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ABSTRACT
Mixed-model assembly lines often operate cyclically and may have parallel stations to

increase productivity. Simultaneously balancing tasks and sequencing products allows achieving
higher steady-state efficiency (average production rate). A steady-state representation model has
already been described for mixed-model balancing; however, this model does not allow neither
parallel stations nor simultaneous balancing and sequencing. This paper extends such previous
MILP model to allow parallel stations and to combine balancing and sequencing. A simplifying
hypothesis on product entry and departure orders is incorporated to reduce the search-space. The
model was applied to a literature dataset and provided answers better than the best previously
reported for 33 of the 36 instances; the proposed model proved the optimal answer of 27 instances,
while no proven optimal answer for this dataset was yet published. The average reduction in cycle
time in comparison to the literature was 14% with a correspondent 16% increase in production
rate.

KEYWORDS. Mixed-Model Assembly Line, Cyclical Steady-State Optimization, Parallel
Stations
Paper Topics: AD&GP - OR in Administration & Production Management, IND - OR in
Industry
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1. Introduction

This paper presents a mixed-integer linear programming model (MILP) and case studies
for simultaneous balancing and cyclical sequencing of mixed-model asynchronous assembly lines
with parallel stations. Each of the concepts highlighted in italic are hereafter introduced, along
with a literature review of related works.

Assembly lines are productive systems designed for mass-production of similar products
[Scholl, 1999]; they are commonly present in multiple industries: automobile, electronics, white
goods, appliances, etc.. On its simplest form, an assembly line consists of a set of workstations
positioned in a serial manner so that the assignment of tasks to stations is product-oriented (flow-
shop) rather than process-oriented (job-shop). Stations have a certain processing time defined by
the sum of the durations of tasks assigned to them. The time between two consecutive products
(cycle time) is dictated by the station with the highest processing time, therefore, it is necessary to
balance the task distribution in order to have good production rates. The assembly line balancing
problem consists on optimizing the assignment of tasks to stations in regard to a certain goal, in
general efficiency maximization [Scholl e Becker, 2006].

The cycle time’s definition is simple when the line is dedicated to a single product model.
However, these productive systems can be used to produce multiple different products leading
to difficulties in performance measures [Merengo et al., 1999]. If significant set-up times exist
between models, they are usually separated in batches and the line is called a multi-model one
[Boysen et al., 2007]. If set-up times are negligible, the assembly line is referred to as a mixed-
model one [Battaı̈a e Dolgui, 2013]. In this case, to optimize the line also implies on a mixed-
model sequencing problem [Boysen et al., 2009]. If demands are reliably stable, this system can
be optimized by cyclical sequences, in this case a cyclical sequencing problem arises. This class of
cyclical problems employ the minimal part set (MPS) concept [Levner et al., 2010]: If one needs
to produce 500 units of product one and 100 units of product two, the MPS is five units of product
one and one unit of product two. Cyclical schedules are defined based on the problem’s MPS.

Assembly lines can be further classified in terms of line pace [Boysen et al., 2008]:
If the conveyor belt moves all pieces constantly, the line is called paced or continuous. If all
pieces move together, but discreetly when the processing at their current station is complete, the
line is synchronous unpaced one. Finally, if each piece is allowed to move to the next station
independently (provided processing is complete and the next station is free), the line is referred
to as an asynchronous one. Naturally, these line’s controls affect the scheduling of pieces in a
mixed-model sequencing problem. Two common features of asynchronous lines are blockages
and starvations: blockages occur when a piece has completed processing at its current station, but
cannot move to the following one because it is occupied; starvations occur when a piece departs a
workstation and the next piece has still not completed processing at the previous station, leaving
the workstation temporarily empty.

Lusa [2008] provides a review of parallelism variants in assembly lines. It is possible
to have parallel independent lines, which can either be dedicated to the same product models
or to different ones, it is also possible to have different rates of the same products in each line.
Parallel lines can have crossovers, which allow greater flexibility and connect the lines. When
all stations present crossovers one can say the assembly line has parallel stations [Boysen et al.,
2008]. Parallelism allows greater flexibility by allowing pieces to stay longer at stations without
compromising the production rate.

It is common for authors to use decomposition and (meta-)heuristic procedures to solve
the combined mixed-model balancing sequencing problem [Battini et al., 2009; Özcan et al., 2010;
Tiacci, 2015]. However, there are some noteworthy exceptions: Sawik [2002] compared simulta-
neous to sequential balancing and (non-cyclical) sequencing of mixed-model assembly lines with
a MILP model. He verified that the combination of the degrees of freedom can lead to better
answers. Sawik [2012] presented a MILP model with makespan minimization formulation for
cyclical lines. Öztürk et al. [2015] developed a Constraint Programming (CP) formulation for the
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same problem of Sawik [2012], along with a dataset with 36 different cases. These cases can serve
as a testbed for such difficult problem that combines balancing and sequencing features into the
same framework. Both Öztürk et al. [2015] and Sawik [2012] employ makespan minimization
formulations that optimize a few replications of the MPS.

In a recent work Lopes et al. [2016] used a MILP model to demonstrate that makespan
minimization formulations do not necessarily optimize steady-state, and presented an alternative
steady-state formulation. This formulation is shown to generate better cyclical behavior than the
makespan minimization one. Figure 1 illustrates the differences between optimal cyclical sched-
ules generated by the makespan minimization formulation and by the steady-state representation
one. Lopes et al. [2016] confirmed the connections between balancing and sequencing highlighted
by Sawik [2002]. However, Lopes et al. [2016] consider cyclical sequencing as a problem’s pa-
rameter and do not address parallelism. These limitations prevent the authors from applying said
model to Öztürk et al. [2015]’s dataset, as the product sequences are not given and the majority
of the dataset refers to instances with parallel stations. In this paper, a MILP model is provided
to overcome said limitations: The steady-state representation provided by Lopes et al. [2016] is
enhanced to incorporate parallelism and sequencing decision variables, allowing a comparison to
Öztürk et al. [2015]’s results on the originally proposed dataset.

This paper is structured as follows: Section 2 presents the hypotheses used to describe
the studied problem. Section 3 presents the developed MILP model with the extended steady-
state representation formulation. Section 4 discusses the results of applying the presented model
to Öztürk et al. [2015]’s dataset. Section 5 discusses the results and the relevance of a particular
model hypothesis presented in Section 2. Section 6 summarizes the main conclusions drawn from
this paper, and presents directions for further works.
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Figure 1: Comparison of solutions generated by each formulation. Black markers separate MPS
replications, and dashed lines compare the solutions: Notice that the makespan minimization
formulation outperforms the steady-state representation for the first MPS, but gradually loses
that advantage in the steady-state.
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2. Problem Statement

The simultaneous balancing and cyclical sequencing mixed-model asynchronous assem-
bly line problem was described using a Mixed-Integer Linear Programming (MILP) mathematical
model, presented hereafter. The proposed model is based on the following assumptions:

1. Tasks and Assignments - Tasks are indivisible and performed on the same stations for all
product models, some tasks can only be assigned to a subset of stations;

2. Precedence Restrictions - Tasks must be assigned to either the same or following stations
as their predecessors, as defined by the set of precedence restrictions;

3. Line Pace - The product flow is asynchronous and discrete. Pieces can only move to the
next station when their processing is complete at their current station and the next one is
empty;

4. Cyclical Sequence - The product sequence is cyclical and repeats indefinitely. The product
sequence is not given and must also be optimized;

5. Equal Parallelism Hypothesis - All stations have the same parallelism degree k;

6. “Instant Transportation” Hypothesis - Transportation times between stations are negli-
gible and can be ignored;

7. Steady-State Optimization Goal - The goal is to balance the line in a way that maximizes
its efficiency, minimizing the average steady-state cycle time;

8. Ordering Hypothesis - The order products enter a station is the same order they depart it.

The first four assumptions state the base problem definition. The Equal Parallelism
Hypothesis is employed to make analysis simpler, and also to fit the definition of a literature dataset
[Öztürk et al., 2015]. The instant transportation hypothesis can be easily removed, but that would
require additional parameters which are not defined by the literature dataset. In order to make
consistent comparisons, therefore, such times are considered negligible. The goal consideration
is to maximize steady-state efficiency (similarly to Öztürk et al. [2015]). However, the employed
goal function mathematical definition is different.

The ordering hypothesis naturally holds in assembly lines with single stations, but it is
a simplifying hypothesis for lines with parallel stations: Cyclical schedules do not necessarily
impose that the entry and departure orders at each station be the same. However, this hypothesis
simplifies modeling sequencing decisions and can also be seen as a search-space reduction heuris-
tic that can aid convergence. Some insights on the relevance of this hypothesis are presented in
Section 4 and Section 5.

The ordering hypothesis defines a concept for cyclical scheduling that is illustrated by
Figure 2. In a line with single station, the second piece can enter the line when the first leaves, as
shown by Figure 2a. In a line with parallelism degree of 2 (k = 2), the first and second piece enter
independently, the third piece can enter when the first one leaves, and the forth piece can enter
when the second one leaves (as shown by Figure 2b). The first and last piece define cycle time
for lines single stations (as shown by Lopes et al. [2016]). Analogously, in lines with parallelism
degree of two, both the first and second-last and the second and the last pieces constrain the value
of average steady-state cycle time.

This concept can be naturally generalized for any degree of parallelism and any MPS
size, even when there are more parallel stations than pieces in the MPS. The formulation alterations
are presented for generality sake (section 3.2.1), but are not the focus of this paper.
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Figure 2: Cycle concept for lines with single and double stations: lighter arrows indicate con-
straints that describe the asynchronous piece flow, while darker ones indicate constraints that
bind cycle time. This occurs because the later tie pieces in different MPS replications.

3. Mathematical Model

3.1. Nomenclature and Goal Function

The MILP model’s nomenclature is defined by Table 1, which presents the parameter
and variable sets of the problem, along with their domain and a brief description. The variable
sets are presented along with the tuple sets for which they are defined, except for ctmix which is
a single real non-negative variable. In order to simplify notation understanding, lowercase letters
are used for variables sets and uppercase ones are used for parameter sets. The developed model
is a generalization of the one presented by Lopes et al. [2016] to which the capacity to describe
parallel stations is added.

The problem’s goal function is to minimize ctmix, the steady-state cycle time of the
full MPS, as stated by the Expression 1. This cycle time measures the time required for the full
piece set to start repeating itself on the steady-state. It is determined by combining balancing,
sequencing and scheduling aspects, as described in the Section 3.2.

Minimize ctmix (1)

3.2. Constraints

The balancing aspect of the model is controlled by the binary variable set x: The Equa-
tion 2 states that all tasks must be performed at some station, and that only feasible task-station
assignments are allowed (as defined by the set F ). The Inequality 3 states the precedence relations
(as defined by the set P ) between tasks in terms of their station-wise assignments. The Equation 4
defines the processing time of each model at each station in terms of the tasks assigned to each
station. At each station, the sum of processing times (divided by the parallelism degree) establish
a lower bound for steady-state efficiency, as stated by the Inequality 5.∑

(t, s) ∈ F

x [t, s] = 1 ∀ t ∈ T (2)

∑
(t1, s) ∈ F

s · x [t1, s] ≤
∑

(t2, s) ∈ F

s · x [t2, s] ∀ (t1, t2) ∈ P (3)
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Table 1: Nomenclature of Parameters, and Variables: Domains and Descriptions

Parameters Description
M Set of models m from 1 to NM , the number of models
S Set of stations s from 1 to NS , the number of stations
T Set of tasks t from 1 to NT , the number of tasks
F Set of feasible tasks station allocations tuples (t, s)
P Set of precedence relations tuples (t1, t2)

D [T,M ] Durations of tasks for each model, measured in time units
k Degree of parallelism

Variables Description
x [TS] 1 if task t is assigned to station s, 0 otherwise
y [M,M ] 1 if model m is the nth piece in the sequence, 0 otherwise
z [M,M ] 1 if model m follows model n in the MPS, 0 otherwise
zc [M,M ] 1 if model m follows model n between MPSs, 0 otherwise
tin [M,S] Entry time of piece m in station s, measured in time units
tx [M,S] Processing time of model m in station s, measured in time units
tout [M,S] Departure time of model m in station s, measured in time units
ctmix Cycle time of the MPS, measured in time units

tx [m, s] =
∑

(t, s) ∈ F

D [t, m] · x [t, s] ∀m ∈ M, s ∈ S (4)

ctmix ≥
1

k
·
∑

m ∈ M

tx [m, s] ∀ s ∈ S (5)

The sequencing aspect of the model is mainly controlled by the binary variable sets y,
z, and zc: The Equation 6 states that each position in the sequence is taken by a model. The
Equation 7 states that each model takes a position in the sequence. The Inequality 8 states that
the model m2 “follows” the model m1 if it takes the kth position after model m1’s one. The
Inequality 9 states that the model m2 “follows” the model m1 between MPS replications if it takes
the (NM − k)th position after model m1’s one. This concept is illustrated by Figure 2. Because
the sequencing is cyclical by hypothesis, one can arbitrarily define the starting point and provide
the model a symmetry break, for instance, by stating that model 1 is the first one in the sequence
(y [1, 1] = 1). ∑

m ∈ M

y [m, n] = 1 ∀ n ∈ M (6)

∑
n ∈ M

y [m, n] = 1 ∀m ∈ M (7)

z [m2, m1] ≥ y [m1, n] + y [m2, n+p] − 1 ∀m1,m2, n ∈ M : n ≤ NM − p (8)

zc [m2, m1] ≥ y [m1, n] + y [m2, n+NM−p] − 1 ∀m1,m2, n ∈ M : n ≤ p (9)

Once balancing and sequencing are defined, the scheduling aspect of the model is con-
trolled by the real variable sets tin and tout: The Inequality 10 states that a model can only leave
a station after processing is finished. The Equation 11 states that when a model leaves a station it
enters the next one. The Inequality 12 states that models cannot overlap in stations: if model m2

“follows” the model m1 (as controlled by the variable set F ) then m2 can only enter a station after
m1 has left it.

tout [m, s] ≥ tin [m, s] + tx [m, s] ∀m ∈ M, s ∈ S (10)
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tin [m, s] = tout [m, s− 1] ∀m ∈ M, s ∈ S : s > 1 (11)

tin [m2, s] ≥ tout [m1, s] −BigM · z [m2, m1] ∀m1,m2 ∈ M, s ∈ S (12)

The last model constraint is the one that ties steady-state cycle time to the scheduling
variables: The Inequality 13 states that models cannot overlap in stations between two minimal
part sets (MPS). This inequality is valid when the parallelism degree k is smaller or equal than
the number of pieces in the MPS (NM ), the most common practical condition. The variable ctmix

states the time between entries of two equal pieces on the bottleneck station. Notice that this
implies that the cycle time is the same for all pieces.

ctmix + tin [m2, s] ≥ tout [m1, s] −BigM · zc [m2, m1] ∀m1,m2 ∈ M, s ∈ S (13)

3.2.1. Additional Constraints
The formulation presented thus far reflects expected practical conditions in which the

parallelism degree k is smaller or equal than the number of pieces in the MPS (NM ). This was
the case in all instances of Öztürk et al. [2015]’s data set, and is therefore the focus of this paper.
In order to provide a more complete formulation for hypothetical cases in which k > NM , the
relevant model alterations are hereafter presented. First, to simplify notation, for each position
j, a parameter next(j) is defined in accordance to the Equation 14. This parameter represents
positions that are connected according to the ordering hypothesis, i.e. the next(j)th piece will
enter the station s when the jth piece leaves it.

next(j) = (j + k − 1) mod NM + 1 (14)

A modified version of the z and zc variables is presented. The binary variable w [m1, m2, j]

is set to 1 when the model m1 is assigned to the jth position and the model m2 to the next(j)th

one, as stated by the Inequality 15.

w [m1, m2, j] ≥ y [m1, j] + y [m2, next(j)] − 1 ∀m1,m2, j ∈ M (15)

The Inequality 16 replaces both Inequality 8 and Inequality 9. It ties entrance and depar-
ture times to the production mix cycle time in case k > NM . This constraint was not employed
during testing as none of the instances displayed that property. It is only provided here for gener-
ality sake.

ctmix ·
⌈
next(j) + k

NM
− 1

⌉
+ tin [m2, s] ≥ tout [m1, s] − BigM · w [m2, m1, j]

∀m1,m2, j ∈ M, s ∈ S

(16)

4. Results
In order to verify how well the proposed model performs on combinatorial cases, it

was applied to the dataset presented by Öztürk et al. [2015]. Minor adaptations were required
to incorporate the features of said dataset, for instance, tasks were subject to space constraints at
stations. All the computational tests of this section were conducted on a 64 bit IntelTM i7 CPU
(2.9 GHz) with 8 GB of RAM, using eight threads and the IBM ILOG CPLEX Optimization
Studio 12.6 solver. Öztürk et al.’s model and instances are available as Supporting Information
of their article. Here we used the script for model execution as it was made available by said
authors. Thus, a comparison with the results obtained by the article’s methodology, at the same
hardware conditions, was possible. Öztürk et al. define different values of cycle times for models:
they are measured by the time between the departures of two pieces of the same model from the
last station. The proposed model allows one single value of cycle time for the whole MPS, the
steady-state value.
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Table 2: Comparison of results from Öztürk et al. [2015] and the proposed model. The column
Problem Data contains the parameters of each of the 36 instances. WC, AV, UB, LB, TBS, and
RT stand for: the Worst Case (WC) and the Average Value (AV) for the Öztürk et al.’s model,
the Upper Bound (UB) and Lower Bound (LB) from the proposed model, the necessary Time
to reach the Best Solution (TBS) obtained by each approach and the total Run Time (RT) in
seconds, respectively.

Problem Data Öztürk et al. [2015] Proposed Model Comparisons
n NT NM NS k WC AV TBS [s] RT [s] UB LB TBS [s] RT [s] WC/UB AV/UB
01 038 5 3 1 47 47 2354 3600 47 47 0.2 0.2 1.00 1.00
02 038 5 3 2 26 24.8 1304 3600 23.5 23.5 0.1 0.1 1.11 1.06
03 038 5 3 3 19 17 1130 3600 15.7 15.7 0.1 0.1 1.21 1.09
04 038 5 5 1 26 26 599 3600 26 26 0.4 0.4 1.00 1.00
05 038 5 5 2 14 13.6 859 3600 13 13 0.3 0.3 1.08 1.05
06 038 5 5 3 12 10.6 62 3600 8.7 8.7 0.3 0.3 1.38 1.22
07 052 7 3 1 59 59 402 3600 57 57 6.1 9.2 1.04 1.04
08 052 7 3 2 32 30.4 375 3600 28.5 28.5 5.5 8.0 1.12 1.07
09 052 7 3 3 25 24.1 105 3600 19 19 5.9 10.2 1.32 1.27
10 052 7 5 1 34 34 1588 3600 34 34 1.4 1.6 1.00 1.00
11 052 7 5 2 18 18 672 3600 17 17 0.7 1.1 1.06 1.06
12 052 7 5 3 14 14 230 3600 11.3 11.3 1.5 1.9 1.24 1.24
13 114 5 3 1 117 117 231 3600 107 107 6.4 7.3 1.09 1.09
14 114 5 3 2 67 65.8 921 3600 53.5 53.5 7.2 7.8 1.25 1.23
15 114 5 3 3 50 41.6 3091 3600 35.7 35.7 6.1 6.5 1.40 1.17
16 114 5 5 1 72 72 1093 3600 68 68 53.5 54.6 1.06 1.06
17 114 5 5 2 39 37 534 3600 34 34 38.3 39.5 1.15 1.09
18 114 5 5 3 30 25.2 2536 3600 22.7 22.7 49.3 57.1 1.32 1.11
19 156 7 3 1 156 156 3430 3600 142 142 22.8 39.6 1.10 1.10
20 156 7 3 2 76 76 3592 3600 71 71 49.1 49.7 1.07 1.07
21 156 7 3 3 64 63.6 785 3600 47.3 47.3 50.5 52.3 1.35 1.34
22 156 7 5 1 93 93 1695 3600 88 88 672 1352 1.06 1.06
23 156 7 5 2 65 64.4 3295 3600 44 44 1528 2127 1.48 1.46
24 156 7 5 3 36 34.3 3510 3600 29.3 29.3 2302 3449 1.23 1.17
25 190 5 3 1 197 197 1529 3600 197 197 0.2 0.3 1.00 1.00
26 190 5 3 2 112 108.4 1560 3600 98.5 98.5 0.1 0.2 1.14 1.10
27 190 5 3 3 81 72.4 1160 3600 65.7 65.7 0.1 0.3 1.23 1.10
28 190 5 5 1 124 124 2271 3600 113 113 198 561 1.10 1.10
29 190 5 5 2 73 65 2509 3600 56.5 56.5 1360 1679 1.29 1.15
30 190 5 5 3 52 51.8 2017 3600 37.7 37.7 1120 1125 1.38 1.38
31 260 7 3 1 267 267 2620 3600 263 263 2.0 6.4 1.02 1.02
32 260 7 3 2 149 147.4 2722 3600 131.5 131.5 3.9 4.3 1.13 1.12
33 260 7 3 3 132 128.7 3158 3600 87.7 87.7 7.1 7.5 1.51 1.47
34 260 7 5 1 240 236 660 3600 155 129.1 1078 3600 1.55 1.52
35 260 7 5 2 98 97.1 2843 3600 77.5 64.8 743 3600 1.26 1.25
36 260 7 5 3 81 78.6 2784 3600 52 43.3 1311 3600 1.56 1.51

Average 76 78 1673 3600 66 65 295 596 1.20 1.16
Maximum 267 267 3592 3600 263 263 2302 3600 1.56 1.52

The Table 2 presents the obtained results for both the proposed formulation and Öztürk
et al.’s formulation. WC presents the highest value of cycle time amongst models found by Öztürk
et al.’s formulation. AV presents the average value of cycle time obtained when all models are
considered. UB and LB present the upper (primal) and lower (dual) bounds for the best answer
the proposed model found for each case n. The necessary Time to reach the Best Solution (TBS)
and the total Run Time (RT) are showed in seconds. For all cases, the time limit is set in 3600
seconds. The “Comparisons” column divides the best and average value found by our formulation
by those obtained by the benchmark’s author.

5. Discussion

The comparisons show that the proposed model outperformed Öztürk et al.’s one in
33 out of the 36 instances (on three of them, both formulations tied). In average, the proposed
formulation allowed answers with 14% lower values of cycle time or 16% higher throughput. The
average processing time for the proposed model was 596 seconds, which was primarily dictated
by the eight cases that took more than 1000 seconds. However, the proposed formulation proved
the optimality of 27 out of the 36 instances in less than a minute. Öztürk et al.’s formulation, on
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Table 3: Illustrative problem data: processing times of each model at each station

Model 1 2 3 4 5
Station 1 12 4 4 4 6
Station 2 4 6 6 7 6
Station 3 6 6 4 7 4

the other hand, did not prove any optimal solution. The three instances whose answers are equal
were obtained with a significant lower processing time with the proposed model (Case 1: 0.2 to
2354 seconds; Case 4: 0.4 to 599 seconds; Case 25: 0.2 to 1529 seconds).

The factors that seem to justify these differences are stated as follow: Contrary to Öztürk
et al., the proposed formulation does not require multiple replications of the MPS to be taken into
account. Furthermore, the proposed model is a MILP one instead of a CP (Constraint Program-
ming) one and, therefore, allows scheduling variables to assume both integer and fractional values.
Lastly, the ordering hypothesis (each product entry order must be the same as its departure order)
also restricts the search field.

The ordering hypothesis is also relevant for the optimality of solutions: while in assem-
bly lines without parallelism, the product order cannot be altered, in lines with parallel stations,
this might be the case. This means that out of the 33 cases solved to optimality with the ordering
hypothesis, only 11 of them have steady-state optimality assured for the general case (the eleven
cases with k = 1 that were solved to optimality). The ordering hypothesis is not expressed as
model’s constraints. The proposed model was constructed based on the ordering of tasks’ hypoth-
esis. Therefore, in order to verify whether better solutions are possible or not, a new mathematical
model and further tests would be required. A single example can, however, illustrate that relaxing
the ordering hypothesis allows greater liberties, and potentially, better solutions.

In order to illustrate the additional liberties associated with the relaxation of the ordering
hypothesis, a very small scale instance of the problem is defined according to the data presented by
the Table 3. The processing times are known (balancing solution is given) and one is only required
to sequence and cyclically schedule it in an assembly line with parallelism degree k equal to 2.

The optimal solution of the illustrative problem, according to presented model (i.e. with
the ordering hypothesis) is presented by the Figure 3. The thick black markers separate the MPS
replications. Notice that stations actually process the same pieces in an alternated manner. The
solution generated by the model is equivalent to independent parallel lines, as each “side” of the
line can function independently: Stations 1.1, 2.1 and 3.1 represent one “side”, while Stations 1.2,
2.2, and 3.2 represent the other.

0 10 20 30 40 50 60

Station 1.1

Station 1.2

Station 2.1

Station 2.2

Station 3.1

Station 3.2
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Figure 3: Solution with ctmix = 17. All models are produced in both lines in an alternated
manner.
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It is also possible for independent parallel assembly lines to display a different behavior:
One line can be used to produce one product mix and the other for another product mix. This is
illustrated by the Figure 4. This kind of answer respects the ordering hypothesis, but would require
constraint alterations1. Solutions that respect the ordering hypothesis can, therefore, display either
one behavior or the other, but it is not possible for it to produce solutions that combine these
behaviors: to have some stations have one product sequence and other stations have a different
product sequence. The ordering hypothesis demands that the cyclical sequencing is the same
for all stations and, therefore, either all stations produce all products alternately (Figure 3) or all
stations produce different product mixes (Figure 4). In this later case, it is possible to separate
them in groups or “sides” that process the same product mixes as illustrated by the Figure 4.
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Model 1

Model 2

Model 3

Model 4

Model 5

Figure 4: Solution with ctmix = 18. Models 1 and 4 are produced in one side of the line and
the others in the other side.

Parallel stations can, however, display a more flexible behavior, which is illustrated by
the Figure 5: In the first and third stations, all products are processed in both “sides” of the
assembly line. However, the cyclical product sequence in Stations 1.1 and 1.2 is different than in
Stations 3.1 and 3.2: In the first set of stations, the model sequence is (1,2,3,4,5) while in the third
one the sequence is (2,1,5,3,4)2. Furthermore, each of the Stations 2.1 and 2.2 processes a different
set of products: Station 2.1 processes the product models 2 and 4, and Station 2.2 processes the
product models 1, 3, and 5. In that sense, the solution in Figure 5 combines the solutions from
Figures 3 and 4 by adding greater ordering flexibility.

The solution presented by Figure 5 outperforms the one presented by Figure 3, as it has
a smaller value of ctmix. This is only possible due to the greater flexibility offered by the removal
of the ordering hypothesis: steady-state blockages and starvations can be reduced by allowing the
cyclical product sequence to be different at each station. However, these differences must allow
consistent cyclical schedules: it must be possible cyclically change the positions via scheduling
by exploiting the cross-overs, as illustrated for the example in Figure 5.

This means that, if in one hand the ordering hypothesis and the cyclical concept pre-
sented by Figure 2 allowed the developed model to achieve better solutions than Öztürk et al.
[2015] in 33 out of 36 instances, on the other hand, it is possible that better solutions exist in all 24
instances with parallelism: If a better cyclical schedule could be found for the illustrative case (in
which balancing is given), it is likely that this extra degree of freedom would have positive syn-

1Instead of using the cyclical framework illustrated by Figure 2, have the piece order be (1,2,3,4,5) and have the
logical ties occur between the pieces in the positions 1-5, 2-3, 3-4, 4-2, and 5-1. The piece order is the same at all
stations, but the cyclical concept in Figure 2 is not compatible.

2In Figure 5, station 1.1 displays a (1,2,3,4,5) sequence, and Station 1.2 displays a (2,3,4,5,1), which is the same
cyclical pattern. Analogously, station 3.1 displays (2,1,5,3,4) and station 3.2 displays (3,4,2,1,5), these are also the
same cyclical patterns.
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Figure 5: Solution with ctmix = 16. In the first and third stations, all models are produced in
an alternated manner, but in different orders. In the second station, different sets of products are
produced in each side of the line.

ergies when combined to the balancing degree of freedom of the composed problem. This means
that out the 33 optimal solutions found by the model (Table 2), only 11 (the ones with k = 1)
are truly guaranteed to have optimal cyclical steady-state behavior. The others are only optimal
in regard to the ordering hypothesis. The development of a further generalized model that can
optimize the steady-state representation described by Lopes et al. [2016] and herein enhanced for
parallel stations, but without the ordering hypothesis is, therefore, a promising (yet challenging)
modeling direction for further works.

6. Conclusions
This paper presents a new model for simultaneously balancing and cyclically sequencing

asynchronous lines with parallel stations. The model generalizes a previously validated steady-
state representation [Lopes et al., 2016] that requires only one replication of the MPS. A search-
space reduction hypothesis (the ordering hypothesis) is incorporated in the proposed model, stating
that the order pieces enter sets of parallel stations is the same order in which they leave them. This
constraint simplifies modeling and allows a single binary variable set to represent sequencing
decisions.

The proposed model is applied to a literature dataset, leading to results significantly
better than those previously reported: solutions with smaller cycle time that the best previously
reported ones were provided for 33 out of the 36 cases, with an average of 14% reduction in cycle
time or an equivalent to a 16% increase in production rate (Table 2). Reasons behind these better
results lie in a combination of factors: the proposed model is a MILP one that allows fractional
variables, requires only one replication of the MPS to function, and incorporates a search-space
reduction offered by the ordering hypothesis. The reference model [Öztürk et al., 2015], which
provided the best formerly known answers, is a CP (Constraint Programming) one that does not
allow fractional variables, requires multiple replications of the MPS and does not incorporate the
equivalent space-reduction constraint.

The main model simplifying hypothesis is further exploited in a small problem instance
that can be manually solved. This example is able to demonstrate that violations of ordering
hypothesis can lead to better solutions: Parallel lines can allow cyclical steady-state schedules
that have different cyclical product sequences in each stage. Solutions that respect the ordering
hypothesis can either have all products be processed at all stations (Figure 3) or have each side
of parallel stations only processing subsets of the produced models (Figure 4). By relaxing that
hypothesis, it is possible to have parts of the solution with one behavior (stations that process
all product pieces) while other parts display another behavior (division of the product pieces in a
subset), as indicated in Figure 5. This means that while the ordering hypothesis helped to provide

3578



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

significantly better solutions on the tested literature dataset, it also might eliminate even better
solutions on instances with parallel stations.

Therefore, further works should seek to develop a model that further generalizes the
steady-state representation, by removing the ordering hypothesis. This is likely to lead to both
modeling and computational challenges, as even with the search-space reduction hypothesis some
cases where computationally intractable. In that sense, the ordering hypothesis can be seen as a
simplifying heuristic or as a basis for further less restrictive search-space reduction constraints.
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