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ABSTRACT
We investigate the problem of decomposing a given (symmetric) positive semidefinite

matrix R as R = S + L, where S is sparse, L has low rank, and both are (symmetric) positive
semidefinite. Additionally, we enforce that S and L belong to convex and compact sets of matrices,
specified via linear matrix inequalities. Our goal is to minimize a weighted sum of the sparsity of
S and the rank of L. Aiming at the global optimization of this nonconvex problem, we investigate
convex relaxations of its “simplified” version, where the rank of L is fixed and we seek rather to
minimize the sparsity of S. Following ideas from the literature, we discuss how strong lower bounds
for this simplified problem can be used to increase the ability of a branch-and-bound method to find
global optimal solutions for the original nonconvex problem. A heuristic procedure is also proposed
to construct a feasible solution for the original problem, taking the solution of our relaxation as a
starting point. Preliminary numerical results are shown for randomly generated problems.
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1. Introduction
Given an n× n symmetric positive semidefinite matrix R, we consider

min{γ‖S‖0 + r(L) : S + L = R, S � 0, L � 0, S ∈ S, L ∈ L} . (1)

where B � 0 indicates that the matrix B is symmetric and positive semidefinite, the sparsity ‖S‖0
is the number of nonzeros of S, and r(L) is the rank of L. The constant γ > 0 is simply used to
trade off between the two objectives, sparsity and rank. S and L are convex and compact sets of
matrices, specified via linear matrix inequalities.

Our interest in the problem stems from a difference of convex functions (“DC”) approach
to the constrained global minimization of an indefinite quadratic form 1

2x
tQx, where Q is symmet-

ric but indefinite; see [Fampa et al., 2017]. In such an approach, Q is decomposed as Q = P − R,
where P and R are (symmetric) positive semidefinite. In [Fampa et al., 2017], we concentrated on
the having R “small” in some sense, as that part captures the nonconvexity which is the hard part
for global minimization. Now, the nonconvex part −1

2x
tRx can be attacked by a variety of lifting

methods. In particular, there are:

• methods that treat the nonconvexity termwise. That is, Reformulation Linearization Tech-
nique (RLT) approaches (see [Sherali and Tuncbilek, 1995; Sherali and Adams, 1999]) which
concentrate on viewing −1

2x
tRx termwise, that is as −

∑
i<j rijxixj - 1

2

∑
i riix

2
i , and then

attacking the nonconvex terms (ie., the ones with rij > 0 all of the univariate terms) via RLT
convexification methods.

• methods that treat the convexity holistically. Specifically, the approach of [Saxena et al.,
2010, 2011], which dynamically applies disjunctive programming on directions of noncon-
vexity. In some sense, [Fampa et al., 2017] follows some of the spirit of [Saxena et al., 2010],
but in a computationally less intensive manner, where the nonconvexity is isolated to the r(R)
directions of the eigenvectors of R.

In recent software implementations (e.g., Cplex), one or the other of these two approaches
is pursued (i.e., the RLT termwise approach or the [Fampa et al., 2017] holistic approach). There
are also possibilities to combine these ideas, by further splittingR asR = S+L, where S is sparse,
L has low rank, and both are (symmetric) positive semidefinite. By doing so:

• −1
2x

tSx is a sparse nonconvex quadratric form, and is particularly well suited to the RLT
approach.

• −1
2x

tLx is a low-rank nonconvex quadratric form, and is particularly well suited to the treat-
ment of [Fampa et al., 2017] which here would do spatial branching on the only r(L) direc-
tions of nonconvexity.

We have thus established our motivation for considering (1).

2. Simplified problem
In this section, we consider a “simplified” version of problem (1), where we minimize

the sparsity of S, with the rank of L fixed to r. The motivation for considering this version of the
problem comes from the fact that we can globally solve problem (1), by solving it for all ranks r. In
this way, we do not need to branch on the rank, in a branch-and-bound algorithm for (1), but only
on sparsity, which could be done more easily, for example, as described in [Lee and Zou, 2014].

The simplified problem can be formulated as:

min{‖S‖0 : S + L = R, r(L) = r, S � 0, L � 0, S ∈ S, L ∈ L} . (2)

Theorem 1 Problems (1) and (2) are NP-Hard.
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Proof We begin with positive integers b, a1, a2, . . . , an defining the NP-Complete exact-knapsack
decision problem: Is there a solution in 0/1 variables to

∑n
j=1 ajxj = b? We will proceed to define

instance of (1) and (2) that solve this decision problem.
Let R := I2n. We use the sets S and L to enforce that S and L are diagonal matrices of

particular forms. Specifically, we enforce that S has the form

S = Diag(s11, s22, . . . , snn, 1− s11, 1− s22, . . . , 1− snn) .

Then, because S + L = R, we have that

L = Diag(1− s11, 1− s22, . . . , 1− snn, s11, s22, . . . , snn) .

With S, we also include
∑n

j=1 ajsjj = b .
Now, it is easy to see that all solutions of the resulting (2) have ||S||0 ≥ n, and the only

ones having ||S||0 = n are the solutions with sjj ∈ {0, 1}, for j = 1, 2, . . . , n. We interpret such a
solution as a solution of our knapsack problem via xj := sjj , for j = 1, 2, . . . , n. So we solve the
exact-knapsack decision problem by instead solving an instance of (2). It is now easy to see that
choosing γ ≥ 2n, we can as well solve the exact-knapsack decision problem by instead solving an
instance of (1). The result follows. ut

As (2) is a nonconvex NP-Hard problem, our ability to solve instances of it to optimality
is highly dependent on the knowledge of good lower bounds for its optimal solution value. Our
initial goal in this work is, therefore, to construct strong convex relaxations for (2).

With this purpose in mind, we first underestimate ‖S‖0 with ‖S‖1/α, where ‖S‖1 :=∑
i

∑
j |Sij | and α > 0. Concerning the value of α, as in [Lee and Zou, 2014], we assume that

‖S‖max := max{|Sij | : i, j = 1, . . . , n} is bounded on S, and therefore, it is possible to calculate
a scalar α > 0, such that ‖S‖max ≤ α, for all S ∈ S. For this scalar α, we may use ‖S‖1/α to
underestimate ‖S‖0.

Next, we represent L as a sum of r rank-one matrices, replacing L with
∑r

k=1X
k, where

Xk := xkxk
t and xk ∈ Rn, for k = 1, . . . , r. An initial (nonconvex) relaxation of (2) is then

formulated as:

minS,L,Z,X1,...,Xr,x1,...,xr
1
αe

tZe ,
subject to
−Z ≤ S ≤ Z, S + L = R, L =

∑r
k=1X

k, S � 0,

Xk = xkxk
t
, xk ∈ Rn, k = 1, . . . , r,

S ∈ S, L ∈ L,

(3)

where e is the n-vector of all ones. Note that etZe =
∑

i

∑
j Zij , which is equal to ‖S‖1 due to

the minimization.
Convex relaxations for the nonconvex equationsXk = xkxk

t in (3) have been extensively
studied in the literature. These relaxations mostly use Semidefinite Programming (SDP) [Nes-
terov, 1998] and the Reformulation-Linearization Technique (RLT) [Sherali and Adams, 1999]. In
[Anstreicher, 2009], the author also shows on selected test problems, that the combined use of SDP
and RLT can produce bounds that are substantially better than either technique used alone. We
discuss in the following, the application of these approaches to obtain lower bounds for (3). The
use of secant underestimation and disjunctive programming to generate valid inequalities for the
relaxations, as introduced in [Saxena et al., 2010] and [Lee and Rendl, 2008], is also investigated.
2.1. Semidefinite Programming (SDP) relaxation

When applying SDP to generate lower bounds to (3), the idea is to relax the nonconvex
constraints Xk = xkxk

t to Xk − xkxkt � 0. Using the well known result

Xk − xkxkt � 0⇔
(

1 xk
t

xk Xk

)
� 0
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on the Schur complement ofXk [Zhang, 2005, Theorem 1.12], the following linear SDP relaxation
is produced for (3):

minS,Z,X1,...,Xr,x1,...,xr
1
αe

tZe ,
subject to
−Z ≤ S ≤ Z, S +

∑r
k=1X

k = R, S � 0,(
1 xk

t

xk Xk

)
� 0, k = 1, . . . , r,

xk ∈ Rn, k = 1, . . . , r,
S ∈ S, L ∈ L.

(4)

2.2. Valid inequalities produced by the Reformulation Linearization Technique
The Reformulation Linearization Technique (RLT) was introduced in [Sherali and Adams,

1999] and can be used to generate valid inequalities to (3). The idea is to replace the nonconvex
constraints Xk − xkxkt = 0 in (3) by linear inequalities derived from lower and upper bounds on
the variables. Considering that

lk ≤ xk ≤ uk, (5)

for given vectors lk, uk ∈ Rn, we multiply each pair of the four inequalities xki − lki ≥ 0, uki −xki ≥
0, xkj − lkj ≥ 0, ukj − xkj ≥ 0 for all i, j = 1, . . . , n. Defining then, Xk

ij := xki x
k
j , we obtain the

following RLT inequalities

Xk
ij − lki xkj − ukjxki + lki u

k
j ≤ 0,

Xk
ij − lkj xki − uki xkj + lkj u

k
i ≤ 0,

Xk
ij − lkj xki − lki xkj + lkj l

k
i ≥ 0,

Xk
ij − ukjxki − uki xkj + ukju

k
i ≥ 0,

(6)

for all k = 1, . . . , r, and i, j = 1, . . . , n.
Considering that S and Xk, for k = 1, . . . , r, are positive semidefinite, the diagonal

elements of these matrices are nonnegative. Consequently, for all i = 1, . . . , n, we have Xk
ii ≤ Rii

and −
√
Rii ≤ xki ≤

√
Rii. It is then possible to set

lki := −
√
Rii,

uki :=
√
Rii,

(7)

for all k = 1, . . . , r and i = 1, . . . , n.
We note that the inequalities (6) were introduced by McCormick in [McCormick, 1976].

It has been proved in [Al-Khayyal and Falk, 1983] that they represent the convex envelope of

{(xki , xkj , Xk
ij) ∈ R3 : lki ≤ xki ≤ uki ,

lkj ≤ xkj ≤ ukj ,
Xk
ij = xki x

k
j }.

Considering (7), we can add the valid inequalities (6) and the box constraints (5) to (4) to
obtain a stronger relaxation of (3). We will refer to this relaxation as (SDP+RLT).

2.3. Secant valid inequalities
Applying the ideas in [Saxena et al., 2010], we now intend to develop a convex relaxation

of the nonconvex constraint
Xk − xkxkt � 0, (8)

to better approximate the identity Xk = xkxk
t, for each k = 1, . . . , r.

The constraint (8) could equivalently be modeled by the infinite number of inequalities
ck
t
(Xk − xkxkt)ck ≤ 0, or

(ck
t
xk)2 ≥ (ckck

t
) •Xk, (9)
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for all ck ∈ Rn, where “ • ” is the usual inner product of matrices: A • B :=
∑

i,j AijBij =

Tr(AtB). The nonconvex inequality (9) is therefore a valid inequality for the SDP relaxation (4),
for any choice of the vector ck. It should not be added to (4), though, otherwise we would lose the
convexity of our relaxation. [Saxena et al., 2010] point out that it is possible to convexify (9) by
replacing the concave quadratic function −(ck

t
xk)2 with its secant in an interval [ηL(ck), ηU (ck)].

The convex relaxation of (9) is then given by the linear secant inequality

(ck
t
xk)(ηL(ck) + ηU (ck))− ηL(ck)ηU (ck) ≥ (ckck

t
) •Xk. (10)

The interval [ηL(ck), ηU (ck)] represents the range of the linear function cktxk in the fea-
sible set of (4), and can be computed by solving the two optimization problem, where we minimize
and maximize cktxk, subject to the constraints in (4).

Finally, [Saxena et al., 2010] also note that if X̄k and x̄k are obtained from the solution of
the relaxation (4), and X̄k 6= (x̄k)(x̄k)t , then X̄k − (x̄k)(x̄k)t has at least one positive eigenvalue.
Furthermore, if the vector ck is chosen as the unit-length eigenvector corresponding to any positive
eigenvalue of this matrix, then the constraint (9) would be violated by the solution of the relaxation.
This observation guides the choice of the vector ck in the inequalities.
2.4. Disjunctive programming over the SDP relaxation

Other valid inequalities to (4) can be obtained with SDP disjunctive cuts, which were
proposed in [Lee and Rendl, 2008] and are based on the polyhedral disjunctive cuts introduced in
[Saxena et al., 2010]. The idea is to divide the interval [ηL(ck), ηU (ck)] into ν intervals [ηδ,k, ηδ+1,k],
for δ = 1, . . . , ν, such that ηL(ck) := η1,k < η2,k < . . . < ην,k < ην+1,k := ηU (ck).

For each interval, we have the secant inequality

(ck
t
xk)(ηδ,k + ηδ+1,k)− ηδ,kηδ+1,k ≥ (ckck

t
) •Xk, (11)

which is valid for cktxk ∈ [ηδ,k, ηδ+1,k].
Let

Eii :=



i

i 1

, Eij(i6=j) :=



i j

i 1
2

j 1
2

 ∈ Rn×n,

Eii+ :=



i + 1

i + 1 1

, Eij+(i6=j) :=



i + 1 j + 1

i + 1 1
2

j + 1 1
2

 ∈ R(n+1)×(n+1),

Ē+ :=

( 1

1 1
)

∈ R(n+1)×(n+1), Ēi+ :=

(
0 1

2
eti

1
2
ei 0

)
∈ R(n+1)×(n+1).

Problem (4) can then be recast as:

minS,Z,B1,...,Br,X1,...,Xr ((eet) • Z)
subject to
Eij • S +

∑r
k=1E

ij •Xk = Eij •R, i, j = 1, . . . , n,
Eij • S + Eij • Z ≥ 0, i, j = 1, . . . , n,
−Eij • S + Eij • Z ≥ 0, i, j = 1, . . . , n,
Eij+ •Bk − Eij •Xk = 0, i, j = 1, . . . , n, k = 1, . . . , r,
Ē+ •Bk = 1, k = 1, . . . , r,
Ē+

1 •Bk ≥ 0, k = 1, . . . , r,
S,Bk � 0, k = 1, . . . , r,

(12)
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where

Bk :=

(
1 xk

t

xk Xk

)
.

Note that for brevity, the constraints S ∈ S and L ∈ L, and also the valid inequalities
developed in Subsections 2.2 and 2.3, are omitted in this subsection. However they can be included
in (12), to lead to stronger SDP disjunctive cuts.

For each δ = 1, . . . , ν, the secant inequalities

ηδ,k ≤ ck
t
xk ≤ ηδ+1,k

(ck
t
xk)(ηδ,k + ηδ+1,k)− ηδ,kηδ+1,k ≥ (ckck

t
) •Xk

(13)

can also be recast as
−C̃k •Bk ≥ −ηδ+1,k,

C̃k •Bk ≥ ηδ,k,
−D̃δ,k •Bk ≥ ηδ,kηδ+1,k,

(14)

where

C̃k :=

(
0 1

2c
kt

1
2c
k 0

)
∈ R(n+1)×(n+1),

and

D̃δ,k :=

(
0 0t

0 ckck
t

)
− (ηδ,k + ηδ+1,k)C̃

k ∈ R(n+1)×(n+1).

We define

Rδ,k :=

(S,Z,B1, . . . , Br, X1, . . . , Xr) :

−C̃k •Bk ≥ −ηδ+1,k

C̃k •Bk ≥ ηδ,k
−D̃δ,k •Bk ≥ ηδ,kηδ+1,k

 , (15)

for all δ = 1, . . . , ν and k = 1, . . . , r.
Our goal is to construct, for each k = 1, . . . , r, a linear inequality of the form

Γk1 • S + Γk3 • Z +
r∑
l=1

(Γk4,l •Bl + Γk5,l •Xl) ≥ βk (16)

that is valid for
Rk := convcl (∪νδ=1(F ∩Rδ,k)) ,

where F is the feasible set of problem (12) and convcl(t) denotes the convex closure of t.
In order to construct the valid inequality, we consider

zδ,k := min Γk1 • S + Γk3 • Z +
∑r

l=1(Γ
k
4,l •Bl + Γk5,l •Xl)

subject to (S,Z,B1, . . . , Br, X1, . . . , Xr) ∈ F ∩Rδ,k
(17)

and choose βk such that zδ,k ≥ βk, for all δ = 1, . . . , ν.
It is straightforward to verify that Slater’s condition holds for problem (17). So, by strong

duality, we have

zδ,k := max R • Y +

r∑
l=1

gl − ηδ+1,krδk + ηδ,ksδk + ηδkηδ+1,ktδk (18)
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subject to
Y +W − V � Γk1,
W + V = Γk3,(

gl
1
2hle

t
1

1
2hle1 U l

)
� Γk4,l, l = 1, . . . , r, l 6= k(

gk
1
2hke

t
1

1
2hke1 Uk

)
− C̃rδk + C̃sδk − D̃δ,ktδk � Γk4,k,

Y − U l � Γk5,l, l = 1, . . . , r,

W, V ≥ 0,
hl ≥ 0, l = 1, . . . , r,
rδk, sδk, tδk ≥ 0,

(19)

where Y,W, V, U l ∈ Rn×n and hl, rδk, sδk, tδk ∈ R+, for all l = 1, . . . , r, are the dual variables
for problem (17).

Finally, searching for a valid inequality that is violated by a given solution

(Ŝ, Ẑ, B̂1, . . . , B̂r, X̂1, . . . , X̂r),

we set Γk1 , Γk3 , Γk4,1, . . . ,Γ
k
4,r, Γk5,1, . . . ,Γ

k
5,r, and βk by solving the following problem:

∆k := min Γk1 • Ŝ + Γk3 • Ẑ +
∑r

l=1(Γ
k
4,l • B̂l + Γk5,l • X̂l)− βk

subject to

R • Y +
r∑
l=1

gl − ηδ+1,krδk + ηδ,ksδk + ηδ,kηδ+1,ktδk ≥ βk, δ = 1, . . . , ν,

(19),∑
i

∑
j |Γk1 ij | ≤ 1,

∑
i

∑
j |Γk2 ij | ≤ 1,∑

i

∑
j |Γk4,lij | ≤ 1,

∑
i

∑
j |Γk5,lij | ≤ 1, l = 1, . . . , r.

(20)

If ∆k < 0, the valid inequality (16) obtained from the solution of problem (20) is violated
by (Ŝ, Ẑ, B̂1, . . . , B̂r, X̂1, . . . , X̂r). The last constraints in the formulation, included below (19),
are normalization constraints, which are added to bound the objective function of the problem from
below.
2.5. Our framework to generate the lower bounds

We apply the secant valid inequalities described in Subsection 2.3 and the valid inequal-
ities based on disjunctive programming, described in Subsection 2.4, to iteratively strengthen the
relaxation (SDP+RLT). We applied the ideas described in Subsections 2.3 and 2.4, always consid-
ering the relaxation (SDP+RLT) as the baseline, and not the relaxation (4). As already mentioned,
this can make the cuts generated stronger. Our framework is described in Algorithm 1.
3. A heuristic procedure

In this section we propose a heuristic procedure to construct a feasible solution to the
general problem (1), based on the matrices X̂1, . . . , X̂r, obtained by Algorithm 1. Considering the
matrix L̂ :=

∑r
k=1 X̂

k, let λ̂1, . . . , λ̂n be the eigenvalues of L̂ such that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n, and
v̂1, . . . , v̂n be the corresponding unit eigenvectors. The heuristic consists of solving the following
SDP problem for a given parameter rheur ≤ n, where the eigenvectors of L are fixed as the rheur
eigenvectors of L̂ associated to its rheur largest eigenvalues, and the eigenvalues of L are optimized.

minS,Z,γ1,...,γrheur
1
αe

tZe

subject to
−Z ≤ S ≤ Z, S +

∑rheur
k=1 γk(v̂k)(v̂k)t = R, S � 0.

γk ≥ 0, k = 1, . . . , rheur,
S ∈ S,

∑rheur
k=1 γk(v̂k)(v̂k)t ∈ L.

(21)

Note that the solution of problem (21) corresponds to a feasible solution to problem (1),
where the low-rank factor L has its rank fixed at rheur.
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Input: NumIter,MaxCuts, ν
Output: lb
Let Ŝ, Ẑ, X̂1, . . . , X̂r, x̂1, . . . , x̂r be the solution of (SDP+RLT) with optimal1

solution value lb ;
Define (Relaxation) as problem (SDP+RLT) ;2

for iter = 1, . . . , NumIter do3

for k = 1, . . . , r do4

Let λk,1, . . . , λk,n be the eigenvalues of X̂k − (x̂k)(x̂k)t such that5

λk,1 ≥ λk,2 ≥ . . . ≥ λk,n, and ck,1, . . . , ck,n be the corresponding
eigenvectors ;
Let num.pos be the number of positive eigenvalues of X̂k − (x̂k)(x̂k)t ;6

Let MaxCuts := min{num.pos,MaxCuts} ;7

for i = 1, . . . ,MaxCuts do8

ck := ck,i ;9

Compute ηL(ck) and ηU (ck) ;10

Generate the ith linear secant inequality (10) corresponding to k ;11

Let η1,k := ηL(ck) ;12

for δ = 1 : (ν − 1) do13

ηδ+1,k = ηδ,k + (ηU (ck)− ηL(ck))/ν ;14

Solve problem (20) to generate the ith SDP disjunctive cut (16)15

corresponding to k ;

Include the r ×MaxCuts cuts in problem (Relaxation) ;16

Let Ŝ, Ẑ, X̂1, . . . , X̂r, x̂1, . . . , x̂r be the solution of problem (Relaxation) with17

optimal solution value lb ;

Algorithm 1: Computing a lower bound for problem (3)

4. Numerical experiments

Considering randomly generated matrices R, we apply the framework presented as Algo-
rithm 1 to obtain lower bounds to problem (3). We then solve problem (21) to obtain upper bounds
to the more general problem (1).

The input n× n symmetric positive definite matrices R for the test problems were gener-
ated in the following way. We first randomly generate a sparse high rank symmetric matrix S̃, with
S̃ii = βi on the diagonal elements, and 1′s on d% of the nondiagonal elements randomly chosen.
The remaining elements are equal to zero. We set βi = 1 +

∑
j 6=i S̃ij . Next, we randomly generate

a dense matrix L̃ with rank equal to rinput, where L̃ := BBt, and B ∈ Rn×rinput . The elements of
B are integers randomly selected in [−5, 5]. We then set R := S̃+ L̃. The reason why we construct
the matrix R as the sum of a sparse matrix S̃ and a low-rank matrix L̃ is to directly obtain good
feasible solutions for problem (1). These are the best solutions known for our test problems, and
they are used to evaluate the solutions produced by the heuristic.

We have set n = 25, rinput = 1, 5, 12, d = 13.33, and generated 3 instances for each
value of rinput. To obtain d = 13, 33 on the 25 × 25 symmetric matrix S̃, we randomly chose 40
out of the 300 elements below the diagonal to be fixed at 1 (40/300=13.33%).

The experiments were conducted on a 3.40 GHz Intel Core i7-3770 CPU, with 8 GB
RAM, running under Windows 7. The Matlab software for convex optimization CVX [Grant and
Boyd, 2014] was used to solve all optimization problems pointed in Algorithm 1 as well as problem
(21). The optimization problems to generate the disjunctive cuts took up to 180 seconds to be
solved. The relaxations took up to 20 seconds to be solved.
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In Algorithm 1, we have set MaxIter = 10, MaxCuts = 3, and ν = 4. In our
preliminary numerical experiments, we have only considered r = 1 in problem (4). We note that
the optimal solution value of relaxation (SDP+RLT) is equal to zero, for all instances considered.
In the optimal solution of this initial relaxation, we always have S = 0 and L = R.

Concerning the application of Algorithm 1, we verified from the numerical results that
while the bounds obtained with the baseline relaxation (SDP+RLT) were equal to zero for all test
problems, the average lower bounds obtained by the algorithm for rinput = 1, 5, 12 were respec-
tively, 19.78, 391.6, and 313.4, showing the ability of the cuts added by the algorithm to effectively
increase the lower bounds.

Concerning the application of the heuristic procedure, to evaluate the quality of the so-
lutions obtained, we measured how close the eigenvalues and eigenvectors of the low-rank factor
computed by the heuristic, which we denote by Lh, are to the eigenvalues and eigenvectors of the
input matrix L̃. Two measures were considered:

dif.li := |(λ̃i − λhi )/λ̃i| × 100% ,

dif.vi := ‖ṽi − vhi ‖ ,

for i = 1, . . . , n, where λ̃i and ṽi are respectively, the ith eigenvalue and corresponding eigenvector
of L̃, and λhi and vhi are the ith eigenvalue and corresponding eigenvector ofLh. From our numerical
results, we verify that, for rinput = 1, 5, 12, the average values of dif.li are respectively, 0.22%,
3.18%, and 1.98%, and the average values of dif.vi are respectively, 0.01, 0.59, and 0.52. The
results indicate that the heuristic can construct feasible solutions very similar to the input matrices,
for our test problems.

5. Concluding remarks
We address a version of the rank-sparsity decomposition problem, where the objective is

to decompose a given symmetric positive definite matrix as a sum of a sparse matrix and a low-rank
matrix, both positive semidefinite. With the goal of globally solving this nonconvex problem by a
branch-and-bound algorithm (as discussed in [Lee and Zou, 2014]), we propose a relaxation for its
simplified version, where the rank of the low-rank factor in the decomposition is fixed. We finally
present a heuristic procedure that constructs a feasible solution for the original problem, taking the
solution of the relaxation as a starting point.

The test problems considered in our numerical experiments were randomly generated.
The input matrix R is given by the sum of a sparse matrix S̃ and a low-rank matrix L̃, suggesting
that they are a good solution for the general rank-sparsity decomposition problem. These are in fact
the best solutions known for these random instances of the problem.

Lower bounds for the simplified version of the rank-sparsity decomposition problem
where the low-rank matrix has rank equal to r, were obtained by an iterative algorithm (Algorithm
1), where an initial SDP relaxation of the problem, strengthened by RLT inequalities, is further
strengthened by the iterative addition of linear secant inequalities and SDP disjunctive cuts, as it
was first proposed by [Saxena et al., 2010] and further extended to the SDP disjunctive cuts by [Lee
and Rendl, 2008].

Preliminary results for r = 1 show that the lower bounds obtained by Algorithm 1 were
significant better than the zero bound always given by the initial relaxation (SDP+RLT), showing
the effectiveness of the valid cuts given by both secant inequalities and SDP disjunctive cuts.

It was observed on our numerical experiments, that the solutions Ŝ and L̂ :=
∑r

k=1 X̂
k

obtained with Algorithm 1 were very similar to the randomly generated matrices S̃ and L̃, for all
values of rinput. The rinput largest eigenvalues of L̂ were always separated from the others, being
much larger than the others and very close to the rinput positive eigenvalues of L̃. The similarity
between L̂ and L̃ was observed not only with respect to the eigenvalues, but also with respect to
the eigenvectors. This fact motivated the development of a heuristic for the general rank-sparsity
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decomposition problem, where the solution matrices of the relaxation were used. The feasible
solution Lh constructed by the heuristic, has rheur eigenvectors given by the eigenvectors of L̂
corresponding to its rheur largest eigenvalues. The eigenvalues of Lh are then optimized, i.e., are
chosen in order to minimize the sparsity of the complementary matrix R − Lh. We chose the
parameter rheur as the number of eigenvalues of L̂ that were separated from the others, and with
this choice we could construct solutions very similar to the input matrices S̃ and L̃.
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