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ABSTRACT
In statistical models for repairable systems, the effect of repairs after failures may be

assumed as minimal or imperfect. However, no test is available to decide, based on data, which
of these assumptions is true for a system. In this paper, it is proposed a general statistical test
procedure in order to test the basic hypothesis minimal vs imperfect repair. Two tests are presented,
which are based on the binomial and multinomial distributions. Empirical studies for the tests are
presented, and shows that, under many scenarios, it has a good performance in terms of the type I
and II error rates. An application with real data involving failures in trucks from a mining company
is also presented.
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1. Introduction
In the statistical modeling of data from repairable systems, the most explored assumptions

are Minimal Repair (MR), which returns the system to the condition just before the failure, and
Perfect Repair (PR), which leaves the system as if it were new. Nevertheless, a more realistic
assumption for many systems is the Imperfect Repair (IR), meaning that the system returns to an
intermediate state between MR and PR. Models based on such assumption have been studied by
several authors, among them [Kijima et al., 1988], [Shin et al., 1996], [Pan e Rigdon, 2009],
[Corset et al., 2012], and [Gilardoni et al., 2016].

In the IR context, [Toledo et al., 2015] analyzed a data set of maintenance times in a
sample of five dump trucks owned by a Brazilian mining company. Figures 1 and 2 illustrate this
data set.

This data set was analyzed using the ARA and ARI families of imperfect repair models
[Doyen e Gaudoin, 2004] with different orders of memory. In addition, the authors proposed a
goodness-of-fit plot and other procedures to select the best model and, based on it, computed relia-
bility predictors for the trucks.

Nevertheless, in the context of model selection, it would be interesting to develop a ge-
neral statistical test procedure in order to allow practitioners to answer, first of all, a very basic
question: are we under a MR or an IR situation? In other words, before moving to a model se-
lection it would be useful to test the basic hypothesis minimal vs imperfect repair. In this paper,
non-parametric tests for this purpose are presented, based on the binomial and multinomial distri-
butions.

The rest of the paper is organized as follows. In Section 2, the notation and some im-
portant definitions of counting processes is presented. The non-parametric tests are described in
Section 3, and the results of empirical studies with these tests are presented in Section 4. Finally,
Section 5 ends the paper with results for the dump trucks data set, and also with some concluding
remarks.

2. Counting Processes and Notation
Assuming that failures in a repairable system are equivalently defined by the counting

processes {N(t)}t≥0, or {Ti}i≥1, where N(t) denotes the number of observed failures up to time
t, Ti corresponds to the time elapsed up to the ith failure, and that a repair action is taken after
each failure, the distribution of such processes is completely determined by the failure intensity (or
simply intensity) function defined by

λ(t) = lim
δt→0

P (N(t+ δt)−N(t) = 1|=t−)

δt
, ∀t ≥ 0 (1)

where =t− is the minimal filtration defined by the history set of all failure times occurred before t.
Under MR assumption, the counting process {N(t)}t≥0 is a Nonhomogeneous Poisson

Process (NHPP), and the failure intensity function (1) does not depend on the past information.
This function is called the rate of occurrence of failures (ROCOF) function, given by

ρ(t) = lim
δt→0

P (N(t+ δt)−N(t) = 1)

δt
. (2)

Consider k identical repairable systems from the same population, where failures occur
independently, and assume the following conditions:

• At each failure, a repair action with negligible length time is performed.

• ni failures are observed in the ith system, i = 1, 2, . . . , k.

• N =
∑k

i=1 ni is the total number of observed failures for the k systems.
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Figura 1: Failure times in days of operation for each truck (horizontal lines are trucks and “x” are failures).

Figura 2: Cumulative number of failures versus days of operation in the trucks data set.

• Let Ti,j (i = 1, 2, . . . , k, j = 1, 2, . . . , ni) be random variables representing the failure times
for the ith system, recorded as the time since the initial start-up of the system (Ti,1 < Ti,2 <
. . . < Ti,ni). Also, let ti,j denote their observed values.

3. Non-Parametric Tests
The main purpose here is to test the following null and alternative hypotheses:

H0: MR (NHPP) vs H1 : No harmful first order repair.

Alternative hypothesis means the following: (1) repair improves the system and (2) just
depend on the previous failure time. In an similar way, it is possible to define:

λ1(t) = lim
δt→0

P (N(t+ δt)−N(t) = 1|tN(t))

δt
, ∀t ≥ 0 (3)

and redefine hypotheses as

H0 : λ1(t) = ρ(t) vs H1 : λ1(t) < ρ(t) for some t ∈ (0, T ].

In this section, non parametric testes are developed for the hypotheses above. First, in
Section 3.1, a naive test statistic is proposed and it will be shown that is binomial distributed under
the null hypothesis. Next, in Section 3.2 is derived a multinomial extension of binomial case.
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Figura 3: Failure times of three systems.

3.1. Exact Binomial Test
In order to give an intuitive idea of the test, let’s consider a situation involving the follow-

up of three systems. Figure 3 shows a time dot plot, where each line corresponds to a system and
each “o” symbol represents a failure time.

Under the MR assumption, each system follows a NHPP and they all start at the same time
as new with an increasing ρ(t) in t. Consequently, due to the independent increments assumption,
after the occurrence of a failure (no matter which failure) each system has the same probability of
being the next one to fail.

In order to make this point clear let us observe Figure 3, in particular the vertical line at
t=4 units of time. Under the null hypothesis (MR), it is fair to say that after the occurrence of this
failure, the next one will have the same probability to occur in systems 1, 2 or 3.

However, under the alternative hypothesis (no harmful repair), if a failure occurs in a
given system, the waiting time for the next failure will be longer for this system than for the other
ones. In our example (Figure 3) under H1, since the failure has occurred on system 3, it is expected
that the next failure will have higher probability to occur on systems 1 or 2.

Let rl; l = 1, . . . , N , be the rank of the observed failure times ti,j (i = 1, . . . , k; j =
1, . . . , ni), in the overall sample and define the indicator vector

Zi,l = 1 (Gl = i)

for the systems membership with G = 1, 2, . . . , k. In a non-parametric point of view, each obser-
vation ti,j is now represented by (rl, Zi,l).

Let’s define,

Xl =

{
1, Zi,l = Zi,l−1, for all i = 1, . . . , k

0, otherwise

for l = 2, . . . , N . Note that in the illustration (Figure 3), X2 = X3 = X4 = X6 = X7 = X9 = 0

and X5 = X8 = 1.
The statistics W =

∑N
l=2Xl has a bin(N − 1, π) and under H0, π = 1/k. Consequently,

the null and alternative hypotheses are equivalent to:

H0 : π = 1/k vs H0 : π < 1/k.
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and the p-value = P (T ≤ t|π = 1/k).

3.2. Multinomial Test
It is possible to generalize the binomial test. Instead of just looking at next failure it could

be possible to include as many failures as possible until the process return to the same system.
Let’s define the vector Xl = (Xl,1, . . . , Xl,k)

′.

Xl,1 = 1, if Zi,l = Zi,l−1

Xl,2 = 1, if one diferent system (Zi′,l′′ = Zi,l; i 6= i′)

was visited until reach for the first time to Zi,l = Zi,l′

Xl,k = 1, if k-1 diferent systems were visited until reach for the first time to Zi,l = Zi,l′

for l′ < l′′ < l and l = k − 1, . . . , N . Note that in the illustration (Figure 2),

X3 = (0, 1, 0), X4 = (0, 0, 1), X5 = (1, 0, 0), X6 = (0, 0, 1), X7 = (0, 1, 0), X8 = (1, 0, 0)

and X9 = (0, 0, 1).

Let’s define the vectorW =
∑N

l=k−1Xl. W has a multinomial (N−k+1, π1, π2, . . . , πk)
and under H0, π1 = π2 = . . . = πk = 1/k. Consequently, the null and alternative hypotheses are
equivalent to:

H0 : π1 = π2 = . . . = πk = 1/k. vs H1 : π1 < π2 < . . . < πk.

In the illustration in Figure 3, W = (2, 2, 3).

4. Empirical Studies
In this section we investigate, through simulation studies, the size and power of the pro-

posed tests.
Section 4.1 shows the results of Monte Carlo simulations implemented using as the null

hypothesis a NHPP with an intensity function given by the power law intensity function. In Section
4.2, the power of these tests is evaluated under the alternative hypothesis using the ARA1 (Arith-
metic Reduction of Age of order 1) and ARI1 (Arithmetic Reduction of Intensity of order 1) classes
of models [Doyen e Gaudoin, 2004].

4.1. Descritive size
An extensively explored parametric form under the assumption of NHPP is the Power

Law Process (PLP), with ROCOF function

ρ(t) = (β/η)(t/η)β−1 (4)

and its MCF is given by Λ(t) =
∫ t
0 ρ(u)du = (t/η)β . Here, η is a scale parameter, and β is a shape

parameter. When β > 1, ρ(t) increases in t, indicating that the system is deteriorating.
Small size Monte Carlo Simulations (10000 replicates) were run for some scenarios. Sce-

narios include η = 1, β = 1.5 and 2; T (truncation time)= 5, 10, 15 and k (number of systems)= 5
and 10. Results are presented in Tables 1 and 2, for binomial and multinomial tests, respectively.

In general, descriptive sizes are very closed to the nominal values. In particular, the
descriptive sizes are sligtly smaller than the nominal ones, specially for the binomial test. This is
an indication that the proposed test has a good performance in terms of the type I error rate.
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Tabela 1: Monte Carlo simulation results for the empirical size of the binomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.031 0.068 11
β = 2 0.044 0.086 25

T = 10 β = 1.5 0.039 0.085 31
β = 2 0.046 0.090 100

T = 15 β = 1.5 0.045 0.085 58
β = 2 0.048 0.091 225

k = 10 T = 5 β = 1.5 0.035 0.074 11
β = 2 0.039 0.083 25

T = 10 β = 1.5 0.040 0.082 32
β = 2 0.045 0.087 100

T = 15 β = 1.5 0.044 0.090 58
β = 2 0.046 0.095 225

Tabela 2: Monte Carlo simulation results for the empirical size of the multinomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.049 0.099 10
β = 2 0.051 0.102 24

T = 10 β = 1.5 0.050 0.096 30
β = 2 0.050 0.100 99

T = 15 β = 1.5 0.050 0.099 57
β = 2 0.052 0.098 224

k = 10 T = 5 β = 1.5 0.046 0.095 9
β = 2 0.048 0.100 23

T = 10 β = 1.5 0.046 0.094 30
β = 2 0.046 0.097 98

T = 15 β = 1.5 0.047 0.095 56
β = 2 0.049 0.092 223

4.2. Power
ARA and ARI classes of imperfect repair models were proposed by [Doyen e Gaudoin,

2004]. ARA1 and ARI1 are special models of these classes of models that just depend on the last
failure time. That is, ARA1 is expressed by

λARA1(t) = λR(t− (1− θ)tN(t))

and ARI1

λARI1(t) = (1− θ)λR(tN(t))

where λR(t) is the initial/reference intensity function and θ is the repair efficiency. Power Law
Process (PLP), as described in (4), is taken as λR.

Tables 3 to 6 show the results for binomial and multinomial tests for ARI1 using two
values for θ = 0.1 and 0.5. θ = 0.1 means a better repair, in the sense that almost renew the
system, than θ = 0.5.

Results show a clear vantage of the multinomial over the binomial test. Both of them have
a nice performance for θ = 0.1.

5. Application and Final Remarks
The test proposed in Section 3 was applied to the data set of failures in the dump trucks,

described in Section 1. This real data application gave the following results:
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Tabela 3: Monte Carlo simulation results for the power at ARI (θ = 0.5) of the binomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.047 0.097 9
β = 2 0.070 0.137 14

T = 10 β = 1.5 0.055 0.116 23
β = 2 0.070 0.135 52

T = 15 β = 1.5 0.058 0.110 42
β = 2 0.069 0.132 115

k = 10 T = 5 β = 1.5 0.051 0.106 9
β = 2 0.077 0.147 14

T = 10 β = 1.5 0.057 0.114 23
β = 2 0.072 0.139 52

T = 15 β = 1.5 0.060 0.118 42
β = 2 0.076 0.144 115

Tabela 4: Monte Carlo simulation results for the power at ARI (θ = 0.1) of the binomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.115 0.229 6
β = 2 0.286 0.457 7

T = 10 β = 1.5 0.170 0.280 14
β = 2 0.418 0.575 17

T = 15 β = 1.5 0.188 0.308 23
β = 2 0.413 0.572 33

k = 10 T = 5 β = 1.5 0.151 0.274 6
β = 2 0.389 0.564 7

T = 10 β = 1.5 0.209 0.341 14
β = 2 0.495 0.653 18

T = 15 β = 1.5 0.238 0.361 24
β = 2 0.500 0.653 33

Tabela 5: Monte Carlo simulation results for the power at ARI (θ = 0.5) of the multinomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.078 0.145 8
β = 2 0.111 0.195 13

T = 10 β = 1.5 0.082 0.154 22
β = 2 0.095 0.180 51

T = 15 β = 1.5 0.075 0.149 41
β = 2 0.086 0.159 114

k = 10 T = 5 β = 1.5 0.091 0.168 7
β = 2 0.155 0.258 13

T = 10 β = 1.5 0.090 0.174 21
β = 2 0.131 0.228 51

T = 15 β = 1.5 0.090 0.163 41
β = 2 0.110 0.200 113

• p-value = 0.08544 for the binomial test,

• p-value = 0.07056228 for the multinomial test.
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Tabela 6: Monte Carlo simulation results for the power at ARI (θ = 0.1) of the multinomial test.

Scenario Covarage Λ̂/System
α = 0.05 α = 0.010

k = 5 T = 5 β = 1.5 0.229 0.366 5
β = 2 0.578 0.726 6

T = 10 β = 1.5 0.325 0.469 13
β = 2 0.741 0.855 17

T = 15 β = 1.5 0.344 0.494 23
β = 2 0.755 0.861 32

k = 10 T = 5 β = 1.5 0.391 0.548 5
β = 2 0.899 0.954 5

T = 10 β = 1.5 0.562 0.703 13
β = 2 0.976 0.991 16

T = 15 β = 1.5 0.609 0.748 23
β = 2 0.982 0.994 32

This result is an indication against the hypothesis of minimal repair for this data set. In
fact, the goodness-of-fit plot proposed in [Toledo et al., 2015] also gave evidences that the PLP
model with minimal repair assumption had the worst fit to these data. So, after rejecting the null
hypothesis of MR, the next step would be to focus on the modeling under the IR assumption.

In the statistical analysis of data from reparable systems, a very first question that fre-
quently arises concerns the existence of trend in the times between failures. Specific tests are often
conducted to answer this question, however, they only make sense in situations where the repair
is minimal. The tests proposed in this paper allow to validate this assumption in a preliminary
analysis. This is very important, especially when determining preventive maintenance policies for
industrial equipment.
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