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RESUMO
Neste artigo, um procedimento de identificação é apresentado para a obtenção de um

modelo ARIMA a partir de dados de velocidade do vento da base de dados SONDA (Sistema
de Organização Nacional de Dados Ambientais). Este procedimento é ilustrado por um exemplo
numérico considerando registros de velocidade de vento de uma estação anemométrica localizada
em Triunfo, Pernambuco. Espera-se que o presente artigo possa motivar a utilização dos dados do
projeto SONDA em outros trabalhos que tratem da previsão da velocidade do vento a curto prazo.
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ABSTRACT
In this paper, an identification procedure to derive an ARIMA model from wind speed

data records of the SONDA (Sistema de Organização Nacional de Dados Ambientais - National
Organization System of Environment Data) database is presented. This procedure is illustrated
by a numerical example considering wind speed data records of an anemometric station located at
Triunfo, Pernambuco. It is expected that the present article may motivate the use of SONDA project
data in other works in the field of short-time wind speed forecast.
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1. Introduction

It is a well known fact that over the last decade there has been a substantial growth of
renewable energy participation in the energy matrix of many countries. An example of this is the
wind power generation in Brazil that from 2014 to 2015 has expanded 77% of its capacity (going
from 12.210GWh to 21.626GWh) [Ministério de Minas e Energia, 2016]. As Brazil has several
locations with valuable wind energy potential (Brazilian Northeast and South are the regions that
offer the highest wind energy resources) [Pereira and Lima, 2008], it is expected that a great growth
of wind power penetration may continue to occur in the country.

In spite of the benefits of wind energy, the volatility of wind presents new challenges
when compared to conventionally (dispatchable) power sources. Due to its stochastic nature, wind
generation is considered a non-dispatchable source of electricity and, in this sense, models and
forecasts of wind speed and wind power bring a valuable information for system operators and for
the players in the electricity market.

The modeling of wind speed is motivated by many reasons, but at least two of them
should be highlighted. The first is that, in many cases, when one wishes to evaluate the potential
contribution or the impact of a wind power site to the electrical grid, there are not enough data
records. In this case, simulations are employed in order to build time series with a longer time span
or to synthesize new wind speed sample paths. The other reason is that wind speed models can
be used to forecast the wind power output of a wind power generator or wind farm. The obtained
forecasts can then be used, for instance, to optimize the value of the produced electricity in the
market, to optimize the dispatch of conventional power plants or to schedule some maintenance
tasks [Brown et al., 1984; Costa et al., 2008; Giebel et al., 2011].

This paper is concerned with short-time modeling of wind speed. The time scales adopted
in short-time prediction are in the order of some days (for the forecast horizon) and from minutes
to hours (for the time-step) [Costa et al., 2008]. Different approaches are used in wind energy
modeling, depending on the desired forecast horizon. For short horizons (up to 3 to 6 hours) statis-
tical approaches using only data available on-line as input are generally employed. For longer time
horizons, prediction models usually make use of a numerical weather prediction model [see Giebel
et al., 2011, for more details].

There is already a rich literature regarding wind speed and wind power models for short
time scales. In some articles, the model for wind speed is obtained by fitting distributions to wind
speed data records, that is, by estimating the parameters of the marginal distribution of wind speed
distribution. On this approach, the positive correlation between consecutive observations of wind
speed is ignored. Several works, on the other hand, try to incorporate the autocorrelation into wind
speed models mainly by using time series or artificial neural networks techniques, and one can even
find papers that propose ensembles of several models. For detailed reviews on this subject, refer to
[Costa et al., 2008; Giebel et al., 2011; Foley et al., 2012; Zhu and Genton, 2012].

The goal of this paper is to present an application of the Box-Jenkins model identification
procedure to identify an univariate ARIMA model from wind speed data records of an anemomet-
ric station of the SONDA network. The SONDA (Sistema de Organização Nacional de Dados
Ambientais - National Organization System of Environment Data) project aims at providing high
confidence data of interest to the Brazilian energy sector, and it has established a network of ground
data acquisition sites for solar and wind data throughout the Brazilian territory [Martins et al., 2004].
Although several studies use data from the SONDA database, there are few papers dealing with the
modeling and forecasting of wind speed that make use of this database [Oliveira et al., 2016, is an
example]. It is expected that the present article may motivate the use of SONDA project data in
other works in this field. Furthermore, as highlighted by [Meyn and Tweedie, 2009, Section 2.1.2],
linear models such as ARIMA models are suitable for a Markovian description and, thus, may be
of interest in the context of discrete-time Markov jump linear systems [see Costa et al., 2005; Costa

824



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

and Figueiredo, 2015, 2016; Figueiredo and Costa, 2016].
The rest of the paper is organized as follows. In Section 2 the SONDA database is de-

scribed. In Section 3 the ARIMA models are presented and in Section 4 a procedure is introduced in
order to identify an ARIMA model from wind speed data. Next, in Section 5 a numerical example
of the proposed identification procedure, considering data from an anemometric station located at
Triunfo, Pernambuco, is presented. Finally, some final comments are discussed in Section 6.

2. SONDA Database

The SONDA database is public available at the SONDA project website [Sistema de
Organização Nacional de Dados Ambientais - SONDA, 2017]. Data is organized by measurement
station, type of dataset (environmental data or anemometric data), and month and year. Besides the
data records of measurements, complementary information about data quality is also available. The
data validation process employed by the SONDA network is based on the quality control policies
proposed by the Baseline Surface Radiation Network and Webmet.com.

A collection of text files (semicolon separated csv files) composes the SONDA database.
The SONDA wind towers have wind sensors installed at 25m and 50m heights and measurements
are performed every 10 minutes. For a given anemometric data file, content is organized as pre-
sented in Table 1.

Table 1: Anemometric data file content
Column ID Data

1 id Station ID
2 year Current year of data collection
3 day Julian calendar day
4 datetm Date in Gregorian calendar and time:minute:second in UTC time
5 min Minute (indicates the average of the subsequent 10 minutes)
6 ws 25 Average wind speed (ms−1) at 25m
7 wd 25 Average wind direction at 25m (from 0◦ - North to 360◦ clockwise)
8 tp 25 Air temperature (◦C) at 25m
9 ws 50 Average wind speed (ms−1) at 50m
10 wd 50 Average wind direction at 50m (from 0◦ - North to 360◦ clockwise)
11 tp 50 Air temperature (◦C) at 50m

Analogously to anemometric data, the SONDA database provides csv files with environ-
mental data (such as surface air temperature, relative humidity, atmospheric pressure, etc).

3. ARIMA Models

In this section, the autoregressive integrated moving average (ARIMA) models are in-
troduced. An ARIMA process is such that its dth difference is a stationary, invertible mixed
autoregressive-moving average (ARMA) process, thus this class of models describes homogeneous
nonstationary behavior. For more details on this topic, refer to [Box et al., 2015, Chapter 4].

Some notation must be introduced. Let Z, E(·), and var(·) denote the set of nonnegative
integers, the expectation operator, and the variance operator, respectively. As usual, for a time
series {zt, t ∈ Z}, the backward shift operator is denoted by B and is such that Bzt = zt−1, and
the difference operator is denoted by ∆ and is such that ∆ = (1−B), that is, ∆zt = (1−B)zt =
zt − zt−1. Moreover, throughout the paper {at, t ∈ Z} denotes a white noise process, that is,
{at, t ∈ Z} is a sequence of independent identically distributed random variables with E(at) = 0
and var(at) = σ2a.
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An ARIMA model of order (p, d, q), or simply an ARIMA(p, d, q), can be written in the
form

φ(B)∆dzt = θ0 + θ(B)at, (1)

where φ(B) = (1− φ1B − φ2B2 − . . .− φpBp) is a stationary autoregressive operator of order p,
θ(B) = (1 − θ1B − θ2B2 − . . . − θqBq) is an invertible moving average operator of order q, and
θ0 is a constant term.

Some comments on the model (1) should be pointed out. It is immediate to see that if
d = 0, the model (1) is a stationary process. The constant term θ0 allows that model (1) represents
series that have stochastic (θ0 = 0) or deterministic (θ0 6= 0) trends. It should also be mentioned
that, for the representation of nonseasonal time series, parameters p, d, or q rarely need to be greater
than 2.

4. Wind Speed Modeling

In this section, an identification procedure based on the Box-Jenkins method [Box and
Jenkins, 1970] is presented in order to identify an ARIMA model for wind speed from data records
of SONDA database.

4.1. Data Preparation

The SONDA stations record average wind speed every ten minutes. From this records,
other time scales may be considered. For instance, the value of the hourly average wind speed can
be obtained averaging the six values measured within each hour (Torres et al. [2005] performed this
procedure to analyze hourly wind speeds at Navarre, Spain).

Depending on the time step of the time series, wind speed series may present non-Gaussian
distributions, diurnal nonstationary, and seasonal nonstationary. An approach to deal with it is by
applying an adequate transformation to adjust the original time series, thus zt is substituted by z∗t
in (1), where z∗t is a transformation of zt involving one or more transformation parameters λ:

i. A power transformation z′t = zλt may be applied to the wind speed time series, so that the
distribution becomes approximately Gaussian [see Brown et al., 1984; Nfaoui et al., 1996;
Torres et al., 2005, for instance].

ii. Regarding the diurnal nonstationary of wind speed data, many authors have employed the
transformation given by

z∗t =
z′t − µ(t)

σ(t)
, (2)

in order to remove it. For instance, Brown et al. [1984]; Nfaoui et al. [1996]; Torres et al.
[2005] considered ARMA models to analyze hourly wind speed time series transformed by
(2), that is, they removed the diurnal nonstationary by subtracting the hourly expected wind
speed values µ(k) and dividing by the hourly standard deviations σ(k), k ∈ {0, 1, . . . , 23}.
In (2) it is assumed that µ and σ are periodic with µ(k+24 i) = µ(k) and σ(k+24 i) = σ(k),
for k ∈ {0, 1, . . . , 23}, i ∈ Z.

iii. Seasonal nonstationarity can be removed by fitting a separate model for each month [see
Brown et al., 1984; Nfaoui et al., 1996; Torres et al., 2005, for instance]. Another approach
to deal with seasonality is to analyze seasonal ARIMA (SARIMA) models [see Kamal and
Jafri, 1997, for instance]. As only ARIMA models, given by (1), are considered in this paper,
this alternative approach will not be further detailed.
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4.2. Model Structure Selection and Parameters Estimation

During an ARIMA model identification, usually an ARIMA model structure (p, d, q)
is defined by analyzing the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the time series. For a chosen structure (p, d, q), the parameter’s estimation of the as-
sociated ARIMA model can be performed by maximum likelihood estimation methods.

In a more pragmatical approach, one can estimate several models and, after that, select a
model by applying a model selection criteria such as minimizing the Akaike information criterion
(AIC), the Akaike information criterion corrected for small sample sizes (AICc) or the Bayesian
information criterion (BIC). The information criteria AIC is given by

AICp,q = −2 ln(maximized likelihood) + 2r, (3)

the AICc by

AICcp,q = AIC +
2r(r + 1)

n− r − 1
, (4)

and the BIC by
BICp,q = −2 ln(maximized likelihood) + r ln(n), (5)

where n is the sample size, r = p + q + 1 is the number of parameters estimated in the model,
including constant term. For more details on the use of model selection criteria and on parameter
estimation, refer to [Box et al., 2015, Section 6.2 and Chapter 7].

Regarding wind series, no deterministic trend is expected in a wind speed time series.
Thus θ0 can be omitted in (1) and only models given by

φ(B)∆dzt = θ(B)at (6)

should be considered.

4.3. Model Validation

The model validation requires confirming that the hypotheses made with respect to the
model residuals hold true. Recall that it was assumed that the residuals follow a white noise process.
Thus, in this step of the model identification procedure, the main concern is checking if the residuals
are independent, and distributed with zero mean and constant variance. For more details on model
validation, refer to [Box et al., 2015, Chapter 8].

4.4. Model Performance

In the literature on modeling and forecasting of wind speed, several different measures of
performance have been adopted for model performance assessment, e.g. mean error, mean absolute
error, root mean square error, etc [see Foley et al., 2012, Table 2]. Many authors consider the
persistence model (naive predictor) as a reference model and evaluate more advanced models in
terms of improvement over persistence. The persistence forecasting assumes that the future values
of wind speed are the same as the current one, that is,

ẑt(k) = zt, (7)

where ẑt(k) denotes the forecast of zt+k, i.e. the wind speed at some future time instant t+ k when
we are currently at time t. In order to have best validation results and avoid overfitting, it is usual
to consider different data sets for model identification and validation/performance assessment.
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5. Numerical Example

In this section, a numerical example of the procedure introduced in Section 4 is presented.
The computations and graph visualizations were done using the statistical software package R and
the numerical computing software Matlab.

Wind speed data for January 2006 obtained from an anemometric station located at Tri-
unfo, Pernambuco, is presented in Figure 1.

Figure 1: Wind speed time series (January 2006)
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The daily wind speed time series for January 2006 is presented in Figure 2. That is, this
figure contains the 31 trajectories of hourly average wind speed, each trajectory representing the
time series of one of the days of January 2006, and the thick line in the figure is the expected value
trajectory. The value of the hourly average wind speed was obtained by averaging the six values
measured within each hour (recall that the SONDA measurements are performed every 10 min).

Figure 2: Daily wind speed time series (January 2006)
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It is easy to see from Figure 2 that the wind speed presents diurnal nonstationary. Thus
the transformation (2) may be applied to adjust data. Figure 3 presents the time series of 744
transformed hourly wind speed data, each point corresponding to a data record of one of the 24
hours of the 31 days of January 2006. In what follows the time series of transformed hourly wind
speed is divided into two data sets: the first one is used for model identification (the first 520 points)
and the other for performance assessment (the last 224 points).

Figure 3: Transformed wind speed time series (January 2006)
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By applying the pragmatical approach proposed in Section 4.2, an ARIMA model can be
obtained to model the transformed time series (considering only the data set for model identifica-
tion). This step has been done by employing the auto.arima() function from the forecast package
of R, considering the AIC information criterion. The output from the identification process is pre-
sented in Table 2.

Table 2: Estimated ARIMA(1,1,2) model

Parameter Value Standard Error
φ1 0.6157 0.0921
θ1 0.7150 0.0981
θ2 0.1671 0.0597

Let us denote by yt the transformed hourly wind speed time series. From the estimated
parameters (Table 2), the obtained ARIMA(1,1,2) model is given by

(1− 0.6157B)(1−B)yt = (1− 0.7150B − 0.1671B2)at, (8)

that can also be written as

yt = 1.6157yt−1 − 0.6157yt−2 + at − 0.7150at−1 − 0.1671at−2. (9)

The model residuals, the autocorrelation function of the residuals, and the p-values of a
Portmanteau test (Ljung-Box test) for several lags are plotted in Figure 4. As expected, this figure
shows a small error range, centered around zero (the mean of the residuals is approximately zero),
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and the variation of the residuals seems the same across the time series. Checking the autocorrela-
tion plot, the residuals have no significant autocorrelations. Also, by applying the Ljung-Box test
[see Box et al., 2015, Section 8.2] it follows that the residuals from the estimated ARIMA model
are independently distributed. From this analysis, one can conclude that (8)-(9) adequately model
the considered time series.

Figure 4: Residuals diagnostics
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The difference equations for computing forecasts k-hours ahead for the model (8)-(9) are
given by

ŷt(k) =


1.6157yt − 0.6157yt−1 − 0.7150at − 0.1671at−1, if k = 1

1.6157ŷt(1)− 0.6157yt − 0.1671at, if k = 2

1.6157ŷt(k − 1)− 0.6157yt(k − 2), if k ≥ 3.

(10)
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To convert ŷt(k) obtained in (10) into a wind speed forecast k-hours ahead ẑt(k), the relationship

ẑt(k) = ŷt(k) · σ̂(t+ k) + µ̂(t+ k) (11)

is used. Recall that µ̂(t) and σ̂(t) have been defined when applying transformation (2).
The results in terms of root mean square error (RMSE) of forecasts obtained by applying

model (11) and by applying the persistence model (7) are presented in Table 3, where the improve-
ment is given by

RMSEpersistence − RMSEARIMA

RMSEpersistence
.

It is worth pointing out that in order to avoid overfitting in this analysis only the data set for perfor-
mance assessment have been used. In summary, the ARIMA approach yielded an improvement in
the RMSE compared to persistence for all the considered forecast horizons. The results presented
in Table 3 are similar to those found in the literature [see Foley et al., 2012, Section 2.4].

Table 3: Root mean square error (RMSE) in m/s by model

Hours ahead ARIMA Persistence Improvement
1 1.0374 1.1702 11.35%
2 1.4507 1.7051 14.92%
3 1.6501 2.0388 19.06%
4 1.7734 2.2914 22.60%
5 1.8442 2.4561 24.91%
6 1.8730 2.5473 26.47%
7 1.8908 2.5762 26.60%
8 1.9293 2.6333 26.73%
9 1.9681 2.6861 26.73%
10 1.9895 2.7164 26.76%

6. Final Comments
In this paper, an identification procedure to derive an ARIMA model from wind speed

data records of the SONDA database was presented. This identification procedure was illustrated
in a numerical example in which a model was obtained from wind speed data records of a SONDA
anemometric station located at Triunfo, Pernambuco. In the numerical example, the ARIMA ap-
proach yielded an improvement in the RMSE of forecasts compared to the persistence model for all
the considered forecast horizons. In comparison with the present paper, future works on short-time
modeling of wind speed may deal with different data records from SONDA project, employ dif-
ferent time scales and forecast horizons, or adopt other modeling techniques (such as multivariate
time series analysis, artificial neural networks techniques, wavelets techniques, etc) and other input
data besides wind speed (such as wind direction, air temperature, relative humidity, atmospheric
pressure, etc).
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