: nextCustomer ← vehicleCustomers[position]
13: costInV ehicleInPosition ← distances[prevCustomer][customer] +

distances[customer][nextCustomer]− distances[prevCustomer][nextCustomer]
14: if costInV ehicleInPosition < lowestCost then
15: lowestCost← costInV ehicleInPosition
16: lowestCostV ehicle← vehicle
17: lowestCostPosition← position
18: end if
19: end for
20: end if
21: end for
22: return lowestCostV ehicle, lowestCostPosition
23: end function

RVND

The RVND (Random Variable Neighbourhood Descent) is a local search procedure deri-
ved from the Variable Neighbourhood Descent ([Mladenović e Hansen, 1997]).

VND was proposed on the idea that the global optimum is the optimal solution consi-
dering every possible neighbourhood structure. It also accounts that a local optimum for a given
neighbourhood structure might be different from the local optimum from another neighbourhood
structure. Therefore, VND explores the search space though systematic neighbourhood changes,
and only moves the solution when an improvement is achieved. Thus, VND allows an intensive
search on the considered search space region, providing different ways to look for better solutions.

RVND differs in the order neighbourhood structures are explored. While VND has a pre-
defined order for the neighbourhoods structures to be applied, RVND randomly selects the neigh-
bourhood structures order to be applied at each execution.

The RVND procedure is presented in Algorithm 3. First, a neighbourhood structures
list (NSL) containing a predefined number of neighbourhood moves to be applied to the solution
is initialized. The procedure then enters a loop, where a neighbourhood structure Nn ∈ NSL
is chosen at random at each iteration. The solution is then updated, in cases where the applied
neighbourhood structure presents an improvement to the previous solution. Finally, after every
movement has been applied to the solution, the best found solution is returned.

1769



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Algorithm 3 RVND Source: Adapted from [Penna et al., 2013]
1: procedure RVND(sol)
2: Initialize neighbourhood structures list NSL
3: while NSL 6= ∅ do
4: Randomly choose a neighbourhood structure N (n) ∈ NSL
5: Find the best neighbour sol′ of sol ∈ N (n)

6: if f(sol′) < f(sol) then
7: sol← sol′

8: f(sol)← f(sol′)
9: Update NSL

10: else
11: Remove N (n) from NSL
12: end if
13: end while
14: return sol
15: end procedure

VRP Neighborhoud structures
[Subramanian et al., 2013] present an ILS heuristic using RVND as a local search method.

The proposed algorithm is applied to Vehicle Routing Problems, thus several neighbourhood struc-
tures considering intra-routes and inter-routes movements are defined.

In this work, the neighbourhood structures presented in [Subramanian et al., 2013] are
used by the RVND to improve the solutions found by UMDA. The VRP movements are catego-
rized in intra-routes, when they change arches or customers inside a specific route, or inter-routes
movements, when more than one route is affected.

Inter-route movements
Some of the inter-routes movements are based on λ-interchanges [Osman, 1993], con-

sisting on the change of up to λ consecutive customers between two routes. Others are based on
cross-exchange [Taillard et al., 1997], which exchanges two segments between different routes. The
inter-routes structures used in RVND are detailed below.

Shift(1,0) - A customer i is transferred from a route r1 to a different route r2.
Swap(1,1) - A customer i from a route r1 is swapped with a customer j from a route r2.
Shift(2,0) - Two consecutive customers i and j are transferred from a route r1 to a diffe-

rent route r2.
Swap(2,1) - Two consecutive customers i and j, belonging to a route r1, are swapped

with a customer i′ from a different route r2.
Swap(2,2) - Two consecutive customers i and j, belonging to a route r1, are swapped

with two different customers i′ and j′ from a different route r2.
Cross - The arch between adjacent customers i and i + 1 in a route r1, and the arch

between adjacent customers j and j + 1 in a route r2 are removed. New arches are then created,
connecting customers i and j + 1, as well as customers j and i+ 1.

t-Shift - A set of t consecutive customers is transferred from a route r1 to a route with
lower costs r2. t is incremented from 3 to the total length of r1, according to the capacity of
r2. This movement intends to empty routes with higher costs, using vehicles with lower fixed or
variable costs to serve the customers.

Intra-route movements
The proposed intra-route movements were based on reinsertion, Or-opt [Or, 1976], 2-opt

and swap. Each of the used intra-route neighbourhoods is explained below.

1770



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Reinsertion - A customer is removed from the current position in the route, and reinserted
in a different position of the route.

Or-opt2 - Two consecutive customers are removed from their current positions, and rein-
serted in different positions in the same route, but keeping the consecutiveness.

Or-opt3 - Three consecutive customers are removed from their current positions, and
reinserted in different positions in the same route, but keeping the consecutiveness.

2-opt - Two non-adjacent arches (i, i+1) and (j, j+1) are removed. The loose sub-route
is then reversed, and new arches (i, j) and (i+ 1, j + 1) are created, reconnecting the entire route.

Swap - Two customers in the same route are swapped, changing their servicing order. The
sub-route between the swapped customers is also reversed.
Selected customers movements

A third category of movements is proposed, in order to alternate the selection of outsour-
ced customers during the local search procedure. The proposed movements were called Customer-
Insertion, Customer-Removal, and Customer-Swap.

Customer-Insertion - A customer, previously outsourced, is inserted in a position p from
a route i.

Customer-Swap - A customer, previously outsourced, is Swapped with a different custo-
mer, currently allocated in a route i.

Customer-Removal - A customer, previously allocated to a route i, is removed from the
route and outsourced.
Integration with UMDA

To integrate UMDA with RVND, we defined a stagnation point to the UMDA (no impro-
vement in the best found solution after 250 generations), and included the best obtained solution
in a local repository every time stagnation was reached. Once the UMDA execution finished, each
of the solutions stored in the repository was sent to RVND, looking for improved solutions using
the neighbourhood structures. Also, RVND was run 30 independent times to use different neigh-
bourhood orders for a same solution.
Computational Tests and Results

To compare the performance of UMDA alone, and its combination with RVND under
similar circumstances, we performed a set of tests using some of the instances available for the
VRPPFCC. UMDA was implemented in R, with the most costly functions (solution decoding and
evaluation) implemented in C++, while RVND was implemented entirely in C++. Also, all tests
were performed on a computer with Intel i7-3610QM @ 2.30GHz CPU and 8GB of RAM running
Ubuntu 15.10.

The instances used in the tests were adapted from [Christofides, 1976] in [Bolduc et al.,
2008]. Instances with different sizes, ranging from 50 to 199 customers, allow a comparison
between the methods behaviour for different individuals’ lengths. The instances are also divided
between homogeneous and heterogeneous fleet, depending on the variety of vehicles available. Re-
sults were measured in terms of distance from the best known solution found in the literature.

Initially, UMDA alone was tested to provide a performance baseline for the method. The
execution time was limited according to each instance size, after different tests determined the mi-
nimum time for stagnation of the method. Stagnation, in this case, was defined as no improvement
in the best found solution after 250 generations. Every time stagnation was reached, the UMDA
population was restarted, starting a new search until reaching the time limit. The population size
was defined as 20 * N , after initial tests with different population sizes were conducted. After the
execution of UMDA alone, we performed a second set of tests with UMDA integrated with RVND,
as explained in subsection 4.2.

Table 1 shows the results obtained by the UMDA metaheuristic alone, and the improve-
ments obtained by executing the method aligned to the RVND local search procedure. The first th-
ree columns summarize the results obtained by the UMDA alone, using only the decoding heuristic

1771



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Tabela 1: Results Summary
Instance N m UMDA UMDA + RVND Time BKS

Min Mean Diff (%) Min Mean Diff (%)
CE-01 50 4 1129.82 1138.19 0.92 1120.07 1125.50 0.05 30 1119.47
CE-02 75 9 1879.43 1884.76 3.58 1842.09 1858.06 1.52 125 1814.52
CE-03 100 6 1959.30 1974.57 2.10 1945.25 1960.39 1.37 200 1919.05
CE-04 150 9 2575.58 2599.96 2.80 2542.97 2574.16 1.50 500 2505.39
CE-05 199 13 3161.43 3181.02 2.59 3139.43 3159.48 1.88 1200 3081.59
CE-06 50 4 1216.82 1225.36 0.77 1207.47 1214.41 0.00 30 1207.47
CE-07 75 9 2064.19 2077.35 2.98 2037.65 2050.50 1.65 125 2004.53
CE-08 100 6 2094.51 2107.73 2.07 2090.03 2099.82 1.85 200 2052.05
CE-09 150 10 2509.00 2520.17 3.56 2483.70 2496.25 2.52 500 2422.74
CE-10 199 13 3466.40 3483.58 2.51 3433.62 3450.85 1.54 1200 3381.67
CE-11 120 6 2420.51 2435.36 3.84 2332.24 2336.45 0.06 300 2330.94
CE-12 100 8 1980.34 1991.79 1.41 1955.17 1972.27 0.12 200 1952.86
CE-13 120 6 2944.76 2960.35 3.01 2864.56 2871.74 0.20 300 2858.83
CE-14 100 7 2237.02 2244.78 1.08 2224.37 2226.26 0.51 200 2213.02
Average 2.37 1.05
CE-H-01 50 4 1206.54 1218.65 1.25 1201.27 1205.66 0.80 30 1191.7
CE-H-02 75 9 1840.76 1856.68 2.77 1820.82 1839.34 1.65 125 1791.21
CE-H-03 100 6 1942.18 1959.21 1.26 1922.38 1939.20 0.23 200 1917.96
CE-H-04 150 9 2522.29 2558.59 1.64 2512.19 2532.38 1.23 500 2481.64
CE-H-05 199 13 3205.97 3225.19 2.00 3157.30 3188.18 0.45 1200 3143.01
CE-H-06 50 4 1216.84 1227.52 0.83 1210.00 1218.46 0.26 30 1206.82
CE-H-07 75 9 2074.12 2088.66 2.08 2044.50 2065.66 0.62 125 2031.85
CE-H-08 100 6 2009.03 2028.08 1.13 1991.78 2012.73 0.27 200 1986.51
CE-H-09 150 10 2514.86 2534.15 2.84 2483.82 2500.72 1.57 500 2445.49
CE-H-10 199 13 3326.62 3340.77 1.68 3298.76 3311.40 0.83 1200 3271.7
CE-H-11 120 6 2394.56 2414.87 3.72 2331.30 2340.88 0.98 300 2308.76
CE-H-12 100 8 1948.96 1953.69 2.11 1919.58 1934.05 0.57 200 1908.74
CE-H-13 120 6 2929.50 2950.89 3.07 2854.06 2873.90 0.42 300 2842.18
CE-H-14 100 7 1940.15 1953.39 1.70 1917.00 1932.28 0.48 200 1907.75
Average 2.00 0.74

vehicle and position searching procedures to determine the customers distribution on the vehicles,
service orders, as well as the relation of outsourced customers. The next three columns, indica-
ted under UMDA + RVND, details the results for the combination of UMDA and the local search
procedure, performed on the best solutions found after each UMDA execution.

Figura 2: RVND Solutions Improvement.

By the results, it’s clear the RVND had a considerable impact on the solutions obtained,
due to the usage of the neighbourhood structures to explore the search space. Figure 2 details the

1772



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

improvements in the solutions after the RVND executions. The upper line indicates the difference
from the starting solutions provided to the method by UMDA, while the points beneath indicate the
difference in the final solutions obtained by the procedure. As noted by the points, the most intense
improvements occurred with initial solutions with a difference around 4%.

Although the RVND application did improve the best results obtained, the method used
to integrate UMDA and RVND has alternatives. Applying the local search procedure at different
moments, such as periodically during the execution of the UMDA, or through hybrid methods that
evaluate when it seems promising to apply local search procedures. This change should likely
improve the obtained results. Also, changes in the behaviour inside the RVND can be studied
through the usage of different neighbourhood structures, as well as variations in the implementation
of the RVND.

Conclusions and Future Directions
This paper evaluated the application of UMDA and RVND in the solution of the VRPPFCC,

a routing vehicle problem with outsourcing costs.
UMDA used a random keys vector to represent solutions, and a decoding algorithm was

implemented using the random keys order. A heuristic consisting of evaluations on the capacity of
customers previously delegated to each vehicle, as well as the cost impact on the solution for each
new inserted customer, was used to determine whether each customer should be directly served,
and at which position of which vehicle.

The performed tests allowed us to verify the performance of the UMDA, as well as the
impact of the RVND on the solutions. Though the UMDA alone obtained solutions with an average
difference from the BKS around 2%, the results from UMDA aligned with RVND were much closer
to the BKS, finding the best known solution for an instance, and having an average difference of
less than half the one of UMDA alone.

As future directions, we intend to evaluate the performance of the RVND working with
other metaheuristics in the solution of the VRPPFCC. Also, the combination of the metaheuristic
and local search procedures offer a good starting point for the application of hybrid methods, as the
Clustering Search [Oliveira et al., 2013], which manages the local search application on promising
areas of the search space throughout the metaheuristic execution.

Referências
Bengoetxea, E. (2002). On processes and threads: synchronization and communication in parallel

programs. PhD thesis, PhD Thesis. University of the Basque Country.

Bolduc, M.-C., Renaud, J., Boctor, F., e Laporte, G. (2008). A perturbation metaheuristic for the
vehicle routing problem with private fleet and common carriers. Journal of the Operational
Research Society, 59(6):776–787.

Christofides, N. (1976). The vehicle routing problem. Revue française d’automatique,
d’informatique et de recherche opérationnelle. Recherche opérationnelle, 10(1):55–70.

Chu, C.-W. (2005). A heuristic algorithm for the truckload and less-than-truckload problem. Euro-
pean Journal of Operational Research, 165(3):657–667.

Clarke, G. e Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581.

Côté, J.-F. e Potvin, J.-Y. (2009). A tabu search heuristic for the vehicle routing problem with
private fleet and common carrier. European Journal of Operational Research, 198(2):464–469.

Grefenstette, J. J. (1993). Deception considered harmful sk. Foundations of Genetic Algorithms
1993 (FOGA 2), 2:75.

1773



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. U Michigan Press.

Larranaga, P. (2002). A review on estimation of distribution algorithms. In Estimation of distribu-
tion algorithms, p. 57–100. Springer.

Mladenović, N. e Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100.

Oliveira, A. C. M. d., Chaves, A. A., e Lorena, L. A. N. (2013). Clustering search. Pesquisa
operacional, 33(1):105–121.

Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of
regional blood banking. Xerox University Microfilms.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of operations research, 41(4):421–451.

Pelikan, M. e Mühlenbein, H. (1998). Marginal distributions in evolutionary algorithms. In Pro-
ceedings of the International Conference on Genetic Algorithms Mendel, volume 98, p. 90–95.
Citeseer.

Penna, P. H. V., Subramanian, A., e Ochi, L. S. (2013). An iterated local search heuristic for the
heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2):201–232.

Potvin, J.-Y. e Naud, M.-A. (2011). Tabu search with ejection chains for the vehicle routing problem
with private fleet and common carrier. Journal of the Operational Research Society, 62(2):326–
336.

Prins, C. (2009). A grasp× evolutionary local search hybrid for the vehicle routing problem. In
Bio-inspired algorithms for the vehicle routing problem, p. 35–53. Springer.

Stenger, A., Vigo, D., Enz, S., e Schwind, M. (2013). An adaptive variable neighborhood search al-
gorithm for a vehicle routing problem arising in small package shipping. Transportation Science,
47(1):64–80.

Subramanian, A., Penna, P. H. V., Ochi, L. S., e Souza, M. J. F. (2013). Meta-Heurı́sticas em
Pesquisa Operacional, chapter Um Algoritmo Heurı́stico Baseado em Iterated Local Search para
Problemas de Roteamento de Veı́culos. Omnipax.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., e Potvin, J.-Y. (1997). A tabu search heuristic
for the vehicle routing problem with soft time windows. Transportation science, 31(2):170–186.

Toth, P. e Vigo, D. (2014). Vehicle Routing Problems, Methods, and Applications. Society for
Industrial and Applied Mathematics and the Mathematical Optimization Society, second edition.

Vidal, T., Crainic, T. G., Gendreau, M., e Prins, C. (2014). A unified solution framework for multi-
attribute vehicle routing problems. European Journal of Operational Research, 234(3):658–673.

Vidal, T., Maculan, N., Ochi, L. S., e Penna, P. H. V. (2015). Large neighborhoods with implicit
customer selection for vehicle routing problems with profits. Transportation Science, Articles in
Advance.

1774


