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ABSTRACT 

This paper presents contributions to the development and generalization of the 

Markowitz`s Portfolio Optimization Model [Markowitz 1952, 1956, 1959, 1991]. First, we define 

a new measure of risk considering all cross interrelationships between returns in addition to 

deviations above and below a reference target. This measure allows us to select Portfolios with 

higher returns compared to Markowitz`s Portfolio and others that consider only those partial 

moment deviations. Second, we use simulations by resampling the Portfolio Assets in order to 

consider the optimal distribution frequency. This allows to evaluate uncertainties inherent to 

Portfolio selection and the Optimal Resampled Frontier which provide assess to the Modal 

Optimum, giving a probability measure to the occurrence of the selected optimal. To solve the 

optimization the new measure of risk use a convex nonlinear optimization model (NLP), with 

lower computational consumption than non-smooth optimization models (NSP) needed for risk 

measures that consider partial moments. 
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1. Efficient Frontier Model 

1.1. E-V Efficient Portfolio Model (Markowitz, 1952) 

 

 The mathematical formulation of the E-V Efficient Portfolio [Markowitz 1952, 1956, 

1976, 1991] model considers three basic premises: i) uncovered sales are not allowed; ii) the sum 

of the fractions to invest equals the capital available for investment; and iii) the Assets are 

correlated but not perfectly correlated, implying that diversification can reduce but not eliminate 

risk. 

Based on these assumptions, the E-V Efficient Portfolio [Markowitz 1952, 1956, 1976, 

1991] model seeks to find the Efficient Portfolio that offers lowest risk for each level of pre-

defined Minimum Acceptable Expected Returns (MAR). Risk is measured as the variance of the 

returns of the Portfolio of Assets. The set of Efficient Portfolios for different levels of returns 

constitutes the Efficient Frontier (EF), which limits the feasible Portfolios. 

Each investor should make the selection of a Portfolio from criteria that depend on the 

nature of the investor, since the best Portfolio for each investor depends on his own tolerance for 

risk [Markowitz 1952, 1956, 1976, 1991], this is because Portfolios with highs expected returns 

are not necessarily those with the lowest uncertainty of return. 

 

1.2. The Mean-separated Target Deviations (MSTD) model 

 

 The Mean-separated Target Deviations (MSTD) model [Kang et al. 1996], unlike the E-

V Efficient Portfolios [Markowitz 1952, 1956, 1976, 1991] model, considers the risk as a joint 

measure of deviation below (BTD) and above (ATD) a certain target, by using the concept of 

non-central semi-moment or deviation around a target.  

 The MSTD risk measure is a generalization of measures that used the concept of Low 

Partial Moment (LPM) for risk, and the return as a function of Upper Partial Moment (UPM) 

[Holthausen 1981]. In particular, the MSTD model can be reduced to the semi-variance above 

and below a target, the risk measure proposed as in [Fishburn 1977], to the risk measure as in 

[Markowitz 1952, 1956, 1976, 1991], and to the risk measure as in [Bawa 1975]. 

 However, the semi-moment of order 2 for a target does not assume a quadratic form, 

which prevents construction of the Portfolio semi-moment from the n semi-moments and 

covariate semi-moments of order 2. In general, for different orders degrees, one does not have a 

literal form that allows simplifying the computational complexity of a discontinuous and 

nonlinear algorithm for solving semi-moment models. This means that we have to use empirical 

data to solve the optimization model algorithm, without a literal form expression, which makes 

the optimization algorithm a non-smooth optimization model (NSP) with a complex solution and 

high computational consumption and which only provides a single viable solution or a local 

optimum.  

 

1.3. Statistic Efficient Risk Measure  

 

 Define M as the matrix of the integral of squared deviations and cross deviations of 

Portfolio returns to a target t: 

 

                                      (1) 

 

where t is the target, or MAR, and fij represents the joint density probability function of the 

Assets i and j. Assuming i = j in (1), we obtain:  
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Proposition 1: The matrix M can be decomposed into the sum of 2n2 -2n +2 matrices, denoted by 

,  and  , , , ,with 1 ≤ i ≤ j ≤ n, based on the returns of Assets and 

on the target t, such that: 

 

  , and     ; 

  , and     ; 

  , and 0 for 

the others entries; 

  , and 0 for 

the others entries; 

  , and 0 for 

the others entries; 

  , and 0 

for the others entries. 

 
 The properties of matrices and the split of integrals easily perform the deduction of this 

result. The empirical formulas analogous to these matrices are respectively:  

 

 , and 0 for the others entries; 

 , and 0 for the others entries;  

 , and 0 for the others entries; 

 , and 0 for the others entries; 

 , and 0 for the others entries; 

 , and 0 for the others entries. 

 
 We construct the proposed risk measure, referred to as Statistic Efficient (SE) risk 

measure, based on the matrix M. Since M, in addition to taking into account the deviations above 

and below the target t, considers all interrelationships between these deviations, SE also allows 

the solution of the optimization model through a literal form based on the returns of the Assets 

and the target t.  

 Proposition 2: The squared deviation from the return  on a Portfolio of Assets , , 

...,  in relation to a minimum return t can be written as a function of squared deviations and 

cross squared deviations of the returns of each Asset  

 Proof: Indeed, 
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                               =                      

                               =            

                               =                                                                        

Definition: The measure of Statistic Efficient risk, denoted by SE, can be defined as: 

 

SE =       (2) 

 
 We can extend the sum of squared deviations and cross-squared deviations of returns 

from the target t to any order degree without loss of the properties displayed. One of the 

advantages of SE is that it provides a high dimensional space in the search region formed by the 

optimization problem and solved by using a convex nonlinear algorithm (NLP). In the following 

sections, we also use simulations to estimate the SE risk measure by using a convex nonlinear 

optimization algorithm (NLP) that, even though containing a higher number of parameters, 

requires much less computational consumption compared to non-smooth optimization algorithm 

(NSP) models. 

 The E-V Efficient Portfolios [Markowitz 1952, 1956, 1976, 1991] model and its risk 

metrics evolution as MSTD [Kang et al. 1996] model, by not taking into account the frequency 

distribution of the optimization results, do not allow calculating how frequently the optimal 

Portfolio occurs, so it is not possible to know how often the optimal Portfolio will be (was) 

optimal in future (past) periods. Among other reasons, due to the uncertainties in the estimates of 

position and dispersion measures of Assets, the Portfolio calculated by the E-V Efficient 

Portfolios [Markowitz 1952, 1956, 1976, 1991] model fails to attain the optimal parameters 

[Jobson and Korkie 1976]. In addition, because Portfolio optimization models are based on the 

mean, variance and correlation between Asset returns, persons often mistakenly assume normal 

distributions for the respective returns. The assumption of normality, however, is not a 

convenient assumption, the distributions of Assets returns are generally asymmetric and 

leptokurtic [Kang et al. 1996]. 

 We did not find in the literature a Portfolio selection model that considers the frequency 

of occurrences as the model starting point and that considers as result the analysis of the 

frequency distribution of the optimal results, instead of statistical position and deviation 

measures. We note here that the Resampled Efficient Frontiers [Michaud et al. 1998, 2003, 2013] 

model result is an average of resampled E-V Efficient Portfolios [Markowitz 1952, 1956, 1976, 

1991] models, in other words, a statistical position measure. We can show through simulations 

that the consideration of the distribution frequencies of Ex-Ante and Ex-Post evaluation of the 

optimal parameters can provide the frequency of occurrence of the optimal Portfolio. 

 

2. Design of Simulations 

 

 We consider the Modal Optimum from the frequency of occurrence of all the optimums 

selected for a group from a cluster analysis. In this case, we calculate the frequency of occurrence 

of an optimum by means of simulation where for each iteration we carried out an optimization. 

We consider the window of observations of Assets to be a unit window, where the expected 

return of the Portfolio is given by the return at each iteration. Thus, it is possible at each iteration 

to evaluate the optimal parameters, such as the percentage of capital invested in each Asset. We 

call the Portfolio return calculation with window for one period a naive Portfolio, since implicitly 

we assume that the current return is the best forecast for the average returns of the Assets. This 

hypothesis is similar to the assumption made for building the U-Theil statistic by [Fildes 1992], 

exhibited initially by [Theil 1967]. 

 By performing the simulation, which considers all possible combinations of Assets and 

calculates from each iteration all possible optimal values, we obtain the frequency distributions of 

the optimal parameters. From the method of clusters, we define the centroid of the group with 

3191



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

  

highest frequency of optimal results as the representative of the Modal Optimum location and the 

frequency of optimums in that group as the Modal Optimum frequency. Thus, the percentage 

invested in each Asset, the Asset return and the Asset risk are evaluated from the centroid of the 

group with highest frequency, which we defined as the Modal Optimum. We define the method 

to obtain the Modal Optimum as the Distribution Efficient Method (DEM). Thus, we obtain the 

Portfolio defined as Statistic and Distribution Efficient (SDE) from applying the Statistic 

Efficient (SE) risk measure on the Distribution Efficient Method, which defines the Modal 

Optimum. 

 We define the calculated optimal number of groups used in the cluster method by the V-

Fold Cross Validation method [Burman 1989]. In the process of exhibiting the results obtained by 

the SDE Portfolios, we use the optimal investment fraction defined by the DEM together with the 

holdout method. We use a data window for training, another data window for testing, and both 

for analyzing the performance of the SDE Portfolios. Specifically, we measure the SDE Portfolio 

performance, generated from the simulation, optimization and cluster analysis, by the Ex-Post 

and Ex-Ante analysis, applied to the data used to generate the Portfolio and to the holdout data, 

respectively. We will compare the results obtained by the SDE Portfolio model to the results 

obtained from the E-V Efficient Portfolio [Markowitz 1952, 1956, 1976, 1991] model and from 

the MSTD Portfolio [Kang et al. 1996] model, with all them using the DEM to obtain the Modal 

Optimum. 

 

3. Results 

3.1. Metrics for Portfolio Efficiency 

 

 For a wider comparison among the SE Portfolio, the SDE Portfolio, the E-V Efficient 

Portfolio [Markowitz 1952, 1956, 1976, 1991] and the MSTD Portfolio [Kang et al. 1996], we 

introduce here additional criteria for Portfolio Efficiency in supplement to Markowitz’s 

[Markowitz 1952, 1956, 1976, 1991] efficiency criterion definition: 

 Computational Efficiency – The more complex the model is, the more slowly the 

computational algorithm solves the model. Fast algorithms or models that are solved for less 

complex algorithms are more computationally efficient. 

 Solution Efficiency – A model that presents a global optimal solution is more efficient 

than a model that presents a local optimal solution, which in turn is more efficient than a model 

that presents only a feasible solution. In general, Computational and Solution Efficiency should 

come together. 

 Diversification Efficiency – Diversification can reduce but not eliminate the risk, and 

Portfolios with high expected returns are not necessarily those with the lowest uncertainty of 

return. Some models lose diversification as a way to get higher returns. To balance the 

comparison of different models, we will define an Index of Diversification (ID). 

 ID = 1 -   , where     is the fraction of capital invested in Asset    and for the 

coherence of the index, when    < 0.05 that    is not considered in the formula. Thus, ID 

can always be calculated. Higher the ID better the Diversification Efficiency. 

 Standard Risk Efficiency – Different Portfolio models calculate different risk metrics 

and we need to standardize the metrics by dividing the risk for a particular MAR in the Efficienty 

Frontier of a Portfolio by the higher risk achieved by that Portfolio, so as to have a standard 

dimensionless metric to compare models. Usually this higher risk occurs when, in the Efficient 

Frontier, we select a return high enough so that no diversification in the Portfolio occurs. Higher 

the standardized Risk worst the Standard Efficiency. 

 Return Efficiency – We can compare the return of a different Portfolio models in 

different ways. Here we compare the return by: 

 The highest return among models applying the Modal Optimum in a single period; 

 The highest cumulative return, applying the Modal Optimum from each model, 

calculated from a certain past period, to the time evolution of the Assets previously 

considered for holdout in the Ex-Ante analysis of the optimization models; 
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 The best frequency distribution of return in the Ex-Post analysis; 

 The best return for a specified MAR in his related Modal Optimum. 

 For an investment for a single period or long period the investor uses the optimal 

Portfolio, which is the Portfolio of Assets acquired for the next period and reinvested in each new 

period [Markowitz 1976]. 

 Modal Efficiency or efficiency in frequency results. – According to the modal 

efficiency criterion, a model is more efficient if it presents, for the same desired MAR, an 

optimum with higher frequency of occurrence, the Modal Optimum. Therefore, we have that the 

efficiency criterion is determined by the frequency of occurrence of the Modal optimum. For the 

same desired MAR, the Portfolio method assigned to a cluster that has the highest frequency of 

optimums will be the Portfolio method with greatest Modal Efficiency. 

 

3.2. Ex-Post comparison of Portfolios with three Assets of the São Paulo Stock Exchange 

 

 We first compare the SE Portfolio and the SDE Portfolio performance to the performance 

obtained from the E-V Efficient Portfolio [Markowitz 1952, 1956, 1976, 1991] and the MSTD 

Portfolio [Kang et al. 1996] models taking into account three Assets of the São Paulo Stock 

Exchange in Brazil (Bovespa), named PETR4, BBDC4 and GGBR4. This analysis considers a 

history Index window of 100 closing price (returns) of August 1, 2005 (100%) until December 

22, 2005.  

We compared the Portfolios models considering the Efficient Frontier of the E-V 

Efficient [Markowitz 1952, 1956, 1976, 1991] model and setting the MAR by using the  Security 

Market Line (SML) as independently developed on the Capital Asset Pricing Model (CAPM), by 

[Treynor 1961, 1962], [Sharpe 1964], [John Lintner 1965a,b] and [Mossin 1966]. We consider a 

MAR equals 128% for models comparison, in a Efficient Frontier varying from to 100.00% to 

158.20%, that means a risk free Asset of 102.50% in the period of the window of 100 dayly 

returns, which is equivalent to a risk free Asset with a return of 109.00% per year. During the 100 

dayly returns the Selic tax (average adjusted rate of daily financing determined in the Special 

System of Settlement and Custody for federal securities by the Central Bank of Brazil) had an 

annual average of 119.14%. 

 The three Assets statistics are presented in Table 1 below for the Assets Index and for the 

Assets Index made stationary by aplying finite difference of order one: 

 

Table 1 – Three Assets of the São Paulo Stock Exchange 

 
 

 

 

 

 

 

 

 

 

 

 

The three Assets are among the most traded stocks of the Bovespa, usually preferred by 

the managers. Two of them have low risks (standard deviation) in comparison with other traded 

Assets and one has high risks. Table 2, Panels A, B, C and D below presents a performance 

comparison of the SE model, the E-V Markowitz [1952, 1956, 1976, 1991] model and the MSTD 

[Kang et al. 1996] model by the defined efficiency criterions, were in the field Order “1” is the 

best and “3” is the worst performance. 

We will see that, in general, SE and SDE Portfolios outperforms the related models, if we 

consider Computacional, Return, ID, Standard Risk and Modal Efficiency criterions together. As 

Mean Variance Std Deviation Minimum Maximum PETRA4 BBDC4 GGBR4

PETRA4 118.30 76.43 8.74 100.00 133.09 PETRA4 1.00 0.66 0.92

BBDC4 134.99 452.47 21.27 100.00 182.27 BBDC4 0.66 1.00 0.62

GGBR4 127.90 175.77 13.26 100.00 158.20 GGBR4 0.92 0.62 1.00

Mean Variance Std Deviation Minimum Maximum PETRA4 BBDC4 GGBR4

PETRA4 0.33 5.93 2.44 -6.65 6.07 PETRA4 1.00 0.38 0.41

BBDC4 0.72 8.98 3.00 -7.61 7.19 BBDC4 0.38 1.00 0.45

GGBR4 0.59 7.59 2.75 -5.89 8.27 GGBR4 0.41 0.45 1.00

Descriptive Statistics % Spearman Correlation

Index

Index Made Stationary

Index

Index Made Stationary

3193



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

  

we see below the MSTD [Kang et al. 1996] model have the worst Computacional Efficiency and 

less Return, ID and Standard Risk Efficiency than the SE Model. 

 Moreover, below we analyze the Ex-Post models frequency distribution using the Modal 

Optimum by aplying the DEM method to the models. The distribution of the three Bovespa 

Assets are obtained making the series stationary, with the finite difference of order one, and 

calculating the histogram of each series, since these do not fit with goodness to any theoretical 

distribution usually fited for Asset distribution, with asymmetric and leptokurtic returns [Kang et 

al. [1996]. The simulation of the three Bovespa Assets is performed by simulating the histograms 

of each stationary Asset. For models comparison we set the MAR equals 4,0%, by the SML in a 

Efficient Frontier varying from to 0.56% to 6.0%, that means a risk free Asset of 2.50% in 

the period of the window of 100 dayly stacionary returns. 

 

Table 2, Panels A, B, C and D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the Ex-Post analysis, we applied the Modal Optimum fraction to invest in each Asset, 

determined by the compared Portfolio models, to measure the Portfolios returns generated by a 

simulation of 100,000 iterations, which allows the calculation of simulated variables with 

accuracy of 1% with 99% confidence. We re-sampled the historic window of 100 closing returns 

prices of the correlated histograms for the three Bovespa Assets. 

 Always considering the histograms and the correlation of the three Ibovespa series made 

stationary, with the finite difference of order one, the probability of being greater than 2.5% is 

17.0% for the E-V Markowitz [Markowitz 1952, 1956, 1976, 1991] model, 19.1% for the MSTD 

[Kang et al. 1996] model and 18.6% for the SDE model. The E-V Efficienty [Markowitz 1952, 

1956, 1976, 1991] model presents a maximum return of 6.82%, the MSTD [Kang et al. 1996] 

model  presents a maximum return of 7.17%, and the SDE model presents a maximum return of 

7.12%. These comparisons follow in Figure 1.  

 

Figure 1 – Ex-Post Comparison of Markowitz, MSTD. and SDE models 

 

 

 

 

 

 

 

 

 

QP 1

NSP 3

NLP 2

3

2

1

2

2

1

Risk
Maximum 

Risk
Order

13.44 21.27 2

9.86 14.14 3

55.13 141.9 1

Panel D: Standard Risk Efficiency

E-V Markowitz

MSTD

SE

Standard 

Risk

63%

70%

39%

E-V Markowitz 128

MSTD 128

SE 129

SE 97%

Panel C: Return Efficiency- SinglePeriod Return Order

Order

E-V Markowitz 0.04%

MSTD 75%

MSTD 120.40

SE 0.88

Panel B: Diversification Efficiency ID

Panel A:  Computacional Efficiency Method Seconds Order

E-V Markowitz 0.11
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 To calculate the Modal Optimum and it frequency we used points on the efficient frontier 

with a MAR ranging from 0.56% to 6.00%. For being more detailed and comprehensive 

regarding the results, we show in Table 3 below the return, the risk and the frequency values of 

the Modal Optimum for each considered models and MAR values. 

We can see that, for a specified MAR, the returns and the frequencies of the Modal 

Optimum of the SDE model most ofen outperforms the results for the Markowitz [Markowitz 

1952, 1956, 1976, 1991] model and for the MSTD [Kang et al. 1996] model. 

 

Table 3 – Modal Optimum Frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figures 2 below present the results of Table 3 above, for each model, in three-

dimensional graphs. The graphs show the Efficient Frontier, risk versus return, with the 

frequency as a third dimension. The third dimension is the frequency of optimal returns 

associated to the centroid of the cluster with highest frequency, for the MAR ranging from 0.56% 

to 6.00%. As seen before, using cluster analysis, we relate the Modal Optimum to the cluster with 

highest frequency. The figure below shows the Ex-Post analysis of the three models analyzed for 

frequency of occurrence of the Modal Optimum, 

 

Figure 2 – Markowitz, MSTD and SDE Frequency for Modal Optimum of Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Regarding the frequency of occurrence of the Modal Optimum, with the MAR ranging 

from 0.56% to 6.00%, we note that the E-V Efficienty [Markowitz 1952, 1956, 1976, 1991] and 

the MSTD [Kang et al. 1996] models show almost exponential decay with increasing restriction 

conditions of the MAR. The SDE model features a decay near the geometric one. Figure 3 below 

presents these patterns. 

MAR Return Markowitz Risk Markowitz Frequency Markowitz Return MSTD Risk MSTD Frequency MSTD Return SDE Risk SDE Frequency SDE

0.56 1.97 2.14 100% 2.09 1.63 100% 2.10 11.30 100%

0.68 2.13 2.14 37% 2.21 1.69 39% 2.45 11.66 59%

0.72 2.52 2.14 26% 2.75 1.71 26% 2.53 11.78 40%

1.00 2.23 2.14 12% 2.40 1.87 19% 2.75 22.08 39%

2.00 2.86 2.14 10% 3.10 2.51 17% 3.01 26.03 35%

3.00 3.62 2.14 9% 3.84 3.25 16% 3.74 32.63 32%

4.00 4.39 2.15 8% 4.56 4.08 14% 4.54 40.63 26%

5.00 5.00 2.52 6% 5.45 4.95 15% 5.28 49.33 3%

6.00 6.00 2.87 0% 6.00 6.03 0% 6.00 59.95 0%

Efficienty Frontier MAR and Portfolio Models Returns, Risks and Frequency
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Figure 3 - Decay of Modal Optimum Frequency with Increasing MAR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Ex-Ante comparison of Portfolios with usual procedures for Portfolio Assets of the São 

Paulo Stock Exchange 

 

 We compare the SDE Portfolio performance to the returns obtained from the E-V 

Efficient Portfolio [Markowitz 1952, 1956, 1976, 1991] and the MSTD Portfolio [Kang et al. 

1996] models considering a Portfolio with Assets of the Bovespa, select by usual investor 

procedures. 

 This analysis considers a history window of 100 closing price (returns) of August 1, 2005 

until December 22, 2005 to calculate the Modal Optimum Portfolios and another sequential 

window of 395 returns, for holdouts, to be used on the Ex-Ante analysis, of December 23, 2005 

until July 31, 2007. 

 The Portfolio selection chose Assets from the Ibovespa (a theoretical Portfolio of Assets 

prepared in accordance with the criteria set out in a method of the Bovespa). The objective of the 

Ibovespa is to be the indicator of the average performance of the prices of most traded and 

representative Assets in the Brazilian stock market. The final Ex-Ante results also present a 

comparison with the Ibovespa Portfolio. The selected Assets are among the most traded Assets of 

the Bovespa, usually preferred by managers. We chose Assets with high liquidity and high 

weight in the theoretical Portfolio of the Ibovespa. We also chose Assets that will account for 

nearly 50% of the Ibovespa. 

  This analisys considers two windows, one with 100 returns for modeling the Portfolio, 

and another with 395 holdouts used in the Ex-Ante analysis. The range of the study comprises a 

high volatility (risk) market with two stress moments. The select Assets are PETR4, VALE5, 

BBDC4, USIM5, ITAU4, GGBR4, TNLP4, CSNA3, UBBR11, ITSA4, CMIG4 and BRKM5. 

After making the series stationary, during the first window of 100 returns used for the Portfolios 

models calculus, we classified the selected Assets by their annual standard deviation as low 

volatility and high volatility Assets, as shown by the standard deviation of Assets, presented in 

Table 4 below. 

 

Table 4 – Assets’ Volatility 

 

 

 

 

 

 

 

 

BRKM5 CMIG4 VALE5 ITAU4 PETR4 ITSA4 CSNA3 GGBR4 UBBR11 BBDC4 USIM5 TNLP4

4.79 4.94 5.00 5.77 5.93 6.00 6.06 7.59 8.47 8.98 9.62 2.14

Standard 

Deviation

Low Standard Deviation High Standard Deviation Not Used
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In addition to the usual restrictions to the Markowitz Portfolio model, we also considered: i) not 

using the Asset TNLP4, which presents problems with minority shareholders; ii) that the 

percentage of an Asset with low volatility should always be less than 35%; and iii) that the 

percentage of an Asset with high volatility should always be less than 25%. 

 For evaluate the Modal Optimum we generated a simulation of 100,000 iterations, which 

allows the calculation of simulated variables with accuracy of 1% with 99% confidence. We 

resampled the historic distribution of the window of 100 closing prices of the correlated Asset 

returns for the select Assets from the Bovespa. The distribution of the eleven Bovespa Assets is 

obtained making the series stationary and calculating the histogram of each series, the simulation 

of the eleven Bovespa Assets is performed by simulating the histograms of each Asset. For 

models comparison we set the MAR equals 3,0%, by the SML in a Efficient Frontier varying 

from to 0.33% to 6.0%, that means a risk free Asset of 2.50% in the period of the window 

of 100 dayly stacionary returns. 

 In the Ex-Ante analysis we applied the Modal Optimum fraction to invest in each Asset, 

determined by the compared Portfolio models and evaluated using the first window of 100 

returns, to the second window of 395 holdouts returns. The investor uses the Modal Optimum 

Portfolio obtained by the DEM method, which will be the Portfolio of Assets acquired for the 

next period and reinvested in each new period. 

  Making the beginning of the holdout period equals 100%, Figure 4 below shows the 

results for applying the Modal Optimum of each model to the second window of 395 holdouts 

returns, the graph also include the Ibovespa holdout returns.  

 

Figure 4 – Ex-Ante Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 below shows the index Return results for the E-V Efficient Portfolio [Markowitz 1952, 

1956, 1976, 1991], the MSTD Portfolio [Kang et al. 1996], the SDE models and for the Ibovespa 

at the end of the 395 holdout window, making the beginning of the holdout period equals 100%. 

 

Table 5 – Results at the End of the Holdout Window 

 

 

 

 

 

Ibovespa Markowitz MSTD SDE

162.56% 145.91% 187.34% 221.79%
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4. Conclusion 

 

 The evolution of the E-V Efficient Portfolio [Markowitz 1952, 1956, 1976, 1991] for 

models based on risk measures that use partial moments, downside risk, upside risk [Bawa 1975] 

and [Fishburn 1977], LPM [Holthausen 1981], BTD and ATD [Kang et al. 1996] does not 

provide a solution to the optimization problem with a literal expression, but transforms the 

optimization algorithms into a non-smooth optimization model (NSP). These kinds of models 

have a complex solution with high computational consumption and provide only a single viable 

solution or a local optimum. 

 We presented a new measure of risk that considers all cross interrelationships between 

returns in addition to deviations above and below a reference target. Our measure provides a high 

dimensional space in the search region formed by the optimization problem and solved by the 

optimization algorithm. This allows us to obtain solutions with higher returns compared to the E-

V Efficient Portfolio [Markowitz 1952, 1956, 1976, 1991] model and models as MSTD [Kang et 

al. 1996] that consider only ATD and BTD deviations. We also have as solution of the 

optimization problem a convex and nonlinear optimization model (NLP) that presents lower 

computational consumption compared to non-smooth optimization model (NSP). 

 Moreover, we used simulations that add to the usual optimization procedures by 

resampling the Portfolio in order to consider the returns distributions in addition to the position 

and dispersion measurements commonly used. This procedure allowed us to evaluate 

uncertainties inherent to the process of Portfolio selection and access the Modal Optimum, giving 

a probability measure to the occurrence of the selected optimal. In general, our paper makes 

contributions to the development and generalization of the Portfolio Optimization Models and 

sheds some light on the use of Modal Optimums in optimization analyses. 
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