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eduardo.hulse@wplex.com.br
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ABSTRACT

Paying driver wages corresponds to about half of the total operational cost of any bus

transit company, justifying the need to optimize the drivers’ workdays to avoid idle time and over-

time. The Bus Driver Scheduling Problem is commonly modeled with a set-partitioning formulation

and solved by column generation. This paper describes how columns are generated in this particular

Crew Scheduling Problem where several workday types are possible, each one with its own features

and user-defined proportion bounds to balance the workday types. A depth-first search method by

layers using two lists of labels quickly returns new workday candidates. Tests on big instances

(thousands of trips) show final solutions of good quality obtained within reasonnable processing

time.
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1. Introduction

In their planning process, bus transit companies seek to meet their passengers’ demand

at a cost as low as possible. They need to optimize every step of their planning strategy: trip

timetabling, bus scheduling, driver scheduling and crew rostering. In particular, scheduling the

bus drivers’ workdays is a tough challenge, since the drivers are usually subject to several legal

constraints due to safety and labor rights. For instance, working 6 hours continuously without any

break is forbidden for Brazilian bus drivers.

WPLEX Software provides a complete software suite for bus companies. The application

called WPLEX-ON provides bus company planners with a set of useful tools to lighten their plan-

ning process. In particular, the users can generate automatically a driver schedule from scratch —

up to thousands of trips —, according to their companies’ specific constraints. Due to the size of

the problem, the bus company planners accept a suboptimal schedule but the software must answer

fast (a few hours at most).

The software package models the problem as the widely-studied Bus Driver Scheduling

Problem, described in section 2, and solves it using a Branch-and-Price algorithm detailed in sec-

tion 3. The specific features in the problem tackled in this paper are the driver briefing and debrief-

ing actions and the proportion bounds for workday types. This paper aims to explain how the new

workdays are quickly produced at each step of the column generation so that the overall algorithm

remains fast. This subproblem is described in section 4, whereas section 5 focuses on the search

within the graph and how the subproblem is actually solved using a couple of label lists. Results

are presented in section 6 to validate this algorithm and section 7 enumerates some conclusions and

draws perspectives for this work.

2. Scheduling bus drivers’ workdays

Bus transit operation planners usually organize their drivers workday as a late step in their

planning process. The daily trips are sequenced into blocks that define the bus fleet schedule. Some

buses may have to perform deadheads without passengers so that they can be quickly relocated to

another route with higher passenger demand and start another trip. For our purposes, a piece of

work (or simply task) will refer to any driving task (trip or deadhead) in a bus schedule. Note that

a piece of work can also be a sequence of trips if no driver change is allowed in between. These

pieces of work are used as input data for drivers workdays scheduling.

In the literature, this problem is known as a the Bus Driver Scheduling Problem which

is a specific case of the widely-studied Crew Scheduling Problem (CSP). In the remaining part of

this section, we describe some specific features tackled by this paper.

The drivers workdays are subject to both legal rules and needs from the bus company.

Drivers may have a time interval in their workday in order to get a break or a meal. Several

companies have two or three possible workday types, each one with its own legal constraints and

salary calculation. Table 1 shows some workday examples from bus companies in Brazil.

Table 1: Workday types in most Brazilian bus companies.

Name Is break paid? Break duration Workday duration Overtime

Standard yes 15 to 30 min 7h20 up to 2h

Double no 2 to 6h 8h up to 2h

Simple no break 6h none

Several constraints define each workday type. When a break is required to split the work-

day into two parts, the working duration before and after the break are constrained to minimum

and maximum driving time. The break duration and the global working duration are also subject to

lower and upper bounds.
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Some workday types may be limited to a certain percentage of all workdays. The short

workday type — called “Simple” in Table 1 and mainly used to meet the high quantity of trips

during rush hours — can’t be applied to too many workdays in the drivers schedule: since they

are short, the company would have to hire a lot of drivers to cover them, which is not feasible.

Typically, if available, workdays of this type are limited to at most 15% of all workdays. To the best

of our knowledge, no other bus driver scheduling paper considers these proportion constraints.

Another original feature in our problem definition is the driver briefing and debriefing

actions. Whenever a bus switches drivers, the leaving driver has to sign some paperwork (debrief-

ing), whereas the arriving driver also checks the vehicle before starting the engine (briefing). Most

bus companies choose to consider these actions as part of the workdays.

The daily wage earned by each driver is a complex function of several variables; it con-

tains specific multipliers for overtime and for night time and depends on the vehicle technologies

driven along the workday. A workday i can be performed over several vehicles, each of which may

be of a specific kind, such as articulated buses, standard buses or minibuses. The cost of the most

expensive kind (denoted CΘ(i)) is used in the workday cost calculation. If a driver works both in

an articulated bus and a minibus over his workday, even if he drives the articulated bus for a single

trip, only the articulated bus cost is taken into account. This vehicle kind cost is multiplied by the

workday time, corrected by multipliers for overtime and night time, as follows.

Bus companies compensate the fact that a driver works late (usually after 10:00 PM) by

paying him more on this late time through a night time multiplier CN . This multiplier adds up to

the possible overtime factor CX for overtime the driver may be working at the end of his workday.

Usually, CX = 1.5. For a given workday i, we denote by:

• tS(i) the total day standard time in the workday,

• tN (i) the total night standard time,

• tX(i) the total day overtime,

• tNX(i) the total night overtime.

Consider the workday type called “Standard” in table 1, and a workday of this type span-

ning from 3:00 PM to 11:00 PM. For this workday, each minute after 10:00 PM is considered as

night time and each minute after 10:20 PM is overtime. Hence, in this example, the corresponding

values in minutes are: tS(i) = 420, tN (i) = 20, tX(i) = 0 and tNX(i) = 40.

The workday cost is defined as:

ci = CΘ(i) × (tS(i) + CN tN (i) + CXtX(i) + CNCXtNX(i)) (1)

No extensive mathematical formulation for this problem is given in this paper since most

constraints are enumerated by Medina and Fournier [2013], especially for workday-related con-

straints. That paper can be studied for a more comprehensive problem description. The next section

describes the algorithm used to solve this particular Bus Scheduling Problem.

3. A Branch-And-Price algorithm

Due to the nonlinear complex costs (described above) and several workday types, a set-

partitioning formulation was chosen to model the CSP, and a Branch-and-Price algorithm to solve

it, like Barnhart et al. [1998] and Lübbecke and Desaulniers [2005].

Let T be the set of pieces of work to schedule and K the set of all the available workday

types, each of which has a minimum proportion 0 ≤ m−

k ≤ 1 and a maximum proportion 0 ≤
m+

k ≤ 1. In other words, for each k ∈ K , if Qk is the actual proportion of workdays of type k

among all workdays in the solution, then m−

k ≤ Qk ≤ m+
k must hold. Obviously, if m−

k = 0 or 1

(and similarly for m+
k ), the master problem can be simplified easily in a preprocessing step.

Let I(θ) be the set of all workdays currently in the model covering piece of work θ ∈ T ,

and Ik be the set of all workdays of type k ∈ K . I = ∪k∈KIk is the set of all workdays in the

model. Note that the family of sets {Ik}k∈K is exclusive (a workday can only have a single workday
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type), whereas the set family {I(θ)}θ∈T is not. Binary variable xi equals 1 if and only if workday

i ∈ I of cost ci is in the solution.

Our master problem can be formulated as follows:

min
∑

i∈I

cixi (2)

∑

i∈I(θ)

xi = 1 , ∀θ ∈ T (3)

0 ≤ (1−m−

k )
∑

i∈Ik

xi −m−

k

∑

i/∈Ik

xi , ∀k ∈ K (4)

0 ≤ m+
k

∑

i∈Ik

xi − (1−m+
k )

∑

i/∈Ik

xi , ∀k ∈ K (5)

xi ∈ {0, 1} , ∀i ∈ I (6)

Constraints (3) and (6) define a well-known set-partitioning problem, while constraints (4)

and (5) are specific of the proportion requirements defined above. They can be easily deduced from

the definition of proportion Qk and replacing its value in the minimum and maximum inequalities:

∀k ∈ K,



















Qk =

∑

i∈Ik

xi

∑

i∈I
xi

=

∑

i∈Ik

xi

∑

i∈Ik

xi +
∑

i/∈Ik

xi

m−

k ≤ Qk ≤ m+
k

With no variable for individual pieces of work, the workdays costs don’t need to be de-

composed along them. Besides, the workday constraints described in section 2 are not stated in this

formulation because they are applied when defining the xi variables (see section 4.2), each of them

refers to a workday that is already known to be valid.

In many cases (Desrochers and Soumis [1989]; Abbink et al. [2007]) a set-covering for-

mulation (with a ‘≥’ sign replacing the equality in constraint (3)) is preferred as its linear relaxation

is easier to solve than that of the set-partitioning model. Here, a set-partitioning formulation is bet-

ter unless the over-covering of some pieces of work — considered as a ride given by a driver to

another one — is allowed.

Many columns are generated at each node of the Branch-and-Bound tree (as suggested

by Desaulniers et al. [1999]). Section 4 describes how new variables are built and selected for the

master problem. At the end of each column generation, if the solution is binary the algorithm stops.

Otherwise a new branching is triggered as described by Fournier [2009].

Note that the problem must be solved within a reasonable time even for instances reaching

thousands of pieces of work; therefore, the algorithm may be suboptimal, but a good solution must

be found in little time. For instance, the column generation process can be stopped if the solution

improvement has been too little for a given number of iterations.

The first iteration defines in the master problem only “tripper” variables — possibly

invalid workdays made of one single piece of work. In later iterations, the linear relaxation of the

master problem can yield no solution during the branching step because of under-covered pieces of

work. To avoid this situation, the variables always contain a set of trippers covering all pieces of

work, beside the variables generated as described in the next section.

4. Generating new workday candidates

Figure 1 illustrates the column generation technique, in which a variable has a good po-

tential to improve the master problem solution if its reduced cost c∗i is negative (Desaulniers et al.

[2005]). Let πθ be the dual cost related to piece of work θ in constraint (3) and π−

k and π+
k the dual
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costs related to workday type k in constraints (4) and (5), respectively. Let T (i) be the set of pieces

of work covered by workday i and K(i) its type. By definition, variable xi’s reduced cost is:

c∗i = ci −





∑

θ∈T (i)

πθ + π−

K(i) + π+
K(i)



 (7)

To find good candidates to be added to the master problem, we generate variables such

that the value of−
(

∑

θ∈T (i) πθ + π−

K(i) + π+
K(i)

)

is as low as possible. After computing the newly

generated variable cost ci, we just check whether c∗i < 0 to decide if the variable should be kept.

costs

costsworkdays
workdays

costs

workdays
of type 3

Master
problem

type 1

type 2

type 3

Subproblem

SubproblemSubproblem
of type 2

of type 1

dual

dual
dual

Figure 1: Multi-subproblem column generation: after solving the mas-

ter problem, the constraints dual costs update the edge costs in every

subproblem (downward arrows), which after solving, updates the master

problem with new variables of every workday type (upward arrows).

As detailed in section 4.1, for a given workday type, a graph is created using all the πθ
dual costs as edge costs. A constrained minimum cost path is then solved in the graph to generate

promising variables.

This method is able to generate variables separately for each workday type. In equality (7)

defining the reduced cost, the
∑

θ∈T (i) πθ component is computed while generating the variable

(inside the subproblem), whereas the π−

K(i) + π+
K(i) term is added afterwards, depending on the

workday type in which the variable was generated. Note that the variable cost ci is computable

only after the variable is generated (and not on the fly) since a workday cost is a complex nonlinear

function, as stated in section 2.

4.1. Task-based subproblem graph
To generate a new set of workdays of a given type to enter the master problem, we use the

technique described by Desrochers et al. [1992]. The same kind of graphs was used for a scheduling

problem by Lopes and de Carvalho [2007] and for a cutting stock problem by Alves and de Carvalho

[2008]. Here, a graph is created from the bus schedule, with s and t standing for its source and sink

nodes, respectively. Figure 2 shows a simple example graph with one vehicle block including both

tasks u and v and another block with one single task w.

The graph is built in such a way that any (st)-path (between the source and sink nodes) de-

fines a workday i and that its cost, which is the sum of its edge costs, is exactly cl = −
∑

θ∈T (i) πθ.

Each piece of work θ ∈ T is related to four nodes in the graph: its briefing and debriefing nodes

(d−θ and e+θ ), its departure node dθ and end node eθ.

For any couple of pieces of work u and v in the same block, let [u, v] be the sequence of

all pieces of work between u and v (including u and v). By definition, [u, u] = u.

For every couple of tasks u and v, we define:
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• task arcs between nodes (duev) in the same block, which means covering the task set [u, v],
• break arcs between two nodes related to non sequential pieces of work u and v (e+u d

−

v ), which

stands for a break after performing task u and before task v,

• break arcs between two nodes (eudv) such that v follows u in the same block — in this case,

the briefing and debriefing don’t have to be performed,

• workday sign-on arcs (between s and d−θ ,∀θ ∈ T ) and sign-off (between e+θ and t,∀θ ∈ T ),

• briefing arcs (between d−θ and dθ,∀θ ∈ T ) and debriefing (between eθ and e+θ ,∀θ ∈ T ).

A duration of a task arc (duev) is defined as the duration of all its related pieces of work

[u, v]: it is the difference between the end time of task v and the start time of task u.

Task arc

Break arc

Sign−in or sign−off arc

Briefing or debriefing arc

BLOCK 1

BLOCK 2

Example of workday path

s

eu
d
−
v

dw

ew e
+

w

t

e
+

v
dv

du e
+

u

Task v

Task w

ev

d
−
w

Task u

d
−
u

Figure 2: Example of 3-task subproblem graph.

Any (st)-path in this graph defines a driver workday. For example, in Figure 2, the high-

lighted path (sd−u dueudveve
+
v t) defines a workday covering both tasks u and v, and:

• a briefing before task u (arc (d−u du)),
• a break between task u and task v (arc (eudv)),
• a debriefing after task v (arc (eve

+
v )).

Path (sd−u dueve
+
v t) defines the same workday but with no break between pieces of work u and v.

4.2. Workday type constraints
Medina and Fournier [2013] give an extensive list of workday type constraints, such as:

• minimum and maximum break duration,

• maximum workday extension (difference between workday end time and start time),

• minimum and maximum workday duration (if unpaid, the break duration is ignored),

• minimum and maximum work duration before and after the break.

These constraints are applied in two ways in the workday generating process. Some are

considered while defining the graph arcs. For instance, a workday where no break is necessary (as

“Simple” in Table 1) will need no break arc in its associated graph. In addition, a task arc shouldn’t

be defined in the graph if the duration of its related pieces of work exceeds the maximum workday

extension. Again, the “Simple” workday type (limited to 3h30) wouldn’t define any task arc of

duration over 3h30.

Other more complex constraints have to be checked on (st)-paths or even on subpaths.

The procedure ISVALID scans all the workday type constraints to determine whether a path is valid

or could lead to a valid (st)-path. Section 5.1 shows how this procedure is applied to subpaths.
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4.3. Arc costs definition

Recall that for any piece of work θ ∈ T , πθ is the dual cost of the partitioning constraint

(of type (3)) associated with θ, after solving the linear relaxation of the master problem. At each

step of the algorithm, while the costs for all non-task arcs are set to 0, the cost of each task arc

between pieces of work u and v is defined as:

c(duev) = −
∑

θ∈[u,v]

πθ (8)

The cost of the highlighted path in Figure 2 is by definition:

cl = c(dueu) + c(dvev) = −πu − πv (9)

Let i be the workday defined by this path and k the workday type associated with the graph (which

obviously is also i’s type). We can confirm that the value: ci+cl−π
−

k −π
+
k is exactly the workday’s

reduced cost c∗i as stated in equality (7).

Solving a Constrained Shortest Path Problem (or CSPP) — known to be NP-complete

(Garey and Johnson [1979]) — in such a graph will help find good candidates for negative re-

duced cost workdays to be added in the master problem. Some studies were performed on how

to solve the CSPP exactly, such as Lozano and Medaglia [2013] through a pruning algorithm,

Santos and Mateus [2007] using a Genetic Algorithm and Irnich and Desaulniers [2005] with Dy-

namic Programming.

Nevertheless, as spending time to find the minimum cost path will not necessarily lead

to a negative reduced cost (the workday cost ci — computed afterwards — may be very high), we

will focus on returning a low cost path which may not always be of minimum cost. In addition, it

is important that several paths are returned in order to raise the odds of generating negative reduced

cost workdays. Section 5 describes how the labels are selected and expanded to the neighbor nodes.

5. Solving the subproblem with a depth-first-based graph search

To find low cost paths in the graph defined above, we use a label-based dynamic program-

ming algorithm that will search the graph in depth, so that it can return the path solutions quickly

(see section 5.1). For this matter, a heuristic function for the way in which the graph is explored is

described in section 5.2.

5.1. Label expansion

A label is a subpath between the source node s and any node in the graph, and is defined

by the accumulated cost of all the task edges along the subpath.

Let l = (sd−u du) be the label chosen at the current step, in the graph defined in Figure 2.

Let k ∈ K be the related workday type. It is then expanded to all its outgoing arcs, namely to

(dueu) and (duev), generating two new labels:

• l1 = (sd−u dueu) of cost cl1 = cl + c(dueu)
• l2 = (sd−u duev) of cost cl2 = cl + c(duev)

We define the procedure EXPAND so that l1 = EXPAND(l, eu) and l2 = EXPAND(l, ev).
Each time a new label is created, some workday constraints are checked in order to avoid

expanding it uselessly in a later step. See section 4.2 for more details on workday constraints.

For example, if the total work duration of all the tasks covered by the label already exceeds the

maximum allowed workday duration, the label can be discarded. For this matter, beside its path and

its accumulated cost, each label maintains a number of other properties, such as the accumulated

work duration: it can usually be easily computed from a label to the next, using the duration of the

task edge added to the path.

This validation of the new label before trying to expand it is defined as the ISVALID

procedure: if not ISVALID(l, k), label l is discarded and will not be expanded in the next steps.

Note that l may still be valid for another workday type. In this case, it could be generated in the
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corresponding graph. For example, the label corresponding to the highlighted path in Figure 2 is

not valid for the workday type named “Simple” in Table 1 because it contains a break arc. However,

it may be valid for the “Standard” workday type.

5.2. Heuristic label selection

First, a zero cost label is created and opened at the source node. At each step, a value is

associated to each open label according to a heuristic function defined using the current label cost

and all its neighbor edge costs. The least value defines which label should be selected to expand to

its neighbors and create new opened labels.

At each step on a given node, all the neighbor edge costs are considered, beyond the

current label cost, to compute a heuristic function that will define which label should be selected

next. This heuristic function is defined differently for labels before and after a break arc, as follows:

let l be the current label from the set P of labels to be compared, nl the last node of the path defined

by label l and Vk(nl) all outgoing nodes for node nl. Note that a node’s neighborhood depends

on workday type k as the graphs may be slightly different for distinct workdays. Label l’s cost is

denoted by cl and arc (ij)’s cost is c(ij). The heuristic function is:

h(l) = cl +











min
n∈Vk(nl)

c(nln), if l’s path doesn’t contain any break arc

max
n∈Vk(nl)

c(nln), otherwise
(10)

The reason why after a break the maximum cost is considered instead of the minimum cost is that

the number of arcs leading to a valid workday after a break may be greatly reduced because of the

workday constraints (such as the maximum workday duration). So in many cases it may be more

accurate to consider the worst case (through the maximum cost) than the best case.

The way it is defined, the heuristic function can overestimate the cost of a (st)-path, as it

only considers the direct neighbors, and there may be a low-cost arc further on. Moreover, it consid-

ers the maximum neighbor cost after the break, giving an upper bound for the cost value in the next

step from this label. Hence this heuristic function is not admissible for an A-star algorithm, which

means theoretically it will not necessarily find the minimum cost path. In practice however, the al-

gorithm almost always finds the minimum cost path, particularly because of the breadth parameter

described in the next section.

The selection of the next label among the available labels in P through the minimum

value of the heuristic function is defined as procedure SELECT, which returns l∗ = argminl∈Ph(l)
and removes l∗ from P .

5.3. Depth-first search with breadth parameter

In order to find a shortest path quickly, a depth-first search strategy choses the next label

to expand according to the least value of the heuristic function described in the previous section.

When the sink node reaches a predefined number of associated labels NA, the search process is

stopped and all these labels are returned as the next workday candidates.

However, such a pure depth-first search method would often lead to suboptimal path so-

lutions, especially if the least cost edges are only available in the second part of a workday. That is

why two distincts sets of labels are used along the process:

• the usual priority queue P of the next candidates, from which the minimum cost label is

selected at each step,

• the new open labels set O, which is the set of recently created labels.

When a label from P is expanded, the new labels generated from its expansion to its neighbors are

not selectable at once for the next steps. Instead, they are accumulated in a separate set O until a

given number of labels NB have been selected in P . Then, the whole recent open label set O is

added to P and the recently created labels accumulation is restarted in O. This introduces a breadth

component in the depth-first search process, as labels are expanded by layers.
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Note that the lower the NB value, the more “depth-aggressive” the strategy is. It becomes

a pure depth-first search when choosing NB = 1.

Algorithm 1 is the pseudo-code for the pricing problem while Algorithm 2 shows specifi-

cally how the graph minimum cost path is solved for each workday type. The latter introduces calls

to three procedures that have already been detailed, namely:

• SELECT is the label selection procedure described in section 5.2,

• EXPAND is the creation of a new label from its father label (see section 5.1),

• ISVALID returns true if the label (defining a partial workday) violates no workday constraint

and is also introduced in section 5.1.

Algorithm 1 Solving the pricing problem.

1: Z ← {} ⊲ Set of negative reduced cost variables to be added to the master problem

2: for each k ∈ K do ⊲ For each workday type

3: F ← LOWCOSTPATHS(k) ⊲ Solve this specific workday type subproblem

4: for each l ∈ F do ⊲ For each low-cost label

5: Build up workday i related to l and define variable xi of cost ci
6: c∗i ← ci + cl −

(

π−

k + π+
k

)

⊲ Compute the variable reduced cost

7: if c∗i < 0 then

8: Z ← Z ∪ {xi} ⊲ xi added to set Z

9: end if

10: end for

11: end for

12: return Z

6. Results

In this section, we tested Algorithm 2 on real life instances from Brazilian bus transit

companies. Table 2 describes the instances main features; its last column indicates whether the

instance includes at least one proportion constraint (see section 3). The instances are named I-

n-w-C after their number of pieces of work n, the number of workday types w and a string C

indicating whether proportion constraints are defined and which kind of them. The algorithm was

implemented in Java and solved on a 4 × 2.5 GHz workstation with 4 GB of RAM.

Table 2: Instances features.

Instance # Pieces of work # Vehicle blocks # Workday types Proportion constraints

I-590-3-N 590 116 3 None

I-1508-1-N 1,508 41 1 None

I-3744-1-N 3,744 61 1 None

I-925-4-N 925 139 4 None

I-590-2-N 590 116 2 None

I-590-1-N 590 116 1 None

I-590-3-M 590 116 3 Maximum

I-590-3-Mm 590 116 3 Both

I-925-4-M 925 139 4 Maximum

I-925-4-Mm 925 139 4 Both

Table 3 presents the solutions obtained on the set of instances without workday type pro-

portion constraint. All 3 instances containing 590 pieces of work were solved very fast (less than

a minute). On the other hand, although instance I-925-4-N contains fewer pieces or work than I-

1508-1-N, the algorithm was slower to solve it. This can be explained by the 4 workday types in
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Algorithm 2 Solving a given workday type subproblem.

1: procedure LOWCOSTPATHS(k) ⊲ Returns low cost paths for workday type k subproblem

2: P ← {(s)} ⊲ Priority queue initialized with a single label (on source node)

3: O ← {} ⊲ Set of open labels (recently created)

4: F ← {} ⊲ Set of final labels (at the sink node)

5: while (|F | < NA and P ∪O 6= {}) do

6: P ← P ∪O

7: O ← {}
8: i← 0 ⊲ Number of selected labels

9: while (i < NB and P 6= {}) do

10: i← i+ 1
11: l∗ ← SELECT(P ) ⊲ Best label selected and removed from P

12: for each n ∈ Vk(nl∗) do ⊲ For each neighbor node

13: ln ← EXPAND(l∗, n) ⊲ New label ln created from l∗ on node n

14: if ISVALID(ln, k) then ⊲ ln can’t violate any workday constraint of type k

15: if n = t then ⊲ Checks if the current node is the graph sink

16: F ← F ∪ {ln} ⊲ ln added to set F

17: else

18: O ← O ∪ {ln} ⊲ ln added to set O

19: end if

20: end if

21: end for

22: end while

23: end while

24: return F

25: end procedure

instance I-925-4-N, whereas instance I-1508-1-N only allows to use one workday type and hence

contains only one subproblem at each step.

The fourth column (“Cost per workday”) gives an insight on the quality of the solution

compared to the other instances. The lowest mean cost per workday is obtained for instance I-

3744-1-N which is the biggest one in our set. Its 3,744 pieces of work are organized into only

61 blocks, which gave more possible combinations of pieces of work than for instance I-925-4-N

which contains fewer than 7 pieces of work per block. As expected, the more we reduce the number

of workday types for the same instance (which leaves fewer workday options), the more the solution

cost rises (see instances I-590-3-N, I-590-2-N and I-590-1-N).

Table 3: Results for instances without proportion constraints.

Instance Total cost Quantity of workdays Cost per workday Processing time

I-590-3-N 27,817.60 181 153.69 18s

I-1508-1-N 9,750.50 84 116.08 735s

I-3744-1-N 15,276.16 132 115.73 5,096s

I-925-4-N 39,809.82 221 180.13 2,525s

I-590-2-N 28,568.01 183 156.11 22s

I-590-1-N 31,278.00 254 123.14 58s

Table 4 gathers the performance results for the instances containing workday type propor-

tion constraints. Note that for each instance, the solution cost and the processing time rise as more

proportion constraints are defined in the problem. For the solution cost the explanation is straight-
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Table 4: Results for instances with proportion constraints.

Instance Total cost Quantity of workdays Cost per workday Processing time

I-590-3-M 27,985.78 188 148.86 727s

I-590-3-Mm 29,167.09 207 140.90 670s

I-925-4-M 40,319.80 230 175.30 106s

I-925-4-Mm 40,343.06 233 173.15 242s

forward: a more constrained problem will yield a worse solution. We observed that the workday

type proportion constraints introduce a kind of degeneracy in the Branch-and-Bound process: when

the solution achieves only few fractionary variables, it then gets in a loop in which some variables

are made integer by branching, while some others of the same workday type become fractionary in

turn. The only exception for this observation is instance I-925-4-N for which the processing time is

higher than that of any of its constrained versions.

Interestingly, the mean cost per workday lowers while the number of proportion con-

straints rises: using fewer workdays automatically heighten overtime, which naturally makes the

mean cost per workday higher.

Although we have noticed that in our tests, the solutions obtained by the algorithm were

systematically better than any manual solution from the bus transit planners, we feel the need to

compare our algorithm against others from the literature. However, as stated previously, no other

approach of our knowledge introduces workday types proportion constraints.

7. Conclusion and future work

For several decades, the Crew Scheduling Problem has been tackled successfully through

a set-partitioning formulation solved with column generation. In this paper, we defined a specific

Bus Driver Scheduling Problem in which the workdays can be of several types — and where the

proportion of each one can be bounded — and we described how the pricing problem is solved.

At each step and for each workday type, a graph is built using the constraints dual costs, and a

minimum-cost path is found in order to generate new negative reduced cost variables for the master

problem. To decide which label should be selected at each step, we defined a heuristic function

in order to target the graph sink node as fast as possible. The results obtained using this pricing

heuristic are promising especially considering the processing time.

To improve this process, the pricing algorithm could become a A-star algorithm if the

heuristic function was made admissible. For example, by considering a lower bound on the cost of

all possible edges after the current label until the sink node, instead of considering the direct neigh-

bors only. Alternatively, it may also be possible to run a forward-backward shortest path algorithm

as described by Wilson and Zwick [2013]. We could also introduce a linear time-depending cost on

the graph arcs so that part of the labels cost would be an estimation of the final variable real cost;

this would avoid situations where a low cost (st)-path is found but its corresponding variable has a

high cost, preventing it from being added to the master problem.
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