
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Minimizing the makespan on parallel machines with sequence dependent
deteriorating effects

Olinto César Bassi de Araújo
Universidade Federal de Santa Maria

olinto@ctism.ufsm.br

Guilherme Dhein
Universidade Federal de Santa Maria

gdhein@redes.ufsm.br

Marcia Fampa
Universidade Federal do Rio de Janeiro

fampa@cos.ufrj.br

ABSTRACT
We address in this paper a minimum makespan problem, where jobs are scheduled in

parallel machines with deteriorating effects. The problem has been modeled in the literature by a
mixed integer nonlinear programming formulation and heuristic approaches were applied to obtain
feasible solutions for it. We first apply a linearization strategy to build a mixed integer linear pro-
gramming formulation for the problem, and then consider proved results about its optimal solution
to enhance this formulation. Finally, valid inequalities for the problem are proposed. Numerical
experiments were conducted, showing the strength of our formulations, and solving benchmark
instances to optimality for the first time.

KEYWORDS. Job scheduling, parallel machines, machine and job deterioration, MINLP,
linearization, valid inequalities.

Mathematical Programming, Combinatorial optimization

3556



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

1. Introduction
This paper addresses a job scheduling problem with sequence deterioration effects on

unrelated parallel machines. In real world situations, it is expected that jobs scheduled later in a
sequence will require more time to be processed. In some cases, the deterioration effect is slow, so
it can be neglected when a short horizon planning is used, but in other cases, the deterioration is
more evident and results in a significant deterioration in the performance of the machines. In such
cases, neglecting the deterioration may certainly lead to an infeasible scheduling.

In this paper, we address the specific scheduling problem that was proposed in [Ruiz-
Torres et al., 2013], where the authors present a mixed integer nonlinear programming (MINLP) for-
mulation and design simulated annealing heuristics for the problem. Both formulation and heuristic
procedures are evaluated on benchmark instances. Here, we apply linearization techniques to for-
mulate the problem as a mixed integer linear program and then consider specific characteristics
of the optimal job scheduling sequence on a single machine, to enhance this formulation. Valid
inequalities are also proposed to produce a tighter formulation that presents a much lower compu-
tational burden. The computational experiments reveal that the models proposed can be solved by
commercial solvers providing optimal solutions and best known solutions for the set of benchmark
instances.

The seminar publications on scheduling problems with deterioration are considered to be
[Gupta et al., 1987] and [Browne and Yechiali, 1990]. In both papers, the minimization of the
makespan on a single machine is addressed and the job processing time is an increasing function
of its waiting time for processing. In some other papers the deterioration is defined as a function of
the position that the job occupies in the sequence on a machine, as in [Mosheiov, 2012], where a
problem with multiple identical parallel machines is considered, aiming to minimize the total load.

In [Yang et al., 2012] and [Yang, 2011], maintenance activities on the machines are taken
into account, which restore their performance to the initial level. The deterioration of a job depends
on its position in the sequence and also on the most recent maintenance. The first work considers
identical machines, while the second work considers unrelated machines. In [Biskup, 1999], the
concept of learning in single-machine scheduling problems was introduced. According to this con-
cept, the repeated execution of similar jobs results in learning that decreases the time required to
execute subsequent jobs. More recently, some works have addressed problems in which learning
and deteriorating effects coexist, as, for example, [Wang and Wang, 2014], [Niu et al., 2015], and
[Rostami et al., 2015].

In this work, we admit that the deterioration occurs in the machine and not in the jobs.
Processing a job reduces the efficiency of the machine and consequently increases the processing
time of subsequent jobs. As the machines are unrelated, the deterioration depends on the sequence
of processed jobs and also on the machine. A real world example for this type of deterioration
occurs in the operation of cutting or drilling resistant materials. The wear of the saw blades and
drill bits that results from one job execution directly impacts the processing time of the next job. It
is interesting to note that the same deterioration in the level of performance can happen to people
or teams, due to fatigue caused by performing previous tasks.

The machine deterioration as a function of the sequencing of jobs is considered in different
works. In [Santos and Arroyo, 2015], Iterated Local Search (ILS) and ILS with random variable
neighborhood descent are applied to the problem proposed in [Ruiz-Torres et al., 2013]. In [Ruiz-
Torres et al., 2014], the objective is to minimize the total tardiness, in [Ruiz-Torres et al., 2015], the
objective is to maximize the percentage of jobs completed on time, and in [Ruiz-Torres et al., 2017],
the objective is to minimize the makespan in a problem where machines are subject to maintenance.
In all cases, heuristic approaches are proposed to the problems.

In Section 2, we define the specific problem addressed in this paper, present the MINLP
formulation proposed for the problem in [Ruiz-Torres et al., 2013], and propose our new formula-
tions based on characteristics of the optimal scheduling and on the valid inequalities developed. In

3557



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Section 3, we present results from an extensive numerical experiment that shows the effectiveness
of the valid inequalities proposed and tightness of the formulation presented. Concluding remarks
are made in Section 4.
2. The minimum makespan problem addressed

The minimum makespan problem addressed in this work can be specified as follows.
There are n independent jobs, N = {1, . . . , n}, to be scheduled and processed on m

parallel machines, M = {1, . . . ,m}. All the jobs are non-preemptive and available for processing
at time zero. Each machine can process only one job at a time and cannot stand idle until the last
job assigned to it has been finished.

For all j ∈ N and k ∈ M , we denote by pjk, the given baseline processing time of job
j on machine k, if no deterioration is considered. We denote by djk ∈ [0, 1), the deteriorating
effect of job j on machine k. Considering then the set H = {1, . . . , n} as the set of all possible n
positions for a job in each machine, let τ(h, k) be the job assigned to position h of machine k, for
all h ∈ H and k ∈ M . Let qkh be the performance level of machine k for the job in position h,
which is defined by

qkh := (1− dτ(h−1,k)k)× qk(h−1), (1)

for each machine k ∈ M and each position h greater than 1. It is assumed that the machines start
with no deterioration, i.e. qk1 = 1 for all k ∈M . The actual processing time of the job τ(h, k) is

p′τ(h,k)k =
pτ(h,k)k

qkh
.

The objective of the problem is to schedule the jobs on the machines so that the makespan
is minimized, where the makespan is defined as the time to complete all jobs, and the scheduling
of the jobs is defined by their assignment to a machine and by their processing sequence on the
machines. In the next subsection, we present the mixed integer nonlinear programming (MINLP)
formulation proposed in [Ruiz-Torres et al., 2013] for this problem.
2.1 A MINLP formulation from the literature

In [Ruiz-Torres et al., 2013], the authors define the binary variables

xjkh :=

{
1, if job j is assigned to machine k in position h,
0, otherwise,

for all j ∈ N , k ∈ M , and h ∈ H . They also define the nonnegative real variable Cmax, which
represents the makespan, and the nonnegative real variables qkh, which represent the performance
level of machine k for the job in position h, for all k ∈M , and h ∈ H .

The problem is then formulated as the following MINLP:

(P1) min Cmax , (2)∑
j∈N

xjkh ≤ 1 , ∀k ∈M,h ∈ H , (3)

∑
k∈M

∑
h∈H

xjkh = 1 , ∀j ∈ N , (4)

∑
j∈N

∑
h∈H

pjk
qkh
× xjkh ≤ Cmax , ∀k ∈M , (5)

xjkh ≤
∑
`∈N

x`k(h−1) , ∀j ∈ N, k ∈M,h ∈ H \ {1} , (6)

qkh =
∑
j∈N

(1− djk)× qk(h−1) × xjk(h−1) , ∀k ∈M,h ∈ H \ {1} , (7)

qk1 = 1 , ∀k ∈M , (8)

xjkh ∈ {0, 1} , ∀j ∈ N, k ∈M,h ∈ H , (9)

3558



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

where (2) is the objective function of the problem, (3) enforces that at most one job is assigned to
each position in each machine, (4) enforces that all jobs are assigned to exactly one position in one
machine, (5) defines the makespan as the maximum total processing time among all machines, (6)
enforces continuous assignments, and (7) and (8) define the performance level of each machine for
each job position.

Finally, in [Ruiz-Torres et al., 2013] the following lemma concerning the minimum
makespan is proved. We include it in this paper because it is an important result for the devel-
opment of our work.

Lemma 1 Let nk ≤ n be the number of jobs assigned to machine k. Let τ(h, k) be the job assigned
to position h of machine k, for all h ∈ H and k ∈M . Then, if the job scheduling satisfies:

pτ(1,k)k(1− dτ(1,k)k)
dτ(1,k)k

≥
pτ(2,k)k(1− dτ(2,k)k)

dτ(2,k)k
≥ . . . ≥

pτ(nk,k)k(1− dτ(nk,k)k)

dτ(nk,k)k
, (10)

the completion time of all the jobs assigned to machine k is minimum.

2.2 Linearizing the formulation from the literature
Let’s consider in this subsection the same notation previously introduced, and also define:

q̃kh :=
1

qkh
,

for all k ∈M and h ∈ H , and

d̃jk :=
djk

1− djk
,

for all j ∈ N and k ∈M . Note that

1

1− djk
= 1 + d̃jk,

therefore, following (1), we set

q̃kh := (1 + d̃τ(h−1,k)k)× q̃k(h−1), (11)

for each machine k ∈M and each position h greater than 1, and q̃k1 = 1 for all k ∈M .
We now rewrite (7) as

q̃kh = q̃k(h−1) ×
∑
j∈N

(1 + d̃jk)× xjk(h−1), (12)

for all k ∈M and h ∈ H \ {1}.
Using a parameter M̄ large enough, and considering that∑

j∈N
xjk(h−1) ≤ 1,

for all k ∈M and h ∈ H \ {1}. it is straightforward to see that (12) can be linearized, and thereby
(7) and (8) can be substituted in (P1) by

q̃kh ≥ (1 + d̃jk)× q̃k(h−1) − M̄(1− xjk(h−1)) , ∀j ∈ N, k ∈M,h ∈ H \ {1} ,
q̃kh ≥ 0 , ∀k ∈M,h ∈ H \ {1} ,
q̃k1 = 1 , ∀k ∈M .

3559



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Based on the same ideas, considering new nonnegative real variables ujk, for all j ∈ N ,
and k ∈M , and a suitable parameter M̃, it is possible to substitute (5) in (P1) by∑

j∈N
ujk ≤ Cmax , ∀k ∈M ,

ujk ≥ pjkq̃kh − M̃(1− xjkh) , ∀j ∈ N, k ∈M,h ∈ H ,

ujk ≥ 0 , ∀j ∈ N, k ∈M .

The substitutions mentioned above, lead to the following mixed linear integer program-
ming (MILP) formulation for the problem

(P2) min Cmax ,∑
j∈N

xjkh ≤ 1 , ∀k ∈M,h ∈ H ,

∑
k∈M

∑
h∈H

xjkh = 1 , ∀j ∈ N ,∑
j∈N

ujk ≤ Cmax , ∀k ∈M ,

ujk ≥ pjkq̃kh − M̃(1− xjkh) , ∀j ∈ N, k ∈M,h ∈ H ,

ujk ≥ 0 , ∀j ∈ N, k ∈M ,

xjkh ≤
∑
`∈N

x`k(h−1) , ∀j ∈ N, k ∈M,h ∈ H \ {1} ,

q̃kh ≥ (1 + d̃jk)× q̃k(h−1) − M̄(1− xjk(h−1)) , ∀j ∈ N, k ∈M,h ∈ H \ {1} ,
q̃kh ≥ 0 , ∀j ∈ N, k ∈M,h ∈ H \ {1} ,
q̃k1 = 1 , ∀k ∈M ,

xjkh ∈ {0, 1} , ∀j ∈ N, k ∈M,h ∈ H .

2.3 An improved MILP formulation
We now propose a new MILP formulation for our minimum makespan problem, that

represents an improved version of (P2). The improvement is based on the observation that, once
the assignment of jobs to machines is decided, an optimized processing sequence of the jobs on
each machine can be easily determined from the result in Lemma 1.

Following this idea, for each machine k ∈ M , we let (jk(1), jk(2), . . . , jk(n)) be a per-
mutation of the elements in N , such that

pjk(1)k(1− djk(1)k)
djk(1)k

≥
pjk(2)k(1− djk(2)k)

djk(2)k
≥ . . . ≥

pjk(n)k(1− djk(n)k)
djk(n)k

.

We then propose a new formulation for the problem, where the n2 ×m binary decisions
variables in (P2), namely xjkh, for all j ∈ N , k ∈ M , and h ∈ H , are replaced by only n × m
binary variables. These variables are denoted by xjk, for all j ∈ N and k ∈ M , and indicate
whether or not job j is assigned to machine k. If xjk = 1, we assume that job j is scheduled to be
processed in position jk(i) of the machine k, for i such that jk(i) = j.

Note that by defining the positions of the jobs in the machines using this procedure, the
relation (10) in Lemma 1 will be certainly satisfied, and therefore, the completion time of the jobs in
each machine will be minimized. On the other hand, the jobs may not be continuously assigned to
the positions of the machines, as in formulations (P1) and (P2), and this fact should be considered

3560



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

in order to correctly model in the improved formulation, the performance level of the machines for
the jobs in each position. We deal with this particularity of the model, by updating our performance
level q̃kh for h > 1 according to (11), only if a job is assigned to position h − 1 in machine k,
otherwise, we simply consider q̃kh to be equal to q̃k(h−1).

We next present the new MILP formulation for the problem addressed. The basic idea of
the formulation is then, to identify jk(i) as the only job that can possibly be assigned to position i
of machine k, for i = 1, . . . , n, and k ∈M , and to update the performance level q̃kh, for all k ∈M
and h ∈ H \ {1}, as explained above.

(P3) min Cmax ,∑
k∈M

xjk = 1 , ∀j ∈ N ,∑
j∈N

ujk ≤ Cmax , ∀k ∈M ,

ujk(h)k ≥ pjk(h)kq̃kh −M1(k, h)
(
1− xjk(h)k

)
, ∀k ∈M,h ∈ H ,

ujk ≥ 0 , ∀j ∈ N, k ∈M ,

q̃kh ≥ (1 + d̃jk(h−1)k)× q̃k(h−1) −M2(k, h)
(
1− xjk(h−1)k

)
, ∀k ∈M,h ∈ H \ {1} ,

q̃kh ≥ q̃k(h−1) , ∀k ∈M,h ∈ H \ {1} ,
q̃k1 = 1 , ∀k ∈M ,

xjk ∈ {0, 1} , ∀j ∈ N, k ∈M .

We note that besides the decrease on the number of binary variables in (P3), when com-
pared to (P2), there is also a significant decrease on the number of constraints. While we have
n+2m+2mn+3mn(n−1)+mn2 constraints in (P2), we have only n+2m+2mn+2m(n−1)
constraints in (P3).

The following proposition determines values for the parameters M1(k, h) and M2(k, h)
in (P3), which guarantee the identity between the optimal makespan given by its solution and the
solution of (P1). The proof of the proposition is straightforward.

Proposition 1 Let us set the parameters M1(k, h) and M2(k, h) in (P3) as

M2(k, h) :=

h−1∏
`=1

(
1 + d̃jk(`)k

)
, M1(k, h) := pjk(h)k ×M2(k, h) .

Then the optimal solution values of (P3) and (P1) are the same.

2.4 Valid inequalities
In the following propositions we present valid inequalities to strengthen (P3).

Proposition 2 If job j is assigned to machine k, its actual processing time ujk is no less than the
baseline processing time pjk. This observation can be modeled by the valid inequalities:

pjkxjk ≤ ujk , (13)

for all j ∈ N and k ∈M .

Proposition 3 The following inequalities are satisfied by any feasible solution of (P3):

q̃kh ≥ 1 +

h−1∑
`=1

d̃jk(`)kxjk(`)k , (14)

3561



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

for all k ∈ M and h ∈ H . Moreover, defining yk(i, j) := xikxjk, for k ∈ M , and i, j ∈ N , we
also have

q̃kh ≥ 1 +

h−1∑
`=1

d̃jk(`)kxjk(`)k +

h−1∑
`=1

h−1∑
s=`+1

d̃jk(`)kd̃jk(s)kyk(jk(`), jk(s)) ,

yk(jk(`), jk(s)) ≤ xjk(`)k , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≤ xjk(s)k , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≥ xjk(`)k + xjk(s)k − 1 , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≥ 0 , ∀`, s ∈ H, ` < s ,

(15)

for all k ∈M and h ∈ H .

Proof The case h = 1 is trivial, as q̃k1 = 1, for all k ∈M . Therefore, in the following we assume
h > 1. From (12), for all h ∈ H \ {1}, we have

q̃kh =
∏
`∈Lkh

(
1 + d̃jk(`)k

)
,

where Lkh ⊆ {1, . . . , h − 1} is the set of indexes such that ` ∈ Lkh ⇐⇒ xjk(`)k = 1, or,
equivalently:

q̃kh =
h−1∏
`=1

(
1 + d̃jk(`)kxjk(`)k

)
,

as q̃k1 = 1, for all k ∈M .
Now, let’s consider the following expression for the product of binomials [Abramowitz

and Stegun, 1972, p.10]

r∏
i=1

(1 + wi) =
1∑

k1=0

. . .
1∑

kr=0

w1−k1
1 . . . w1−kr

r , (16)

or equivalentely,

r∏
i=1

(1 + wi) = 1 +
r∑

k1=1

wk1 +
r∑

k1=1

r∑
k2=k1+1

wk1wk2+

+

r∑
k1=1

r∑
k2=k1+1

r∑
k3=k2+1

wk1wk2wk3 + . . .+ w1w2 . . . wr .

(17)

Then, considering wi ≥ 0, for all i = 1, . . . , r, and applying the standard linearization strategy to
enforce yk(i, j) := xikxjk, the results of the proposition are easily obtained. �

Remark 1 Note that, besides (14) and (15), other linear valid inequalities could be generated from
(17), by considering the linearization of the monomials of degree greater than 2.

Proposition 4 Let yk(i, j) := xikxjk , for k ∈M , and i, j ∈ N . Then, for all k ∈M , we have

∑
s∈H

pjk(s)k

(
xjk(s)k +

s−1∑
`=1

d̃jk(`)yk(jk(`), jk(s))

)
≤ Cmax , ∀k ∈M ,

yk(jk(`), jk(s)) ≤ xjk(`)k , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≤ xjk(s)k , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≥ xjk(`)k + xjk(s)k − 1 , ∀`, s ∈ H, ` < s ,

yk(jk(`), jk(s)) ≥ 0 , ∀`, s ∈ H, ` < s ,

(18)

3562



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Remark 2 Note that, besides (18) other linear valid inequalities could also be generated, by con-
sidering the linearization of the monomials of degree greater than 2. As an example, for the case
of monomials of degree 3, if we define tk(j1, j2, j3) := xj1kxj2kxj3k, we could add to (P3), for all
k ∈M , the valid inequalities

∑
s∈H

pjk(s)k

(
xjk(s)k +

s−1∑
`=1

`−1∑
r=1

(
d̃jk(r) + d̃jk(`) + d̃jk(r)d̃jk(`)

)
tk(jk(r), jk(`), jk(s))

)
≤ Cmax ,

Remark 3 The inequalities

yk(jk(`), jk(s)) ≤ xjk(`)k , ∀`, s ∈ H \ {1}, ` < s ,

yk(jk(`), jk(s)) ≤ xjk(s)k , ∀`, s ∈ H \ {1}, ` < s ,

for all k ∈M , in the set of valid inequalities (15) and (18), could be omitted, due to the minimiza-
tion of the objective function of the problem addressed.

3. Numerical experiments
In this section, we evaluate through computational experiments, three formulations pre-

sented for the scheduling problem addressed in this paper. The first one is formulation (P3) pre-
sented in Subsection 2.3. The second, denoted here as (P+

3 ) is formulation (P3) with the addition
of the valid inequalities (13), defined in Proposition 2, and (14) and (15), defined in Proposition 3.
The third formulation, denoted here as (P++

3 ) is formulation (P+
3 ) with the addition of the valid

inequalities (18), defined in Proposition 4. Our computational experiments were performed on a
computer with an Intel ES-2680 processor, a clock speed of 2.7 GHz, and 64 GB RAM. The tests
were executed in a time limit of 1 hour per instance (CPU time). We used IBM ILOG CPLEX Op-
timization Studio v12.6.2.0 with default settings and a maximum of 4 threads for solving problems
(P3), (P+

3 ) and (P++
3 ).

The benchmark instances used in the experiments were proposed in [Ruiz-Torres et al.,
2013] and are available at http://ruiz-torres.uprrp.edu/dm/. The instances were
generated based on four parameters: number of machines m, number of jobs n, range of processing
time prange and range of deterioration effect drange. Two sets of instances are defined: small
instances with 2, 3, or 4 machines and 8, 11, or 14 jobs, and large instances with 4, 7 or 10 machines
and 20, 35 or 50 jobs. The values for the processing time (pjk) were randomly selected in the range
prange, which was set equal to [1, 100] or [100, 200]. The values for the deteriorating effect (djk)
were randomly selected in the range drange, which was set equal to [1%, 5%] or [5%, 10%]. In total,
1800 instances were generated, 900 small instances and 900 large instances.

The solver could obtain the optimal solution of all small instances with each of the three
formulations. The total CPU times to solve these 900 instances were 167.90, 170.57, and 315.64
seconds, with formulations (P3), (P+

3 ) and (P++
3 ), respectively. As could be expected for these

easy instances, the addition of the valid inequalities increases the average CPU times in these tests,
once the number of constraints of the problems solved increases with no significant decrease on the
number of subproblems solved in the branch-and-bound algorithm executed in CPLEX.

Results for the more challenging instances, the 900 large instances, are shown in Table
1. Each line presents results concerning 25 instances that were generated with each configuration.
The first four columns of the table define the configuration of the instances. The remaining columns
present, for the three formulations evaluated, the average CPU time to obtain the optimal solution in
seconds (T(sec)) for the 25 instances, the average percentage duality gap at the end of the execution
(Gap(%)) for the 25 instances, and the number of instances for which the solver achieved optimality
(Opt(#)) . We can see from the results on the table that the difficulty of the problem increases with
the processing time, the deterioration effect and with the number of jobs. The number of machines,
on the other hand, does not impact the difficulty so clearly. Concerning all three measures: time,

3563



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

gap, and number of optimal solutions obtained, formulation (P++
3 ) presented the the best average

results. It is clear from the results the effectiveness of the valid inequalities proposed, mainly on the
most difficult problems.

Comparing (P+
3 ) to (P3), we see that the addition of the valid inequalities improved the

results for the majority of the difficult configurations. In particular, note the significant decrease on
the average gap of problems with 50 jobs. Comparing (P++

3 ) to (P3), we see further improvement.
The average gap does not increase with the addition of all valid inequalities, for any configuration,
and significantly decreases for some configurations. The average decrease is of 50%. Also, the
number of instances solved only decreases for one configuration, going from 18 to 15, and on the
other side, it significantly increases for several other configurations, going from 0 to 14 on another
group. We also can note that the time to solve the problems can increase with the addition of valid
inequalities, which again, is expected on the easiest instances. This increase is compensated by the
decrease on the times for the most difficult instances.

We also did numerical experiments comparing the time spent by the solver to achieve
a target solution, with the three formulations. This target solution is the best known solution in
the literature for our test problems, also available at http://ruiz-torres.uprrp.edu/
dm/. When the small instances are considered, the three formulations present very good results
once more. The total CPU times to achieve the targets were 20.89, 24.98, and 76.24 seconds, for
formulations (P3), (P+

3 ) and (P++
3 ), respectively. Results for the large instances, are presented in

Table 2. The first four columns of the table define the configuration of the instances. The remaining
columns present, for the three formulations evaluated, the average CPU time, in seconds, to achieve
the target solution, considering only the instances for which the target solution was found in the
time limit of 1 hour (TTg(sec)), the number of instances for which the target solution was achieved
in the time limit (Tg(#)), and the number of instances for which we were able to e improve the
best known solution, obtaining a better solution than the target in the time limit of 1 hour (BK(#)).
It’s interesting to see that in these experiments, formulation (P+

3 ) is the winner on all the three
measures. Clearly, the valid inequalities added in this problem were effective to increase the lower
bounds of the subproblems computed in the branch-and-bound algorithm, without jeopardizing the
achievement of good upper bounds on the time limit. For (P++

3 ), we see the worst results on these
experiments, showing that the delay on solving subproblems due to the addition of a large number
of inequalities results also on a delay on the computation of good feasible solutions. One future
experiment we could try, among other things, a DepthFirst Search (DFS) strategy on the branch-
and-bound to avoid this delay.
4. Concluding remarks

The job scheduling problem with deterioration effects is quite relevant due to real world
applications. It is NP-hard and has been approached mainly by heuristic procedures in the literature.
We show in this paper that tight mixed integer linear programming formulations for this problem can
be constructed with the knowledge that we have on certain characteristics of optimal schedulings
and also with the development of valid inequalities. With the formulations proposed in this paper,
we solved to optimality benchmark instances from the literature for the first time. We also improved
the best known solution for about 40% of the 900 benchmark instances in the set of more difficult
problems.
References
Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. 9th printing, New York: Dover.

Biskup, D. (1999). Single-machine scheduling with learning considerations. European Journal of
Operational Research, 115(1):173 – 178. ISSN 0377-2217.

Browne, S. and Yechiali, U. (1990). Scheduling deteriorating jobs on a single processor. Oper. Res.,
38(3):495–498. ISSN 0030-364X.

3564



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Table 1: Numerical experiments aiming at optimality
(P3) (P+

3 ) (P++
3 )

prange drange m n T Gap Opt T Gap Opt T Gap Opt
(%) (sec) (%) (#) (sec) (%) (#) (sec) (%) (#)

[1,100]

20 0,09 0,000 25 0,08 0,000 25 0,21 0,000 25
4 35 0,53 0,000 25 0,43 0,000 25 1,94 0,000 25

50 20.94 0.000 25 5.10 0.000 25 65.52 0.000 25
20 0.10 0.000 25 0.10 0.000 25 0.26 0.000 25

[1,5] 7 35 0.75 0.000 25 0.91 0.000 25 3.88 0.000 25
50 20.17 0.000 25 9.05 0.000 25 31.94 0.000 25
20 0.09 0.000 25 0.10 0.000 25 0.21 0.000 25

10 35 1.00 0.000 25 1.58 0.000 25 4.04 0.000 25
50 7.90 0.000 25 8.81 0.000 25 19.44 0.000 25
20 0.13 0.000 25 0.12 0.000 25 0.30 0.000 25

4 35 25.24 0.000 25 6.36 0.769 23 19.64 0.000 25
50 3582.27 6.907 1 882.74 0.464 23 2588.04 1.070 13
20 0.12 0.000 25 0.15 0.000 25 0.33 0.000 25

[5,10] 7 35 5.63 0.000 25 5.70 0.353 24 12.11 0.000 25
50 1717.33 1.248 17 238.59 0.000 25 640.11 0.000 25
20 0.10 0.000 25 0.12 0.000 25 0.18 0.000 25

10 35 1.37 0.000 25 3.47 0.000 25 7.34 0.000 25
50 311.87 0.000 24 158.91 0.000 25 160.92 0.000 25

[100,200]

20 11.68 0.000 25 5.67 0.000 25 2.39 0.000 25
4 35 1792.02 0.309 18 879.48 0.498 21 2139.66 0.287 15

50 3600.00 4.744 0 3600.00 1.763 0 3600.00 1.540 0
20 15.73 0.000 25 6.62 0.000 24 1.75 0.000 25

[1,5] 7 35 3479.91 2.168 3 1878.28 1.015 17 235.71 0.264 23
50 3600.00 6.913 0 3600.00 4.763 0 3600.00 4.449 0
20 27.27 0.000 25 1.97 0.000 25 1.04 0.000 25

10 35 3600.00 9.549 0 3600.00 7.981 0 2155.21 2.550 14
50 3600.00 4.291 0 3600.00 2.453 0 2605.62 0.358 11
20 221.35 0.130 24 193.31 0.083 24 195.52 0.097 24

4 35 3600.00 13.646 0 3600.00 9.355 0 3600.00 5.694 0
50 3600.00 28.222 0 3600.00 21.375 0 3600.00 17.745 0
20 426.29 0.000 25 319.74 0.000 24 32.42 0.000 25

[5,10] 7 35 3600.00 8.629 0 3600.00 5.850 0 3600.00 3.053 0
50 3600.00 20.224 0 3600.00 15.872 0 3600.00 11.994 0
20 180.76 0.000 25 12.61 0.000 25 1.87 0.000 25

10 35 3600.00 14.668 0 3600.00 12.899 0 3600.00 10.912 0
50 3600.00 12.455 0 3600.00 9.445 0 3600.00 6.648 0

Total 587 630 650
Average 1329.19 3.725 1128.33 2.637 1103.54 1.852

3565



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Table 2: Numerical experiments aiming at a target solution
(P3) (P+

3 ) (P++
3 )

prange drange m n TTg Tg BK TTg Tg BK TTg Tg BK
(%) (sec) (#) (#) (sec) (#) (#) (sec) (#) (#)

[1,100]

20 0.067 25 3 0.040 25 3 0.122 25 3
4 35 0.095 25 1 0.244 25 1 1.182 25 2

50 0.913 25 10 0.840 25 10 12.126 25 10
20 8.343 25 6 0.072 25 6 0.216 25 6

[1,5] 7 35 0.065 25 14 0.421 25 14 1.785 25 14
50 0.076 25 18 1.464 25 18 7.854 25 18
20 3.572 25 4 0.075 25 4 0.156 25 4

10 35 27.210 25 16 0.695 25 16 1.907 25 17
50 0.048 25 21 2.085 25 21 5.902 25 21
20 0.046 25 1 0.067 25 1 0.152 25 1

4 35 0.355 25 4 89.774 25 4 2.674 25 4
50 3.508 24 11 24.116 25 12 183.372 25 12
20 0.197 25 5 0.091 25 5 0.233 25 5

[5,10] 7 35 0.918 25 12 95.978 25 12 2.410 25 12
50 496.951 25 19 4.500 25 19 16.783 25 19
20 1219.043 25 7 0.076 25 7 0.109 25 7

10 35 0.388 25 17 0.731 25 17 1.766 25 17
50 0.752 25 19 4.461 25 19 9.891 25 19

(100,200)

20 348.696 25 1 2.356 25 1 1.346 25 1
4 35 1270.455 24 9 171.997 25 9 635.609 25 7

50 0.365 16 6 1201.966 18 6 1914.423 12 6
20 0.709 25 7 2.603 25 7 0.903 25 7

[1,5] 7 35 536.248 25 12 38.552 25 13 9.855 25 16
50 680.375 23 13 160.127 23 13 792.292 20 10
20 1.750 25 6 0.252 25 6 0.407 25 8

10 35 378.322 24 15 204.026 25 16 162.474 25 17
50 1394.737 24 17 414.237 25 19 484.674 25 19
20 1062.057 25 2 3.498 25 2 6.185 25 2

4 35 1.567 16 3 2185.222 21 6 2948.227 12 4
50 146.666 10 7 1214.607 9 5 — 0 0
20 260.337 25 6 16.966 25 6 9.237 25 6

[5,10] 7 35 924.359 25 8 550.985 23 8 523.147 22 8
50 1.427 21 7 1200.073 23 8 1284.066 2 1
20 7.717 25 7 0.293 25 7 0.628 25 7

10 35 897.216 23 16 607.948 22 16 1031.843 19 11
50 1742.980 20 11 1423.454 23 12 2664.350 2 1

Total 850 341 862 349 789 322
Average 317.181 267.358 353.543

3566



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Gupta, S. K., Kunnathur, A. S., and Dandapani, K. (1987). Optimal repayment policies for multiple
loans. Omega, 15(4):323 – 330. ISSN 0305-0483.

Mosheiov, G. (2012). A note: Multi-machine scheduling with general position-based deterioration
to minimize total load. International Journal of Production Economics, 135(1):523 – 525. ISSN
0925-5273. Advances in Optimization and Design of Supply Chains.

Niu, Y.-P., Wang, J., and Yin, N. (2015). Scheduling problems with effects of deterioration and
truncated job-dependent learning. Journal of Applied Mathematics and Computing, 47(1):315–
325.

Rostami, M., Pilerood, A. E., and Mazdeh, M. M. (2015). Multi-objective parallel machine schedul-
ing problem with job deterioration and learning effect under fuzzy environment. Computers &
Industrial Engineering, 85:206 – 215. ISSN 0360-8352.

Ruiz-Torres, A. J., Paletta, G., and Pérez, E. (2013). Parallel machine scheduling to minimize the
makespan with sequence dependent deteriorating effects. Computers & Operations Research,
40:2051–2061.

Ruiz-Torres, A. J., Ablanedo-Rosas, J. H., Alomoto, N., and Avils, D. J. (2014). Minimizacin de
la tardanza en problemas de programacin de tareas en maquinas paralelas con deterioro de los
recursos. Revista Ingeniera Industrial, 13(1):51–75. ISSN 0717-9103.

Ruiz-Torres, A. J., Paletta, G., and M’Hallah, R. (2017). Makespan minimisation with sequence-
dependent machine deterioration and maintenance events. International Journal of Production
Research, 55(2):462–479.

Ruiz-Torres, A. J., Paletta, G., and Perez-Roman, E. (2015). Maximizing the percentage of on-time
jobs with sequence dependent deteriorating process times. Int. J. Operat. Res. Inf. Syst., 6(3):
1–18. ISSN 1947-9328.

Santos, V. L. A. and Arroyo, J. E. C. (2015). Sequenciamento de tarefas em mquinas paralelas
considerando desgastes dependentes da sequłncia. In Anais do XVLII Simpsio Brasileiro de
Pesquisa Operacional, p. 2572–2583.

Wang, X.-Y. and Wang, J.-J. (2014). Scheduling deteriorating jobs with a learning effect on un-
related parallel machines. Applied Mathematical Modelling, 38(21 - 22):5231 – 5238. ISSN
0307-904X.

Yang, D.-L., Cheng, T., Yang, S.-J., and Hsu, C.-J. (2012). Unrelated parallel-machine scheduling
with aging effects and multi-maintenance activities. Computers & Operations Research, 39(7):
1458 – 1464. ISSN 0305-0548.

Yang, S.-J. (2011). Parallel machines scheduling with simultaneous considerations of position-
dependent deterioration effects and maintenance activities. Journal of the Chinese Institute of
Industrial Engineers, 28(4):270–280.

3567


