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ABSTRACT
This paper addresses the problem of minimizing the product of p ≥ 2 convex positive

functions over a convex set. Linear multiplicative programming problems and linear–multiplicative–
fractional programming problems fall into this category as two special cases, with important appli-
cations in various areas. As the objective function is not convex (or quasi–convex), in general, the
problem may have local optimal solutions that are not global optimal solutions. A global optimiza-
tion algorithm based on a suitable reformulation of the problem in the outcome space is proposed.
Global minimizers are obtained as the optimal solutions of a sequence of special convex programs,
coordinated a rectangular branch–and–bound procedure. Computational experiences demonstrate
the efficiency of the proposed algorithm.
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RESUMO
Este artigo aborda o problema de minimizar o produto de p ≥ 2 funções convexas pos-

itivas em um conjunto convexo. Problemas de programação multiplicativa linear e problemas de
programação multiplicativa–fracionária se enquadram nesta categoria como dois casos especiais
com várias aplicações importantes em diversas áreas. Como a função objetivo não é mais con-
vexa (ou quase–convexa), em geral, o problema pode ter soluções locais que não são globais. Um
algoritmo de otimização global baseado em uma reformulação adequada do problema no espaço
das funções é proposto. Minimizadores globais são encontrados como soluções ótimas de uma
sequência de problemas convexos especiais, coordenada por um algoritmo branch–and–bound re-
tangular. Experiências computacionais demonstram a eficiência do algoritmo proposto.
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1. Introduction

Many practical problems in Engineering, Economics and Planning are modeled in a con-
venient way as global optimization problems. The main purpose of this paper is to introduce a
new global optimization technique for globally solving a special class of optimization problems,
namely, minimization of a product of convex functions on a convex set. This class includes the
Linear–Multiplicative (LMP) and Multiplicative–Fractional Programs (MFP), as special cases.

Problems of the following forms are considered:

(PM )

∣∣∣∣∣∣∣
minimize

p∏
i=1

fi(x)

subject to x ∈ Ω

where fi (i = 1, 2, . . . , p) are convex functions defined on Rn. It is also assumed that Ω ⊂ Rn is
a nonempty compact convex set and that each fi is positive over Ω. The product of two or more
convex positive functions (p ≥ 2) need not be convex or quasi–convex, and, therefore, problem
(PM ) may have local optimal solutions that are not global optimal solutions. In nonconvex global
optimization, problem (PM ) has been referred as the convex multiplicative problem.

Microeconomics, financial optimization, VLSI chip design, decision tree optimization,
bond portfolio optimization, layout design, multicriteria optimization problems, robust optimiza-
tion, data mining–pattern recognition and geometric design are some of the areas where this convex
multiplicative programming finds interesting applications (see [Ryoo and Sahindis, 2003]).

Linear–Multiplicative problems assume the more specific form

(LMP )

∣∣∣∣∣∣∣∣
minimize

p∏
i=1

(cTi x+ di)

subject to x ∈ X :=
{
x ∈ Rn : −∞ < l ≤ x ≤ u < +∞, Ax ≤ b

}
,

where ci ∈ Rn, di ∈ R for i = 1, 2, . . . , p,A ∈ Rm×n, b ∈ Rm and cTi x+di > 0 for i = 1, 2, . . . , p
and all x ∈ X . The case p = 2 was originally proposed and studied in [Swarup, 1966]. Problem
(LMP) is known to be NP–hard [Matsui, 1996], even when p = 2, despite its minimum be achieved
at an extreme point of the polytope X . When p = 2, problem (LMP) can be solved efficiently in
polynomial time [Goyal et al., 2009].

Many global optimization approaches have been proposed for globally solving (LMP) for
p ≥ 3, such as outer approximations methods, vertex enumeration methods, primal–dual simplex
methods, cutting plane methods in outcome space, parametrization based methods, branch–and–
bound methods, heuristic methods, among others (see [Ryoo and Sahindis, 2003]). All these meth-
ods are computationally very expensive, even when p� n and the objective function is structurally
simple. Very few computational results have been reported for problems with p > 5. Computational
results reported in the literature of the (linear) multiplicative programming show that the proposed
algorithms are all very sensitive to p, even when p < 5.

The paper is organized in six sections, as follows. In Section 2, the problem is reformu-
lated in the outcome space, and an outer approximation approach for solving convex multiplicative
problems is outlined. In Sections 3 and 4, a branch–and–cut algorithm is derived. Computational
experiences with the proposed branch–and–cut algorithm are reported in Section 5. Conclusions
are presented in Section 6.

Notation. The set of all n-dimensional real vectors is represented as Rn. The sets of all nonnegative
and positive real vectors are denoted as Rn

+ and Rn
++, respectively. Inequalities are meant to be

componentwise: given x, y ∈ Rn
+, then x ≥ y (x − y ∈ Rn

+) implies xi ≥ yi, i = 1, 2, ..., n.
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Accordingly, x > y (x − y ∈ Rn
++) implies xi > yi, i = 1, 2, ..., n. The standard inner product in

Rn is denoted as 〈x, y〉. If f : Rn → Rm is defined on Ω, then f(Ω) := {f(x) : x ∈ Ω}. The
symbol := means equal by definition.

2. Preliminary Results

The outcome space approach for solving problem (PM ) is inspired in a combination of
approaches introduced in [Oliveira and Ferreira, 2008] and [Ashtiani and Ferreira, 2015] for solving
the convex multiplicative and the generalized convex–concave fractional problems, respectively.
The objective function in (PM ) can be written as the composition u(f(x)), where u : Rp → R,
defined by

u(y) :=
p∏
i=1

yi.

The function u can be viewed as a particular aggregating function [Yu, 1985] for the
following multiobjective problem:∣∣∣∣ minimize f(x) :=

(
f1(x), f2(x), . . . , fp(x)

)
,

subject to x ∈ Ω,
(2.1)

where f : Rn → Rp. The image of Ω under f ,

Y := f(Ω), (2.2)

is the outcome space associated with problem (PM ). Since f is positive over Ω, it follows that u
is strictly increasing (and also quasi–concave) over Y and any optimal solution of (PM ) is Pareto–
optimal or efficient. In other words, if x? ∈ Ω is an optimal solution of the convex multiobjective
(multiplicative) problem (PM ), then x? is efficient for (2.1) [Geoffrion, 1967]. Since any optimal
solution x? ∈ Ω of problem (PM ) is an efficient solution of problem (2.1), then there exits some
p–dimensional vector w ∈ W , dependent on x?, such that x? also solves the convex minimization
problem:

(PW)

∣∣∣∣∣∣∣
minimize

p∑
i=1

wifi(x)

subject to x ∈ Ω,

whereW is the (p − 1)–dimensional simplexW :=
{
w ∈ Rp

+ :
∑p

i=1wi = 1
}
. The following

theorem (see [Katoh and Ibaraki, 1987] for a proof) characterizes the optimal solution of (PM ) in
terms of problem (PW ).

Theorem 2.1 Let x? ∈ Ω be an optimal solution of (PM ). Then any optimal solution of (PW ) for
w = w?, where

w?i =
∏
j 6=i

fj(x?), i = 1, 2, . . . , p,

is also optimal to (PM ).

The previous discussion ensures the existence but does not suggests a procedure for deter-
mining w ∈ W that would lead to an optimal solution of (PM ) through the solution of the convex
minimization problem (PW ). The global optimization algorithm developed in this paper iteratively
finds w ∈ W with this property.
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The outcome space formulation of problem (PM ) is simply

(PY)

∣∣∣∣∣∣∣
minimize u(y) :=

p∏
i=1

yi

subject to y ∈ Y.

where the outcome space Y is compact, but generally nonconvex. Let effi(Ω) be the set of efficient
solutions of (2.1). It can be proved that effi(Y) ⊂ ∂Y , where effi(Y) = f(effi(Ω)) and ∂Y is the
boundary of Y . Defining

F := Y + Rp
+,

it can be also proved that F is convex and effi(Y) = effi(F). The convexity of F and the fact that
effi(F) ⊂ ∂F imply that F admits a supporting half–space at each efficient solution of (PY ). A
suitable representation for F is F =

{
y ∈ Rp : f(x) ≤ y for some x ∈ Ω

}
, which leads to an

equivalent outcome space formulation with a convex and closed feasible region:

(PF )

∣∣∣∣∣∣∣
minimize u(y) :=

p∏
i=1

yi

subject to y ∈ F .

Theorem 2.2 (Equivalence Theorem) Let (x?, y?) be an optimal solution of problem (PF ). Then
y? ∈ effi(Y), y? = f(x?) and x? and y? solve problems (PM ) and (PY ), respectively. Conversely,
if x? solves (PM ), then (x?, y?) is an optimal solution for problem (PF ), where y? := f(x?) and y?

solves also problem (PY ).

Proof. See [Oliveira and Ferreira, 2008].

In [Oliveira and Ferrira, 2008], the authors explore the fact that x ∈ F if and only if y
satisfies the semi–infinite inequality system

p∑
i=1

wiyi ≥ min
x∈Ω

p∑
i=1

wifi(x), for all w ∈ W, (2.3)

and any subset of the inequalities (2.3) determines an outer approximation of F . Let yL :=
(yL1 , y

L
2 , . . . , y

L
p ) and yU := (yU1 , y

U
2 , . . . , y

U
p ) be p–dimensional vectors defined as

yLi = min
x∈Ω

fi(x), yUi = max
x∈Ω

fi(x),

for i = 1, 2, . . . , p, such that 0 < yL ≤ yU . Define also the rectangle (polytope)R0 :=
{
y ∈ Rp :

yL ≤ y ≤ yU
}

. Now problem (PF ) assumes the following equivalent form

(PS)

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
y

p∏
i=1

yi

subject to
p∑
i=1

wiyi ≥ min
x∈Ω

p∑
i=1

wifi(x), for all w ∈ W,

y ∈ R0,

which consists in minimization a product of elementary functions subject to a linear semi–infinite
inequality constraint and to the original bounding constraints. It is worth noting that y satisfies the
semi–infinite inequality system (2.3) if and only if θ(y) ≤ 0 where

θ(y) := max
w∈W

φy(w), (2.4)
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and

φy(w) := min
x∈Ω

p∑
i=1

wi(fi(x)− yi). (2.5)

In fact, the most violated constraint is found by computing θ(y). Let (x,w) be an optimal
solution of the max–min problem (2.4)–(2.5) that defines the value of θ(y). If θ(y) > 0, then at
least the following inequality constraint is violated by y ∈ R0:

p∑
i=1

wiyi ≥
p∑
i=1

wifi(x).

3. Cutting Plane Algorithm
Problem (PS) has a small number of variables, but infinitely many linear inequality con-

straints. An adequate approach for solving (PS) is relaxation: determine a global minimizer yk over
an outer approximation Fk of F as a subset of the inequality constraints on the type of (2.3) and
then append to Fk only the inequality constraint most violated by yk.

Algorithm 1 (Cutting Plane Algorithm)

• Step 0: FindR0 and set k := 0;
• Step 1: Solve the approximate linear–multiplicative problem

(PR)

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
y

p∏
i=1

yi

subject to
p∑
i=1

wliyi ≥ min
x∈Ω

p∑
i=1

wlifi(x), l = 0, 1, . . . , k − 1,

y ∈ R0,

obtaining yk. The l–th most violated inequality constraint is associated to wl. (Initially,
l = −1, there is no inequality appended to (PR), and y0 = yL).

• Step 2: Find θ(yk), obtaining (xk, wk). If θ(yk) ≤ 0, then stop: yk is an optimal solution of
(PS). Otherwise, the most violated constraint is defined by

p∑
i=1

wki yi ≥ min
x∈Ω

p∑
i=1

wki fi(x).

Set k = k + 1 and return to Step 1.

Given y ∈ Rp, it can be proved [Oliveira and Ferreira, 2008] that the function φy is
concave on W and the function θ is convex (hence continuous) on Rp. The following theorem is
very useful for determining θ(yk) and wk.

Theorem 3.1 For any y ∈ Rp, θ(y) is the optimal value of the following convex programming
problem ∣∣∣∣∣∣∣

minimize
x,σ

σ

subject to f(x) ≤ σe+ y
x ∈ Ω, σ ∈ R.

(3.1)

where σ ∈ R and e ∈ Rp is the vector of ones.
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Proof. See [Oliveira and Ferreira, 2010].

As a consequence of this theorem, all the information required at Step 2 of Algorithm 1
can be obtained by solving the primal problem (3.1). For yk, θ(yk) corresponds to the optimal value
of the convex problem (3.1), and the multipliers associated to the inequality constraints f(x) ≤
σe+ yk (which produce the deepest cuts) are the wk ∈ W .

Theorem 3.2 Any limit point y? of the sequence {yk} generated by Algorithm 1 is an optimal
solution of the convex multiplicative problem (PM ).

Proof. See [Oliveira and Ferreira, 2008].

It follows that θ(yk) ≤ εr for a sufficient large k, where εr > 0 is a small tolerance for
the finite convergence of Algorithm 1.

4. rAI Branch–and–Cut Algorithm
In [Adjiman et al., 1995], the authors discuss a convex lower bound for the bilinear term

yi1yi2 inside a rectangular region [yLi1, y
U
i1]× [yLi2, y

U
i2], where yLi1, y

U
i1, y

L
i2 and yUi2 are the lower and

upper bounds on yi1 and yi2, respectively. Bilinear terms of the form yi1yi2 are underestimated by
introducing a new variable yi and two inequalities,

yi = yi1yi2 ≥ max
{
yi1y

L
i2 + yLi1yi2 − yLi1yLi2

yi1y
U
i2 + yUi1yi2 − yUi1yUi2

}
. (4.1)

which depend on the bounds on yi1 and yi2. Now, by recursively replacing each bilinear term in the
objective function of (PR) with a new variable until it is replaced by a single variable

p∏
i=1

yi = y1y2︸︷︷︸
=:yp+1

y3

︸ ︷︷ ︸
=:yp+2

y4 . . .

︸ ︷︷ ︸
...

yp−1

︸ ︷︷ ︸
=:y2p−2

yp

︸ ︷︷ ︸
=:y2p−1

and using the convex envelope (4.1) for all i = p+ 1, p+ 2, . . . , 2p− 1 with the bounds on the new
variables given by

yLi := yLi1y
L
i2, yUi := yUi1y

U
i2,

for i = p + 1, p + 2, . . . , 2p − 1, a convex envelope for the objective function of (PR) will be
available. In [Ryoo, 2001], the authors show that this rAI (Recursive Arithmetic Interval) scheme
provides tight bounds.

Replacing the elementary linear multiplicative objective function of (PR) by its convex
envelope, we obtain the following linear semi–infinite optimization problem:

(PL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
y

y2p−1

subject to
p∑
i=1

wiyi ≥ min
x∈Ω

p∑
i=1

wifi(x), for all w ∈ W,

yi ≥ yi1yLi2 + yLi1yi2 − yLi1yLi2, i = p+ 1, p+ 2, . . . , 2p− 1,
yi ≥ yi1yUi2 + yUi1yi2 − yUi1yUi2, i = p+ 1, p+ 2, . . . , 2p− 1,
y ∈ R0,
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Let u?(PM ), u?(PS) and u?(PL) be the optimal values of problems (PM ), (PS) and
(PL), respectively. Any feasible point of (PL) provides an upper bound for the optimal value of
(PS). Furthermore, u?(PL) ≤ u?(PS) = u?(PM ). Hence, problem (PS) can be solved through
a branch–and–bound algorithm, in particular by a rectangular branch–and–bound algorithm. The
proposed rectangular branch–and–bound algorithm for globally solving problem (PS) assumes the
structure below.

In rectangular branching–and–bounding algorithms the feasible region of the problem
is partitioned into subrectangles. Let R be a subrectangle of R0 with bounds yL(R) e yU (R)
satisfying yL(R) ≥ yL, yU (R) ≤ yU , with the understanding that yL(R0) = yL and yU (R0) =
yU .

Let (PL(R)) and (PS(R)) be problems of the forms (PL) and (PS) when R0 is replaced
byR; let y(R) be any optimal solution of (PL(R)). The optimal value of (PS(R)) is lower than or
equal to the upper bound µ(R) :=

∏p
i=1 yi(R), because y(R) is feasible for PS(R), and greater

than or equal to the lower bound γ(R) := y2p−1(R), because (PL(R)) is a understimation of
(PS(R)).

Algorithm 2 (Branch–and–Bound Algorithm)

• Step 0: Solve (PL(R0)), obtaining an optimal solution y(R0). Set γ0 := γ(R0), µ0 :=
µ(R0), L0 := {R0} and q = 0;

• Step 1: If µq = γq, then stop. The incumbent solution yq is an optimal solution of (PS);
• Step 2: FindR ∈ Lq such that γ(R) = γq. BisectR into subrectanglesRI andRII and set

Lq+1 := (Lq\{R}) ∪ {RI ,RII}.

Compute γ(RI), µ(RI), γ(RII) and µ(RII). Eliminate all the subrectangles R ∈ Lq+1 such
that (PL(R)) is infeasible or µ(R) < γq;
• Step 3: Find R? ∈ arg max

R∈Lq+1
µ(R) and set yq+1 := y(R?), µq+1 := µ(R?), γq+1 :=

min
R∈Lq+1

γ(R), q := q + 1 and return to Step 1.

The branching, bounding and pruning rules of Algorithm 2 fulfill all the conditions re-
quired for the convergence of rectangular branch–and–bound algorithms [Horst et al., 1995]. Thus,
any accumulation point y? of the sequence {yq} generated by Algorithm 2 solves (PS). Conver-
gence results also guarantee that for q sufficiently large,

µq − γq ≤ εbb,

where εbb > 0 is a small tolerance for the finite convergence of Algorithm 2.
A decisive feature of the proposed algorithm is the propagation of deepest cuts to subrect-

angles. Only the additional deepest cuts needed to solve problem PS(R) for a given rectangle are
generated, which confers a branch–and–cut characteristic of the proposed algorithm. This strategy
was responsible for speeding-up the convergence of the algorithm in all computational experiments
carried out.

5. Computational Experiments
The computational performance of the global optimization algorithm proposed has been

investigated with basis in multiplicative problems selected from the literature. Some numerical
experiences are reported below. The number of bisections and the number of deepest cuts generated
by the algorithm are the most important parameters analyzed.

Algorithms 1 and 2 were coded in MATLAB (V. 7.1)/Optimization Toolbox (V. 4) and
run on a Intel(R) Core(TM)2 Duo system, 2.00 GHz, 2GB RAM, 32 bits.
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5.1. Illustrative Examples
In order to illustrate the convergence of the global optimization algorithms proposed, the

following examples have been employed.

Example 5.1 Consider the illustrative problem discussed in [Gao et al., 2010] where the problem
is globally solved by an alternative algorithm:∣∣∣∣∣∣∣∣

minimize
(
x1 + x2)

(
x1 − x2 + 7

)
subject to 2x1 + x2 ≤ 14, x1 + x2 ≤ 10, −4x1 + x2 ≤ 0

2x1 + x2 ≥ 6, x1 + 2x2 ≥ 6, x1 − x2 ≤ 3
x1 ≤ 5, x1 + x2 ≥ 0, x1 − x2 + 7 ≥ 0.

Functions f1 and f2 are convex and positive over the feasible convex set, which is compact
and nonempty. The lower and upper bounds on y = (y1, y2) are y = (4, 1) and y = (10, 10),
respectively. With a convergence criterion equivalent to εbb = 0.001, the algorithm proposed in
[Gao et al., 2010] converged after 27 iterations to the εbb–global solution x? = (2.0003, 7.9999)
with the optimal value equal to u?(PM ) = 10.0042; the reported CPU time was 10.83s.

With the same εbb, at Step 0 of the proposed algorithm, Algorithm 2, we obtained µ0 −
γ0 = 0.0000, meaning that the algorithm converged at iteration q = 0 without performing a single
branching. Our algorithm provided εbb–global solution is x? = (2.0000, 8.0000) with the optimal
value equal to u?(PM ) = 10.0000. Only a single deepest cut (introduced in the initial rectangle
R0) was needed; the CPU time was 0.2496s.

Example 5.2 As a second illustrative example, consider the linear multiplicative problem, also
obtained from [Gao et al., 2010].The problem is∣∣∣∣∣∣∣∣

minimize
3∏
i=1

(cTi x+ di)

subject to x ∈ X :=
{
x ∈ R11

+ : Ax ≤ b
}
,

where
cT1 =

(
1 0 1

9 0 0 0 0 0 0 0 0
)
, d1 = 0,

cT2 =
(

0 1 1
9 0 0 0 0 0 0 0 0

)
, d2 = 0,

cT3 =
(

0 1 1 1
9 0 0 0 0 0 0 0

)
, d3 = 0,

A =



9 9 3 1 0 0 0 0 0 0 0
8 1 8 0 1 0 0 0 0 0 0
1 8 8 0 0 1 0 0 0 0 0
7 1 1 0 0 0 −1 0 0 0 0
1 7 1 0 0 0 0 −1 0 0 0
1 1 7 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1


, b =



81
72
72
9
9
9
8
8


.

Functions f1, f2 and f3 are positive over the feasible region Ω. The lower and upper
bounds on y are y = (1.1111, 1.1111, 2.1111) and y = (7.1944, 7.1944, 13.1667), respectively.
With εbb = 0.001, after 36 iterations, [Gao et al., 2010] reported the εbb–global solution x? =
(0.0002, 0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) with the
optimal value equals to u?(PM ) = 2.0e− 012; the reported CPU time was 16.03s.

With the same εbb, at Step 0 of the proposed algorithm, Algorithm 2, we obtained µ0 −
γ0 = 1.3323e−015, again, meaning that the proposed algorithm converged at iteration q = 0 with-
out performing a single branching. At the convergence, the obtained εbb–global solution was x? =
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(0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) with the
optimal value equal to u?(PM ) = 0.0000. As in the previous example, only a single deepest cut
(introduced in the initial rectangleR0) was needed; the CPU time was 0.1872s.

5.2. Comparative Computational Results
In order to compare the computational performance of the proposed branch–and–cut al-

gorithm with alternative algorithms from the literature ([Kuno et al., 1993], [Ryoo and Sahinidis,
2003] and [Ferreira and Oliveira, 2008]), the following test problem (used by all the authors) was
considered:

(PML)

∣∣∣∣∣∣∣
minimize

p∏
i=1

〈ci, x〉

subject to Ax ≥ b, x ∈ Rn
+

where A ∈ Rm×n, b ∈ Rm and ci ∈ Rn are constant matrices with entries pseudo–randomly
generated in the interval [0, 100]. The tolerances for convergence of the proposed algorithm were
fixed at εr = 10−5 (Algorithm 1) and εbb = 10−3 (Algorithm 2). The following parameters are
adopted: W, number of problems (PW ) solved, C, number of cutting planes needed for convergence.
Ten problems for selected combinations of n (number of variables) and m (number of constraints)
were solved. Average and standard deviation values (in parenthesis) of C andW are presented. The
symbol ? in Tables 1 , 2, 3, 4 and 5 means that the required information is not provided in [Kuno et
al., 1993], [Ferreira and Oliveira, 2008] or [Ryoo and Sahinidis, 2003].

Table 1 reports the results obtained with the algorithms proposed in [Kuno et al., 1993]
indicated by [KYK:1993], [Oliveira and Ferreira, 2008] indicated by [OF:2008], and the branch–
and–cut algorithm proposed in this paper for products of four (p = 4) linear functions and selected
values of n and m.

Table 1: Average (standard deviation) values of W, C for p = 4.
(n, m) [KYK:1993] [OF:2008] Proposed

W W C W C

(30,20) 62.8 (12.66) 42.7 (5.56) 8.7 (1.25) 21.00 (18.81) 7.90 (3.31)
(40,50) 77.9 (21.60) 49.3 (5.56) 9.1 (2.07) 20.30 (19.14) 8.10 (3.38)
(60,50) 81.9 (11.41) 54.6 (7.24) 9.5 (1.51) 20.80 (21.56) 7.80 (3.05)
(80,60) 86.8 (15.09) 52.9 (6.45) 8.6 (0.96) 40.70 (40.37) 7.90 (2.77)
(100,80) 100.1 (17.84) 56.4 (7.47) 8.9 (1.44) 32.80 (20.81) 9.40 (1.65)
(100,100) 101.5(24.62) 56.7 (8.56) 8.8 (1.62) 45.40 (35.44) 9.50 (3.75)
(120,100) 98.5 (13.68) 63.3 (8.99) 10.0 (2.66) 24.70 (21.66) 10.80 (3.36)
(120,120) 99.8 (18.65) 62.7 (7.87) 10.4 (2.91) 30.90 (27.25) 9.70 (1.89)
(200,200) ? 70.5 (5.36) 10.4 (2.71) 22.90 (8.12) 9.40 (2.37)
(250,200) ? ? ? 21.50 (19.97) 13.50 (2.72)
(250,250) ? ? ? 25.10 (20.66) 12.40 (2.59)

Table 2 reports the average and standard deviation CPU times (in sec) obtained with the
algorithms proposed in [Kuno et al., 1993], [Ryoo and Sahinidis, 2003], indicated by [RS2003],
[Oliveira and Ferreira, 2008] and in the present paper. Since the results of Table 2 were obtained
by using different computational resources, the following relative performance measure suggested
in [Ryoo and Sahinidis, 2003] (also in [Oliveira and Ferreira, 2008]) was adopted:

ri,j :=
average time for n = i and m = j

average time for n = 30 and m = 20
.
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Table 3 shows the growth of the computing times requirements of the algorithms as mea-
sured by ri,j , for (i, j) = (40, 50), (60, 50), (80, 60), (100, 80), (100, 100), (120, 100), (120, 120),
(200, 200), (250, 200) and (250, 250). Observe that the growth of computational requirements of
the proposed algorithm is much slower than those presented by the algorithms of [Kuno et al.,
1993], [Ryoo and Sahinidis, 2003] and [Ferreira and Oliveira, 2008].

Table 2: Average (standard deviation) CPU times for p = 4.
n 30 40 60 80 100 100 120 120 200 250 250
m 20 50 50 60 80 100 100 120 200 200 250

[KYK:1993] 14.21 49.05 95.05 155.10 330.55 524.49 617.51 1154.83 ? ? ?
(10.46) (46.44) (32.49) (66.54) (101.87) (210.27) (141.65) (381.51) ? ? ?

[RS:2003] 2.6 10.4 13.6 28.1 56.1 61.0 86.1 94.2 396.3 ? ?
(0.8) (4.0) (5.1) (6.3) (17.2) (21.1) (35.9) (23.3) (189.4) ? ?

[OF:2008] 1.55 4.95 11.33 20.57 35.95 38.54 61.29 63.86 257.39 ? ?
(0.25) (0.84) (1.69) (2.95) (4.70) (7.83) (8.51) (8.42) (57.46) ? ?

Proposed 2.73 5.49 8.37 11.91 18.73 20.30 21.31 24.41 61.67 93.03 125.07
(2.38) (1.03) (4.97) (6.05) (12.16) (14.74) (17.49) (22.99) (20.00) (74.18) (81.01)

Table 3: Growths of CPU times for p = 4.
r40,50 r60,50 r80,60 r100,80 r100,100 r120,100 r120,120 r200,200 r250,200 r250,250

[KYK:1993] 3.5 6.7 10.9 23.3 36.9 43.5 81.3 ? ? ?

[RS:2003] 4.0 5.2 10.8 21.6 23.5 33.1 36.2 152.4 ? ?

[OF:2008] 3.2 7.3 13.3 23.2 24.9 39.5 41.2 166.1 ? ?

Proposed 2.01 3.06 4.36 6.86 7.43 7.80 8.94 22.59 34.08 48.81

Table 4 reports the average and standard deviation CPU times (in sec) of the algorithms
proposed in [Kuno et al., 1993], [Ryoo and Sahinidis, 2003], [Ferreira and Oliveira, 2008] and in
the present paper, as a function of p and (n,m) = (30, 20). Results for products of more than five
linear functions are only reported in [Oliveira and Ferreira, 2008].

Table 4: Average (standard deviation) CPU times (n = 30, m = 20).
p [KYK:1993] [RS:2003] [OF:2008] Proposed

2 0.46 (0.05) 0.3 (0.1) 0.56 (0.12) 0.81 (0.53)

3 1.27 (0.25) 0.8 (0.3) 1.57 (0.85) 2.02 (1.67)

4 14.21 (10.26) 2.6 (0.8) 2.97 (1.73) 3.13 (2.92)

5 1170.36 (950.53) 6.0 (2.0) 3.41 (1.30) 7.96 (5.72)

6 ? ? 9.81 (8.29) 14.01 (9.67)

7 ? ? 28.81 (19.49) 30.94 (18.37)

8 ? ? 84.39 (25.82) 68.99 (25.38)

Table 5 reports the growths of the computing times requirements of the algorithms as
measured by ri, where

ri :=
average time for p = i

average time for p = 2
, i = 3, 4, . . . , 10.

Observe that as p increases, the growth of the computational requirements of the proposed
algorithms in [Kuno et al., 1993], [Ryoo and Sahinidis, 2003] and [Ferreira and Oliveira, 2008]
grow faster than that of the proposed algorithm in this paper.
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Table 5: Growths of CPU times (n = 30, m = 20).
r3 r4 r5 r6 r7 r8

[KYK:1993] 2.8 30.9 2544.3 ? ? ?

[RS:2003] 2.7 8.7 20.0 ? ? ?

[OF:2008] 2.8 5.3 6.1 17.5 51.4 150.7

Proposed 2.49 3.86 9.83 17.30 38.20 85.17

6. Conclusions
In this work we proposed a global optimization approach for convex multiplicative pro-

grams. By using convex analysis results, the problem was reformulated in the outcome space as
an optimization problem with infinitely many linear inequality constraints, and then solved through
a relaxation branch–and–bound algorithm. Experimental results have attested the viability and ef-
ficiency of the proposed global optimization algorithm, which is, in addition, easily programmed
through standard optimization packages. Extensions of the proposed algorithm to other class of
global optimization problems are under current investigation by the authors.
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