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Rui Sá Shibasaki
Universidade Federal de Minas Gerais
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Campus Universitaire des Cézeaux, 1 rue de la Chebarde, 63178 Aubière, França
philippe.mahey@isima.fr

Maurı́cio Cardoso de Souza
Universidade Federal de Minas Gerais
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ABSTRACT
Lagrangian relaxation has been proved to be a good alternative for solving linear rela-

xations when large scale problems are involved. In this paper, two non-differentiable optimization
methods for solving the Lagrangian dual are compared: the Bundle method and the Volume algo-
rithm. The Fixed-Charge Multicommodity Capacitated Network Design problem have been used
for the comparison and the Volume algorithm seems to be preferable for the group of instances
conceived, considering computing time, memory consumption and solution quality. Although the
Bundle method produced good quality bounds for some instances, for many others it performed
worse than the Volume algorithm. Moreover, the Bundle method takes more time per iteration, but
it produces good bounds after few iterations.
KEYWORDS. Bundle methods. Volume Algorithm. Multicommodity Network Design.
Paper topics: Lagrangian Relaxation, Non-Differentiable Optimization

RESUMO
A relaxação lagrangiana provou ser uma boa alternativa para a solução de relaxação li-

neares, quando problemas de grande escala estão envolvidos. Neste trabalho, são comparados dois
métodos de otimização não diferenciáveis, Bundle e Volume, para a resolução do dual lagrangi-
ano. O problema de Design de Redes Multicommodity em grande escala foi testado e o algoritmo
de Volume, no que diz respeito ao consumo de memória, tempo computacional e à qualidade da
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solução, é preferı́vel para as instâncias elaboradas. Embora o Bundle tenha fornecido bons limites,
para muitos casos eles foram piores quando comparado com os do Volume. Em termos de tempo
computacional, o Bundle mostrou ter iterações mais caras, mas consegue atingir bons limites em
poucas iterações.

PALAVRAS CHAVE. Método de Feixes, Algoritmo de Volume, Desing de Redes Multicom-
modity.

Tópicos: Relaxação Lagrangiana, Otimização não diferenciável.

1. Introduction
Lagrangian Relaxation has been widely used to generate lower bounds for difficult cons-

trained minimization problems and to serve as a basis to develop efficient approximation schemes,
competing sometimes with the centralized exact approaches (see [Guignard, 2003] for the basic
theory). As the resulting Lagrangian dual functions are generally non smooth but concave, the
ability to lean on efficient subgradient algorithms is a crucial issue for the success of Lagrangian
Relaxation. In this paper, we aim at comparing two classical versions of these algorithms, namely
the Bundle method, early proposed in [Wolfe, 1975; Lemaréchal, 1989]) and the Volume algorithm
proposed in [Barahona & Anbil, 2000]. Comparisons of non smooth optimization algorithms can
be found in the literature (see [Frangioni, 2005; Briant et al., 2008]) but a direct comparison of these
two algorithms applied to large-scale combinatorial models is missing and our work is an attempt to
fill this gap. We have chosen to compare the performance of both algorithms on large-scale instan-
ces of the Fixed-Charge Multicommodity Capacitated Network Design (FCMC) problem because
it presents many different characteristics which are favorable to our objectives, as the presence of
different coupling constraints, potential candidates for the relaxation, the decomposable structure
induced by these relaxations and the possibility to build very large instances, unreachable to most
exact approaches but with relatively small duality gaps (see [Crainic et al., 2001]). Even if both
algorithms have the ability to produce approximate, but fractional, primal solutions, we will not
consider complementary techniques like Branch-and-Price or Lagrangian heuristics to solve the
FCMC problem (see for instance [Gendron et al., 1999]).

The goal of this paper is to compare the Bundle and Volume methods in terms of com-
putational time, memory consumption and quality of solutions, when dealing with the Lagrangian
relaxation of a network design problem. The next sections will present the FCMC model followed
by an explanation about the algorithms. Then, in Section 6, the computation experiments are detai-
led and the results are shown. Finally, conclusions are presented and future work is discussed.

2. The fixed charge multicommodity network design problem
The FCMC Problem consists in minimizing the total cost of multicommodity transport

between pairs of origin-destination, so that the demand is satisfied and the capacity is respected.
The objective function includes transportation costs for each commodity and arc installation costs,
the latter being associated with a single facility of given capacity. Many additional features should
be added to model real life network design problems, like the ones faced in Telecommunications or
Transportation networks, but the model is sufficiently challenging and well adapted to our current
purpose.

In this paper, it is considered for a given directed graph G = (N,A), N being the set
of nodes and A the set of arcs, the problem of minimizing the total cost to satisfy the demands
dk of a set K of origin-destination pairs, while the arc capacity uij are respected. The total cost
is represented by the sum of transportation cost plus the arc usage cost. The variable cost for the
commodity k in the arc (i, j) is called ckij ≥ 0 and the fixed charge for each arc (i, j) is fij ≥ 0.
A single origin O(k) and destination D(k) are associated with each commodity k. Introducing the
variables xkij for the flow quantity of k on the arc (i, j) and binary variables yij for the arc use
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(yij = 1 if the arc is installed) or (yij = 0 else), the model is presented as follows [Magnanti &
Wong, 1984]:

Minimize
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij +

∑
(i,j)∈A

fijyij

∑
j∈N+

i

xkij −
∑

j∈N−
i

xkji =


dk, if i = O(k)
−dk, if i = D(k)
0, otherwise

∀i ∈ N, k ∈ K (1)

∑
k∈K

xkij ≤ uijyij , ∀(i, j) ∈ A (2)

xkij ≤ bkijyij ∀(i, j) ∈ A, k ∈ K (3)

xkij ≥ 0, ∀(i, j) ∈ A, k ∈ K
yij ∈ {0, 1}, ∀(i, j) ∈ A

where N+
i = {j ∈ N |(i, j) ∈ A} is the set of nodes j having an arc arriving from to node

i and N−i = {j ∈ N |(j, i) ∈ A} the set of nodes j having an arc arriving into the node i.
The transportation costs are considered equal for all commodities k ∈ K and constants bkij =

min{uij , dk}∀(i, j) ∈ A, k ∈ K.
Constraints (1) guarantee the flow conservation in the network, then come the capacity

constraints (2) and finally the domain of the variables. One can note that the strong forcing cons-
traints (3) must be redundant for the mixed-integer program, but they increase considerably the
quality of lower bound when solving the linear relaxation of the program [Chouman et al., 2003].

3. Lagrangian Relaxation and subgradient-like methods
The reason for using Lagrangian relaxation to obtain lower bounds for the problem men-

tioned is explained when large scale instances are involved. Resuming the main features of La-
grangian Relaxation, we start from a primal problem, supposed to be linear with mixed-integer
variables, defined as :

Minimize c.x s.t. Ax ≤ b, x ∈ S

where Ax ≤ b represent the difficult constraints we want to relax. The set S may be discrete
and defined by linear constraints. The continuous (or linear) relaxation bound is defined as ZL =
minx c.x s.t. Ax ≤ b, x ∈ Conv(S), where Conv(S) is the convex hull of the set S.

For a given vector of Lagrange multipliers u ≥ 0 associated with the difficult constraints
(assumed here to be inequalities), the Lagrangian subproblem defines a lower bound for the optimal
value of the primal problem :

L(u) = inf
x∈S

(c−ATu).x+ b.u

The dual problem is thus to look for the best lower bound, i.e. to maximize the dual function L
which is indeed concave on any convex subset of its domain (see [Lemaréchal, 1989] for example).
That function is generally non smooth and piecewise affine (with a huge number of pieces, theo-
retically the number of extreme points of the polyhedral set Conv(S)). This motivates the search
for efficient algorithms for non smooth optimization. These take profit of the fact that, for any
solution x(u) of the Lagrangian subproblem, a subgradient of L at u is easily computed, indeed
g(u) = Ax(u)− b ∈ ∂L(u).

3.1. Volume
The Volume algorithm presented in [Barahona & Anbil, 2000], tries to find an appro-

ximate solution to the master problem of the Dantzig-Wolfe decomposition, using subgradients.
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Indeed, the Lagrangian dual problem can be formulated as (4) (which corresponds to the dual of the
master problem in Dantzig-Wolfe decomposition, see [Lemaréchal, 1989]).

Maximize Z

s.t. Z ≤ c.xt + u.(b−Axt) ∀t
u ∈ Rn+, Z ∈ R

(4)

The search for the optimal solution (u∗, Z∗), is based in a stability center ū, a step-size
st and a subgradient-based direction. The stability center represents a point that have provided
significant improvement in the optimization process. In its turn, the step-size represents how far
one may move in the direction of vt = (b − Ax̄), such as ut = ū + st · vt. The directions are
updated at each iteration according to the primal vector x̄ :

x̄← αxt + (1− α)x̄

As stated in [Barahona & Anbil, 2000] at the end of an iteration (t), α, (1 − α)α, (1 −
α)2α, ... , (1 − α)tα can serve as an approximation for the primal variables λ1, ... , λt of the
Dantzig-Wolfe’s master problem, with respect to the dual constraints. Furthermore, those λi could
be approximated by the volume below the active faces of (4), which explains the name of the
method.

3.2. Bundle
Many Bundle algorithms have been proposed in the literature, but for this work the ge-

neral one presented in [Crainic et al., 2001] was chosen. The main idea is to gather information
throughout iterations in order to build a model for the Lagrangian dual, using the subgradient prin-
ciples. It is expected that solving the model, the solution to the Lagrangian dual might be approxi-
mated.

Indeed, if g is a subgradient of the concave function L, then L(u) ≤ L(ū) + g.(u −
ū) ∀u ∈ Rn+ (extending the dual value with −∞ if the Lagrangian subproblem is infeasible or
unbounded). Assuming that there exists an initial Bundle β = {i | gi ∈ ∂L(ui)}, L̂(u) is the
piecewise affine concave function such that :

L(u) ≤ L̂(u) := min{L(ui) + gi.(u− ui) : i ∈ β} ∀u ∈ R (5)

The model at this point is represented by a group of affine functions that together form an
easier nondifferentiable optimization problem. The Moreau-Yosida regularization comes then as an
alternative to this problem, since the function and its regularized function share the same minimum.
Such regularization is defined by:

Lt(ū) = minu L̂(u) +
1

2t
||u− ū||2 (6)

Assuming the Bundle has l parts, thanks to the information transfer property [Lemaréchal,
1989], it is convenient to rewrite the Bundle in terms of linearization errors regarding ū, such as
ẽi := L(ū)−L(ui)+gi.(ui−ū) ∀i = 1, ..., l. Then rewriting the Lagrangian dual as a regularized
program, it turns into:

Maximize Z +
1

2t
||u− ū||2

Z ≤ L(ū) + gi(u− ū)− ẽi ∀i ∈ β
u ∈ Rn+, Z ≥ 0

(7)
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Further dualizing (7) with the dual coefficients αi ≥ 0 we obtain :

Minimize − t

2
||

l∑
i=1

αigi||2 −
l∑

i=1

αiẽi + L(ū)

l∑
i=1

αi = 1

αi ≥ 0 ∀i = 1, ..., l ∈ β

(8)

Then the main search procedure is to get, at each iteration k, the solution αk for (8) and
set of new trial points along the direction of

∑
i∈β αigi with a step of size tk .

Bundle methods are now known to be very efficient for solving the Lagrangian dual pro-
blem, however, a great drawback is the fact that it demands the resolution of a quadratic subproblem
at each iteration, which can decrease the algorithmic performance in a significant way. Frangioni,
in [Frangioni, 1996], introduced a specially tailored algorithm to solve such quadratic programs
(8) in a way to reduce the computational cost.
4. Review

The literature about Lagrangian relaxation and non-smooth optimization is extremely
large. It embodies a range that goes from the way of conceiving the relaxed problem, until the
methods with which Lagrangian duals are solved. In [Guignard, 2003] a few algorithms for it are
described, and in [Crainic et al., 2001] different ways to relax FCMC are described.

Frangioni, in [Frangioni, 2002], presented a generalized Bundle method, which can be
seen as similar to the Augmented Lagrangian Method [Bertsekas, 1996]. Still in that paper, a
version for cases in which the Lagrangian dual can be decomposed is given. Furthermore, in [Fran-
gioni & Gorgone, 2014] and [Frangioni & Gendron, 2013], the authors presented a version of the
method that consider only some parts of the Lagrangian dual function to build the model, leaving
the rest of it as its explicit form. In that last paper, a comparison with the Volume Algorithm is
made and this partial decomposed Bundle have performed better than the Volume. The problem
considered for this work is suitable for the three Bundle versions mentioned, however it is the one
in the previous section that has been chosen to be tested. This is because we hope to be able to
extend results for more problems where the Lagrangian dual cannot be decomposed.

According to [Barahona & Anbil, 2000], the Volume algorithm has similarities with the
subgradient and Bundle methods. Regarding their proximities, [Bahiense et al., 2002] revised the
Volume and managed to obtain an algorithm halfway in between the original and the Bundle one.
Moreover, the results for the rectilinear Steiner problems showed that the new version could be
competitive.

Some authors also focused their efforts on comparing some of the algorithms for non-
differentiable optimization. This type of work was done in [Briant et al., 2008] where the authors
compare different algorithms including Bundle, column generation and the Volume for five different
problems. With respect to the Volume-Bundle comparison, the results have showed that in general
they behave similar but Bundle enjoys more reliable stopping criteria, even thought it may be fairly
expensive to reach it. According to the paper, the Bundle reaches better bounds with less iterations,
thought we believe that its average time per iteration is fairly more expensive than Volume one.
Considering that, this article based the comparison rather in computing time than in number of
iterations.

In addition, [Escudero et al., 2012] and [Haouari et al., 2008] also have made com-
parisons. The first one tested the performance of the Volume, a variant of Cutting-Plane method
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and other two algorithms for a stochastic problem and conclude that the volume provided stronger
bounds in less time. The second paper worked with the prize collecting Steiner tree problem and
put in test multiple variants of deflected subgradient strategies, the Volume Algorithm and a gene-
ralized cutting plane technique, finally concluding that the Volume Algorithm is outperformed by
the different deflected subgradient algorithms.

5. Lagrangian Dual
The chosen approach for relaxing the Fixed-Charge Multicommodity Capacitated Network

Design problem is made through the relaxation of flow-conservation constraints. The Lagrangian
Dual corresponds to the maximization of L(v), such that v is the vector of the Lagrangian coeffi-
cients vki ∈ R, ∀i ∈ N, k ∈ K corresponding to the relaxed constraints. Such relaxation enables
the subproblem to be decomposed in |A| smaller knapsack subproblems gij(v). To solve it one can
easily verify the reduced costs rcij = fij + gij(v) for each arc (i, j) ∈ A :

L(v) := Min
∑

(i,j)∈A
[fij + gij(v)]yij +

∑
k∈K

dk(vkD(k) − v
k
O(k))

yij ∈ {0, 1}, ∀(i, j) ∈ A

Then, for each (i, j) ∈ A there is a continuous knapsack problem gij(v), very simple to
be solved. It suffices to fill up the arc with the commodities having the most negative reduced costs
if any, until the arc flow equals the capacity.

gij(v) = Min
∑
k∈K

(ckij + vki − vkj )xkij

∑
k∈K

xkij ≤ uij

0 ≤ xkij ≤ dk, ∀k ∈ K

6. Computational Experiments
To solve the Lagrangian dual the two algorithms were implemented in C++, compiled

with Apple LLVM version 6.1.0 (clang-602.0.53) and ran with 1,3 GHz Intel Core i5 in a Macbook
8 GB 1600 MHz DDR3. The linear relaxation to the problem was implemented in order to have
some reference values. The linear program was solved by CPLEX 12.6.0.0, written in C++ and
compiled with a g++ 5.4.0, using a 8GB Linux machine, Intel Core i7-2600 3.40GHz. The Volume
Algorithm implementation has been provided by the COIN-OR project https://projects.
coin-or.org/Vol and the Bundle implementation, by Antonio Frangioni, [Frangioni, 2013].

6.1. Instances
Instances were elaborated using the generator Mulgen implemented by Crainic, Frangioni

and Gendron, in http://www.di.unipi.it/optimize/Data/MMCF.html. Their ins-
tance generator has a number |N | of nodes, a number |A| of arcs and a number |K| of commodities
as parameters. Two nodes are randomly connected until the number of arcs is achieved, with parallel
arcs not allowed. A similar procedure is adopted for the commodities.

Costs, capacities and demands are uniformly distributed inside an interval given also as
parameter. However, costs and capacities are recomputed in order to obtain different difficulty
levels among the instances. Two ratios are used to do so: one for the capacities (C) and another (F )
for fixed charges. Given that T =

∑
k∈K d

k:

C = |A|T/
∑

(i,j)∈A uij
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F = |K|
∑

(i,j)∈A fij/(T
∑

k∈K
∑

(i,j)∈A c
k
ij),

In general, when C is close to 1, the network is lightly capacitated and becomes more
congested as C increases. When F is close to zero, fixed costs are not relevant if compared with
transportation costs. Their values increase as F increases as well.

Five groups of instances were conceived with three different ratios, each with five ran-
domly generated instances. So for example, Group A-0 has 15 instances including 100 nodes 1000
arcs and 2000 commodities, 5 of them with C-ratio = 8 and F-ratio = 10 and so on. Table 1 des-
cribes all the classes of instances generated. The goal has been to test large scale instances with
different levels of difficulty. The higher the ratios, the more the problem tends to be difficult due to
the large importance of fixed charges and great tightness.

Group Nodes Arcs Commodities C ratio F ration
8 10

CLASS A-0 100 1000 2000 10 10
14 10
6 10

CLASS B-0 100 1000 500 10 10
14 10
2 0.001

CLASS C-0 100 1000 800 14 0.001
2 10

14 12
CLASS D-0 100 1200 1000 20 0.001

1 20
1 20

CLASS E-0 100 2000 2000 20 0.001
1 0.001

Table 1: Instances

6.2. Calibration
In the interest of setting the best compromise between parameters of both methods, a

calibration phase has been done. In this section, the best set of parameters found for each method is
presented. Two additional stopping criteria have been set to both methods: a iteration limit of 1000
and a time limit of 3600 seconds.

Concerning the Volume Algorithm, there is a factor for the step-size that enlarges or
decreases it. In order to do so, after 10 consecutive red iterations the factor is decreased and after
4 yellow iterations and 1 green iteration such factor is increased. Its initial value was set to 0.1.
The value of α in its turn, is manipulated in a more delicate way, since its role is essential to the
algorithm. For an initial αinit = 1 the method reduces it, in order to enhance the precision of the
primal solution (αinit = 0.1 also work well). The decrease is made by multiplying α by a factor
set to 0.3, when the z̄ has not improved at least 1%, after 10 iterations. A lower bound set to 0.01
allows the algorithm to stop decreasing α in case it is necessary. The stopping criteria concerning a
gap precision have been set to 1e− 4.

Likewise, the Bundle implemented has also a considerable number of parameters, although
it appears to be a more robust method with respect to parameter settings. Basically, two strategies
are involved when setting Bundle parameters: the Bundle-strategy and the t-strategy. Almost all
parameters have been set according to [Crainic et al., 2001].

Concerning the Bundle strategy, the size has been set to 10 items and for every 20 iterati-
ons one item is discarded and a new one is included. In terms of t-strategy, it has a similar procedure
of increasing and decreasing the value of t. It has been stablished three different approches to up-
date such parameter and the one chosen is the Hard-Longterm t-Strategy. An initial t had to be
chosen and depending on the instance, 1 and 10 were the most suitable values for it.
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Two parameters, tStar and EpsLin, are employed as stopping criteria, so that for an ite-
ration k, if tStar ∗ ||ĝk||2 + êk ≤ EspLin ∗ |L(ū)| the algorithm stops. The tStar is an estimate of
the largest step to move from a solution to another, which represents an estimate of improvement
that can be obtained moving one step in the direction of any subgradient. In its turn, EspLin is a
relative precision required [Frangioni, 2013] and it has been also set to 1e − 4. Still according to
[Crainic et al., 2001], an interesting value for tStar must have one degree of magnitude greater than
the initial value of t.

6.3. Results
In order to verify the validity of instances and methods, the linear relaxation have been

solved by the simplex-based Network Optimizer implemented by Cplex, with a time limit of 3600
seconds. It has been observed that for some instances the Simplex method provided very poor
bounds. The comparison has been made in terms of solution quality and time and memory consu-
ming.

The marks (*) represent the best lower bound among the ones provided by each method,
therefore gaps are computed with respect to that best lower bound. Table 2 presents the average
gaps for each group of instances of three classes tested. Since for every group there are five instan-
ces, the mark (*) means that for all five instances the method has given the best bound. For classes
D-0 and E-0 one can observe that the same does not occurs (see Table 4).

In terms of problem difficulty, one can verify that the more ratios are high the more the
problem tends to be difficult. According to the results in Table 2 when the fixed-charge is not
that relevant (F-ratio = .001) a simplex-based method might easily deal with the linear relaxation,
depending on the size of the instance. Furthermore, the Bundle method seems to deal better with
such instances, returning better bounds than the Volume ones, for those size of problems.

Volume Bundle Linear Relaxation
Instance gap(%) time gap(%) time gap(%) time

Class A-0 8 10 * 482 0.29 472 5.83 3623
10 10 * 397 0.31 441 6.35 3620
14 10 * 441 0.29 507 8.34 3624

Class B-0 14 10 * 124 2.19 132 10.58 3605
10 10 * 122 2.53 134 5.60 3605
6 10 * 125 3.00 128 2.06 3606

Class C-0 2 10 * 189 1.58 206 0.63 3610
2 001 0.04 146 0.02 152 * 187
14 001 0.05 150 0.03 152 * 381

Table 2: Results for 1000 iterations classes: A, B and C

Contrary to A, B and C, classes D and E do not behave uniformly. Table 4 describes
the results individually for each instance in those classes. Once again regarding class D-0, except
for instance 20 001e, the Bundle method seems to perform better when dealing with low values of
F-ratio (smaller values of fixed-charge). Nevertheless, as the number of arcs and demands grows
the Volume algorithm manages to provide bounds close to the ones of Bundle or even better (see
Class E-0 in Table 4). The capacity ratio (C-ratio), in its turn, do not appear to have a significant
role in the performance of the methods.

Considering large scale instances, in general when the objective function depends mostly
in the design variables (fixed-charge), the Volume algorithm reaches better bounds in less time than
Bundle, until 1000 iterations. Such a running time difference can be explained by the fact that each
iteration of Bundle algorithm demands the solution of a quadratic program, which can be more
expensive in terms of time consumption. When the instance size increases from class D to E, it can
be observed that the time per iteration can become a bottleneck for the method (Table 4).
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With respect to memory expenses, Table 3 shows the average amount of memory in
gigabytes spent by each method to process each group of instances. As expected, Bundle needs in
general more space in memory, since more “information” need to be gathered in the Bundle during
the optimization process. Moreover, that need grows as the difficulty increases.

Figure 1 presents the average bound progression of both methods throughout the compu-
tation time. Such progression is computed with respect to the best bound given by one of the three
methods (marks (*) in Tables 2 and 4). As expected from the Tables 2 and 4, both algorithms con-
verge to almost the same bounds when fixed-charge ratios are low (Figures 1b, 1e and 1f), while for
high values of F-ratio the Volume bounds are visibly greater. Furthermore, for all classes Volume
curves have reached 100% of the best bound, or close to it.

As one can see in Figures 1e, 1f and 1b, even though Bundle have expensive iterati-
ons, it could provide good quality bounds in the beginning of the optimization process, taking few
iterations to do it.

(a) Class D, 14 12 (a-e) (b) Class E, 1 001 (a-e)

(c) Class D, 1 20 (a-e) (d) Class E, 1 20 (a-e)

(e) Class D, 20 001 (a-e) (f) Class E, 20 001 (a-e)

Figure 1: Average bound progression for large instances with respect to computation time
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Volume Bundle
Instance RAM Gb RAM Gb

Class A-0 8 10 3.5 4.7
10 10 3.5 5.0
14 10 3.7 4.7

Class B-0 14 10 3.3 5.4
10 10 3.2 5.3
6 10 3.0 5.1

Class C-0 2 10 3.7 5.1
2 001 0.1 0.2

14 001 0.1 0.2
Class D-0 14 12 4.6 5.0

20 001 0.2 0.3
1 20 3.4 4.7

Class E-0 1 001 0.4 0.8
20 001 0.4 0.8

1 20 4.9 5.1

Table 3: Average RAM consuming

Volume Bundle Linear Relaxation
Instance gap(%) time gap(%) time gap(%) time

Class D-0 14 12a * 307 0.80 327 8.77 3603
14 12b * 299 0.81 329 7.44 3603
14 12c * 316 0.90 350 5.23 3603
14 12d * 297 0.68 337 7.89 3603
14 12e * 325 1.00 334 8.22 3604

20 001a 0.05 248 0.04 242 * 381
20 001b 0.05 244 0.03 211 * 189
20 001c 0.04 234 0.01 222 * 38
20 001d 0.08 233 0.05 233 * 468
20 001e 0.05 237 0.26 206 * 672

1 20a * 313 1.37 329 0.00 3603
1 20b * 309 1.47 340 0.01 3603
1 20c 0.09 306 1.43 342 * 3603
1 20d * 307 1.04 310 0.18 3604
1 20e * 259 0.13 259 4.57 3603

Class E-0 1 001a 0.01 840 0.00 949 * 28
1 001b 0.02 849 0.10 901 * 3610
1 001c * 842 0.06 960 0.06 3610
1 001d 0.01 849 * 960 1.20 3610
1 001e 0.04 848 * 947 0.46 3610

20 001a 0.01 841 0.00 954 * 30
20 001b * 848 0.13 968 0.90 3609
20 001c * 850 0.05 968 0.06 3610
20 001d * 844 0.00 909 1.05 3610
20 001e 0.04 828 * 961 0.49 3611

1 20a * 972 0.96 1336 0.73 3611
1 20b * 978 0.68 1312 0.35 3610
1 20c * 1064 1.19 1312 0.61 3609
1 20d * 1049 1.12 1282 0.64 3612
1 20e * 955 0.35 1105 0,11 3610

Table 4: Results for 1000 iterations classes: D and E

7. Conclusions
Lagrangian relaxation has proved to be a good alternative to deal with linear relaxations

of large scale problems. Indeed for some instances the simplex-based optimizer has not given the
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best bounds within one hour of computation time.
The Bundle and the Volume algorithms both have provided good quality bounds, however

both methods appear to struggle to stop with reliable stopping criteria. In [Briant et al., 2008],
results showed that the Bundle method enjoys good accuracy for the Cutting Stock problem but it
may be fairly expensive to reach it, as well as in some large instances of the Travelling Salesman
problem. Considering smaller instances of FCMC, [Frangioni & Gorgone, 2014] presented results
showing that the Bundle provided better bounds, however with much higher computation time (It
is not clear which stopping criterion was set to the Volume algorithm). In the present work, both
methods have reached great bounds but they have run until the limit of iterations, not being able to
converge with the given accuracy (1e− 4).

With respect to the comparison made in this paper, for almost all small instances Volume-
times and Bundle-times are very close, but when the size of instances is enlarged from Class D
to Class E, it becomes evident the advantages of the Volume algorithm. Regarding memory con-
sumption, the Volume algorithm performed better for all instances. Moreover, Volume algorithm
provided better bounds for all instances with high levels of F-ratio. For those with low levels of
F-ratio (0.001), Cplex provided the best bounds for Classes C(2 001) , C(14 001) and D(20 001).
For Classes E(20 001) and E(1 001), even with low values of F-ratio, Volume provided the best
bounds for half of the instances in those classes.

One can say that for the tests put in practice the Volume algorithm has performed well
no matter the instance characteristics, in general if we count the number of best bounds (*) in the
tables, Volume presents 25 and Bundle, only 3. In addition, Bundle performed worse for those with
very large values of fixed charge and small values of transportation costs. Other types of design
problems may be tested so one can verify if such features can be generalized.

Roughly, Volume algorithm demands less time per iteration and less memory to run, pro-
viding bounds as good as the Bundle ones, or even better. However, the Bundle method is able
to provide good quality bounds in very few iterations, which can be very useful depending on the
application.

Since the Bundle time-consuming per iteration might be a bottleneck for its performance,
future work aims to test even larger instances, also considering the traditional subgradient method
for comparison. Still, one could also include other problems like set partition (see [Boschetti et al.,
2008] for example).

It is important to keep in mind that there are other versions of the same Bundle method,
such as the decomposable one and the partial one. Moreover, different ways of relaxing the Mul-
ticommodity Network Design Problem are possible, which make it not advisable to generalize the
results obtained is this paper. More research has to be done, to verify the performances of the
Bundle method under these other circumstances.
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