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ABSTRACT
We introduce two spanning tree problems with dependency constraints, where an edge

can be chosen only if at least one or all edges in its dependency set are also chosen, respectively.
The dependencies on the input graph G are described by a digraph D whose vertices are the edges
of G, and the in-neighbors of a vertex are its dependency set. We show that both problems are NP-
hard even if G is a chordal cactus with diameter 2 or maximum degree 3, and D is a disjoint union
of arborescences of height 2. We also prove that the problems are inapproximable to a lnn factor,
unless P = NP, and that they are W [2]-hard. On the other hand, we present some polynomial
cases. We test ILP formulations based on DCUT and MTZ constraints. Computational experiments
are reported.

KEYWORDS. Dependency constrained spanning tree. Computational complexity. Inap-
proximability.
Paper topics: OC. PM. TAG

RESUMO
Introduzimos dois problemas de árvore geradora com restrições de dependência, onde

uma aresta pode ser escolhida apenas se pelo menos uma ou todas as arestas em seu conjunto de
dependências também são escolhidas, respectivamente. As dependências no grafo de entrada G
são descritas por um digrafo D, cujos vértices são as arestas de G, e os vizinhos de entrada de
um vértice são seu conjunto de dependências. Mostramos que ambos os problemas são NP-difı́ceis
mesmo que G seja um cacto cordal com diâmetro 2 ou grau máximo 3, e D seja a união disjunta de
arborescências de altura 2. Provamos também que os problemas são inaproximáveis por um fator
lnn, a menos que P = NP , e que eles são W [2]-difı́ceis. Por outro lado, apresentamos alguns
casos polinomiais. Avaliamos formulações de programação inteira baseadas em restrições DCUT e
MTZ. Experimentos computacionias são relatados.
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1. Introduction
A spanning tree is a simple structure that recurrently appears in many applications. It

describes, for example, a minimal subset of links of a network that keeps it connected with no
redundancy. The basic problem in this context is the Minimum Spanning Tree Problem (abbreviated
here as MST), which consists in finding a spanning tree of minimum cost. Although easily solvable
in its basic version, this problem may became hard with the addition of extra requirements. This
happens, for instance, if we require nonleaf vertices to have either a minimum or maximum degree.

Another NP-hard variation of MST consists in imposing conflict constraints over pairs of
edges (Darmann et al. [2011]; Zhang et al. [2011]; Samer e Urrutia [2015]). A conflict between a
pair of edges means that at most one of them may take part in the solution. These constraints are
naturally described by an undirected simple graph, where the extremes of each edge represent a pair
of conflicting edges of the input graph. Inspired by this problem, we introduce dependency con-
strained spanning tree problems, where dependency relations are represented by a directed graph.
Basically, the occurence of an edge in the solution tree depends on the inclusion of other edges also
in the tree.

Let G = (V,E) be a connected graph and D = (E,A) be a digraph whose vertices are
the edges of G. We say D is a dependency digraph for E, and e1 ∈ E is a dependency of e2 ∈ E
if (e1, e2) ∈ A. The Least-Dependency Constrained Spanning Tree problem (L-DCST(G,D))
consists in deciding whether there is a spanning tree T of G such that each of its edges either has
no dependency in D or at least one of them is in T . Similarly, the All-Dependency Constrained
Spanning Tree problem (A-DCST(G,D)) consists in deciding whether there is a spanning tree T
of G such that each of its edges either has no dependency or all of them are in T . Note that the two
problems coincide if ∆−(D) = 1, where ∆−(D) is the maximum cardinality of an in-neighborhood
of a node of D. In this case, we simplify the notation to DCST(G,D).

The corresponding optimization versions, where a weighting function w : E → R+

is considered and we want to minimize the weight of the spanning tree, are denoted respectively
L-DCMST(G,D,w), A-DCMST(G,D,w), and DCMST(G,D,w). Without loss of generality, we
assume that the weights are non-negative because, if there were negative weights, we could choose
a constant s and shift w′e = we + s ≥ 0, for all e ∈ E, altering the solution cost by a constant
factor (n(G) − 1)s, where n(G) is the number of edges of G. Recall that the number of edges in
any solution is n(G)− 1.

Applications for these problems appear, for instance, in communication systems when a
link can only be used if the message arrives through certain other links, due to protocol conversion
restrictions on the nodes of the network (Viana [2016]), or in trasportation netwotk projects where
the construction of road depends on the construction of another one, and vice-versa.

2. NP-completeness
In this section we prove that problems L-DCST(G,D) and A-DCST(G,D) are NP-

complete. In order to get strong hardness result, we restrict both G and D to have very simple
structures. We use a reduction from 2 in 3 3-SAT.

An NP-complete variation of 3-SAT is 1 in 3 3-SAT which consists in deciding
whether a formula can be satisfied in such a way that every clause has exactly one true literal (Gary
e Johnson [1979]). We can define 2 in 3 3-SAT analogously. Note that 1 in 3 3-SAT can
be reduced to 2 in 3 3-SAT by negating the literals of all clauses.

Given an instance of 2 in 3 3-SAT, we build an instance of DCST(G,D) as illustrated
in Figure 1. We start G with a universal vertex v; for each variable x, v is connected to vertices v1x
and v2x by edges ex and ex, respectively, and v1x and v2x are neighbors by edge ax; for each clause
C = l1 ∨ l2 ∨ l3, v is connected to vertices v1C and v2C by edges eCl1 and eCl2 , respectively, while v1C
and v2C are linked by edge eCl3 . We build D as follows: there are arcs from ax to ex and ex, for each
variable x; there is an arc from el to eCl if literal l occurs in clauseC. Note thatG is a chordal cactus
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(actually, a union of triangles whose pairwise intersection is v). D is a union of arborescences and
satisfies ∆−(D) = 1.

v
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(a) Graph G.
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(b) Digraph D

Figure 1: Illustration of SAT reduction.

Theorem 2.1. DCST(G,D) is NP-complete, even if G is a chordal cactus whose diameter is 2, and
D is a union of arborescences whose height is 2.

Proof. Clearly, DCST(G,D) is in NP. To prove that the reduction is valid, first take a valuation
satisfying an instance of 2 in 3 3-SAT. Consider the spanning subgraph T of G induced by
the following edges: ax, for every variable x; either ex or ex, depending on the valuation of x, for
every variable x; for each clause C = l1 ∨ l2 ∨ l3, the edges eCli and eClj such that li and lj are true,
1 ≤ i, j,≤ 3, i 6= j. Observe that the edges of T satisfy the dependencies imposed by D. We next
show that T is a tree.

For every variable x, v is connected to either v1x or v2x by edges ex or ex, respectively,
and the edge ax connects v1x to v2x. Observe that there is no cycle among v, v1x and v2x, and the two
selected edges keep them connected. For every clause C = l1 ∨ l2 ∨ l3, since two of the edges
eCl1 , eCl2 and eCl3 are in T , we see that v is connected to at least one of v1C and v2C . Suppose that v is
connected to v1C by eCl1 . If eCl2 is in T , v2C is also connected to v; otherwise, we have v2C connected
to v1C by eCl3 . In both cases, there is no cycle among v, v1C and v2C , and the two edges keep them
connected. In this way, v and the vertices associated to each variable induce a connected and acyclic
subgraph of T . The same applies for the vertices related to each clause. We conclude that T is a
tree, and therefore a spanning tree of G.

Conversely, let T = (V,E′) be a feasible solution for DCST(G,D). Note that, for every
variable x, either edge ex or ex is in T , since they are a cut and both depend on ax. For every clause
C = l1 ∨ l2 ∨ l3, exactly two of the edges eCl1 , eCl2 and eCl3 are in T connecting v1C , v2C and v without
inducing a cycle. Since eCl is in T only if el is in T , we valuate each variable x as true (ex ∈ E′) or
false (ex ∈ E′), and this valuation satisfies every clause C with exactly two true valued literals. In
this way, we decide the corresponding instance of 2 in 3 3-SAT is satisfatible.

Notice that G is planar and has arbitrary ∆(G), the maximum degree of G. We can
rearrange its triangles to get ∆(G) = 3. We make the triangles (related to clauses and variables)
disjoint and link them as in Figure 2. In other words, we split vertex v into a vertex vC for each
clause C and a vertex vx for each variable x. This modified reduction leads to:

Theorem 2.2. DCST(G,D) is NP-complete, even if G is a chordal cactus with ∆(G) ≤ 3, and D
is a union of arborescences whose height is 2.

3. Inapproximability
In this section, we show an inapproximability threshold for problems L-DCMST(G,D,w)

and A-DCMST(G,D,w), when w is a 0-1 function. We also show that they are W [2]-hard parame-
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Figure 2: Illustration of the SAT reduction with ∆(G) = 3. Intermediate triangles are related to clauses or
variables.
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Figure 3: Illustration of the Set Cover Problem reduction.

terized by the cost of the tree. The results hold even if the dependency relations occur only between
adjacent edges, which seems a natural feature in practical applications.

Given a set U and a family of subsets C ⊆ 2U , the Set Cover Problem (SCP) consists
in finding a subfamily S ⊆ C of minimum cardinality such that

⋃
S∈S S = U . Unless P = NP,

it is inapproximable to (1 − Ω(1)) ln |U |, even when |C| is polynomial in |U | (Dinur e Steurer
[2014]). Moreover, it is W [2]-hard parameterized by the cardinality of the solution (Downey e
Fellows [1999]).

We present a reduction from this problem to DCMST(G,D,w), as illustrated in Figure 3,
that preserves the solution values. Starting with vertices v, vP , vP and edges a1 = {v, vP }, a2 =
{v, vP }, G also includes: for each S ∈ C, vertex vS ; for each i ∈ U , vertex vi; for each S ∈ C,
edges eS = {vS , vP } and eS = {vS , vP }; and edge eSi = {vS , vi}, if i ∈ S, i ∈ U, S ∈ C. In D,
a1 and a2 are mutually dependent, eS is a dependency for eSi , i ∈ S, S ∈ C; all other vertices are
isolated. w is defined as weS = 1,∀S ∈ C; we = 0, for any other edge e.

One component of D is a directed cycle of length 2, and the other ones are directed stars
and isolated vertices. Note also that G has |U | leaves and is bipartite, with one partition formed by
vP , vP and vi, i ∈ U . Once again, D satisfies ∆−(D) = 1.

Theorem 3.1. DCMST(G,D,w) is APX-hard, not being approximable to (1 − Ω(1)) ln |V (G)|
unless P = NP. Moreover, it is W [2] − hard parameterized by the cost of the solution tree. The
results hold even if G is bipartite, the dependency relations occur only between adjcent edges of G,
and D has diameter 1 (composed by 2-cycles and stars).

Proof. We prove that the reduction maps an instance (U, C) of SCP into an instance (G,D,w) of
DCMST, while keeping the optimum value. Let S ⊆ C be a feasible solution of SCP. We build a
feasible solution T to DCMST(G,D,w) as follows: edges a1 and a2 are in T , since they depend
on each other; for each S ∈ C, choose edge eS or eS , which have no dependency, depending on
whether S ∈ S or S /∈ S, respectively; since S covers U , each vi is incident to an edge with
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dependencies satisfied, so choose that edge, making all the vi’s leaves in T . Note that T is a tree
and, since the only edges with nonzero weight are the eS’s,

∑
e∈E(T )we = |S|.

Let T be a feasible solution for DCMST(G,D,w) with weight
∑

e∈E(T )we. Due to their
dependencies, a1 and a2 are in T . Because of that, and since eS and eS are a cut in G, exactly one
of them is in T , for each S ∈ C. We build a solution S for the SCP with S = {S ∈ C : eS ∈ T}.
Because eS is dependency for all eSi and no vi can be isolated, S covers U , thus S is feasible.
Trivially, |S| =

∑
e∈E(T )we.

4. Polynomial cases
We present two cases where DCMST(G,D,w) is solvable in polynomial time. In both of

them, the strategy is to decompose the problem into a polynomial number of MST subproblems.
This aim is achieved thanks to the specific structure of D.

Theorem 4.1. If D has O(log2(n(G))) components, and each of them is either an oriented cycle
or an arborescence whose subjacent graph is a star, DCMST(G,D,w) can be solved in polynomial
time.

Proof. If D is a directed cycle, then DCMST(G,D,w) is infeasible unless G is itself a tree. When
D is an arborescence whose subjacent graph is a star, we delete its root r and contract the incident
edge (of G), obtaining G′ (we do this again in case of D \ r is connected, obtaining G′′) and solve
MST for the resulting graph G′ (G′′).

When D is a union of oriented cycles and directed stars, we have a choice to make for
each of its (say k) components: for each directed cycle, we decide to include none or all of its edges
in the solution; for each directed star, we decide to include or not the root of D (and its unique
descendant node, if the root is a leaf) and then allow or forbid all the other vertices of the star
(edges of G) to take part of the solution. This way, we have 2k MST subproblems to consider, each
of them solvable in polynomial time. If k = O(log2(n(G))), then all these subproblems can be
solved in polynomial time.

Theorem 4.2. DCMST(G,D,w) can be solved in polynomial time, if D is an arborescence whose
subjacent graph is a caterpillar.

Proof. Let D(P ∪ L,A) be an arborescence, where P induces the main path and L comprimes the
leaves of the subjacent caterpillar. First, suppose that D is rooted at p1 ∈ P . Then, p1 has exactly
one or two neighbors in P :

• In the first case, consider P = {p1, p2, . . . , pk}. Note that there is an arc from pi to pi+1,
1 ≤ i ≤ k − 1. Let Li ⊆ L be the set of leaves adjacent to pi, 1 ≤ i ≤ k. Observe
that DCMST(G,D,w) can be decomposed into k subproblems. The ith subproblem is the
Minimum Spanning Tree Problem where the edges from {p1, p2, . . . , pi} must be chosen and
the edges from L1∪· · ·∪Li can be chosen (it may be infeasible if the first set induces a cycle
in G). Since each of these subproblems can be solved in polynomial time, and there are k of
them, DCMST(G,D,w) can be solved in polynomial time with its optimal solution being the
one whose cost is minimum among the optimal solutions of the feasible subproblems.

• If p1 has two neighbors in P , consider P = {p1, p11, p12, . . . , p1k, p21, p22, . . . , p2l }, k + l =
|P | − 1, such that p1, p11, p

1
2, . . . , p

1
k and p1, p21, p

2
2, . . . , p

2
l are directed paths in D. Also,

consider L1 ⊆ L as the set of leaves incident to p1, and let L1
i , L

2
j ⊆ L be the analogously

defined sets for p1i and p2j , respectively, 1 ≤ i ≤ k, 1 ≤ j ≤ l. Note that DCMST(G,D,w) can
be decomposed into kl subproblems. We index the subproblems with tuples (i, j), 1 ≤ i ≤ k,
1 ≤ j ≤ l. Subproblem (i, j) is the Minimum Spanning Tree Problem in the subgraph of G
induced by p1, p1a, p2b , L

1
a and L2

b edges, 1 ≤ a ≤ i, 1 ≤ b ≤ j. Moreover, the tree must
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contain edges p1, p1a and p2b , for 1 ≤ a ≤ i, 1 ≤ b ≤ j, and so the problem may be infeasible
if these edges induce a cycle. Argumenting similarly as in the first case, DCMST(G,D,w) can
be solved in polynomial time with its optimal solution being the one whose cost is minimum
among the optimal solutions of the feasible subproblems.

To finish the proof, we consider the case where D is rooted at an L vertex. It is clear that
the corresponding edge must be part of any feasible solution for DCMST(G,D,w) . So we contract
it and fall back into the previous cases.

5. ILP formulations
There are several Integer Linear Programming formulations for MST, based on different

characterizations of spanning trees. To model L-DCMST(G,D,w) and A-DCMST(G,D,w), it
suffices to extend these formulations. We show here formulations DCUT and MTZ for MST, which
are the basis for our computational experiments.

5.1. DCUT
Given G = (V,E) and w : E → R+, we select a vertex r ∈ V for the role of root.

A spanning tree in G is associated with an arborescence (rooted at r) in the digraph obtained
from G by replacing each edge by two arcs with opposite directions. So, we define variables
xuv, yuv, yvu, ∀{u, v} ∈ E. xuv = 1 means that edge {u, v} is in the solution (which implies that
either yuv = 1 or yvu = 1). By δ+(S), we denote the set of edges with exactly one endpoint in S,
and by N(v), we denote the set of neighbors of v. The model then follows, where connectivity is
ensured by the so-called directed cut (DCUT) constraints (4).

min
∑
uv∈E

wuvxuv (1)

s.t xuv = yuv + yvu, ∀uv ∈ E (2)∑
uv∈E

(yuv + yvu) = n(G)− 1 (3)∑
uv∈δ+(S)

yuv ≥ 1, ∀S ⊂ V : r ∈ S (4)

∑
u∈N(v)

yuv = 1, ∀v ∈ V \ {r} (5)

∑
u∈N(r)

yur = 0 (6)

y ∈ B2m(G) (7)

x ∈ Bm(G) (8)

Although redundant in the formulation, constraints (5)-(6) are added for better computational per-
formance.

5.2. MTZ
Given G = (V,E) and w : E → R+, we select a vertex r ∈ V for the role of root.

Again, we define variables xuv, yuv, yvu, ∀{u, v} ∈ E. Moreover, we use variables lv ∈ R,∀v ∈ V
to define a label for each vertex. An arc (u, v) is chosen only if the label of v is greater than the
label of u. This strategy avoids cycles and can be modeled by the Muller-Tucker-Zemli (MTZ)
inequalities.

The resulting formulation is presented below, where N(v) denotes the set of neighbors of
v, and d(u, v) stands for the distance between vertices u and v in G.
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min
∑
uv∈E

wuvxuv (9)

s.a xuv = yuv + yvu, ∀uv ∈ E (10)∑
uv∈E

(yuv + yvu) = n(G)− 1 (11)∑
u∈N(v)

yuv = 1, ∀v ∈ V \ {r} (12)

∑
u∈N(r)

yur = 0 (13)

lr = 1 (14)

lu − lv + 1 ≤ (n(G)− d(r, v))(1− yuv), ∀uv ∈ E, v 6= r (15)

lv − lu + 1 ≤ (n(G)− d(r, u))(1− yvu), ∀uv ∈ E, v 6= r (16)

1 + d(r, v) ≤ lv ≤ n(G), ∀v ∈ V (17)

l ∈ Rn(G) (18)

y ∈ B2m(G) (19)

x ∈ Bm(G) (20)

We observe that Constraints (11) are implied by (12)-(13). However, their inclusion leads to better
computational results.

5.3. Dependency constraints

Let N−(e) denote the in-neighborhood of e ∈ E in D. Problems L-DCMST(G,D,w)
and A-DCMST(G,D,w) can be modeled by adding constraints (21) and (22), respectively, to a
spanning tree integer programming formulation. We embeded them in formulations DCUT and
MTZ. ∑

e1∈N−(e2)

xe1 ≥ xe2 , ∀e2 ∈ E : N−(e2) 6= ∅ (21)

xe1 ≥ xe2 , ∀e2 ∈ E : N−(e2) 6= ∅,∀e1 ∈ N−(e2) (22)

6. Computational experiments

To test for both L-DCMST(G,D,w) and A-DCMST(G,D,w), we designed a set of 90
instances where D is an arborescence. Each instance (G,D,w) is generated from a tuple (n, d, b),
where n = |V (G)|, d is the density of G, and b is the branchinhg factor of D, that is, each nonleaf
vertex of D has outdegree at most b. We have 2 instances for each n ∈ {30, 60, 90, 120, 150}, d ∈
{0.25, 0.50, 0.75} and b = {2, 4, 8}.

The following tables present the running times of DCUT and MTZ on the standard CPLEX
B&B. The root r is chosen to be the vertex in the input graph whose label is minimum. In order to
properly compare DCUT and MTZ, we ran MTZ both in serial and parallel executions, since DCUT
could not be ran in parallel, due to limitations of CPLEX when using callbacks. * means the instance
has unknown optimum, ** means execution has been aborted due to insufficient memory and ***
means execution surpassed a time limit of 500,000 seconds and then has been aborted. Considering
the average running time, we chose MTZ for performing further tests.
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n d b i Optimum MTZ (s) MTZ (Serial) (s) DCUT (s)
30 0.25 2 0 138 0.01 0.01 0.03
30 0.25 2 1 94 0.01 0.01 0.02
30 0.25 4 0 96 0.02 0.02 0.02
30 0.25 4 1 82 0.02 0.02 0.02
30 0.25 8 0 102 0.01 0.01 0.01
30 0.25 8 1 87 0.01 0.01 0.03
30 0.50 2 0 142 0.01 0.01 0.02
30 0.50 2 1 123 0.11 0.19 0.29
30 0.50 4 0 88 0.02 0.03 0.05
30 0.50 4 1 80 0.02 0.01 0.03
30 0.50 8 0 77 0.02 0.01 0.03
30 0.50 8 1 63 0.01 0.01 0.01
30 0.75 2 0 119 0.09 0.25 0.59
30 0.75 2 1 115 0.22 0.41 0.59
30 0.75 4 0 70 0.03 0.03 0.02
30 0.75 4 1 90 0.09 0.20 0.22
30 0.75 8 0 69 0.02 0.02 0.04
30 0.75 8 1 60 0.01 0.01 0.02
60 0.25 2 0 202 0.48 0.47 0.82
60 0.25 2 1 237 0.59 0.78 1.66
60 0.25 4 0 163 0.14 0.09 0.11
60 0.25 4 1 166 0.06 0.06 0.09
60 0.25 8 0 154 0.04 0.04 0.08
60 0.25 8 1 156 0.10 0.09 0.07
60 0.50 2 0 226 1.48 3.26 5.17
60 0.50 2 1 228 2.27 3.77 7.60
60 0.50 4 0 154 0.23 0.21 0.33
60 0.50 4 1 168 0.89 1.06 1.68
60 0.50 8 0 123 0.21 0.39 0.47
60 0.50 8 1 164 0.69 0.81 1.20
60 0.75 2 0 189 1.97 2.37 4.75
60 0.75 2 1 203 1.68 2.52 8.49
60 0.75 4 0 144 1.12 1.10 2.58
60 0.75 4 1 141 0.27 0.40 0.64
60 0.75 8 0 121 0.50 0.67 1.05
60 0.75 8 1 124 0.26 0.24 0.48
90 0.25 2 0 342 3.61 8.82 10.02
90 0.25 2 1 349 10.87 30.45 104.16
90 0.25 4 0 251 1.59 2.31 2.79
90 0.25 4 1 243 1.03 0.63 0.89
90 0.25 8 0 198 0.12 0.11 0.15
90 0.25 8 1 210 0.42 0.37 0.68
90 0.50 2 0 338 216.35 478.86 256.85
90 0.50 2 1 320 36.50 333.65 158.36
90 0.50 4 0 237 3.72 6.19 7.78
90 0.50 4 1 222 4.85 7.17 6.64
90 0.50 8 0 201 1.14 1.31 1.73
90 0.50 8 1 193 1.61 2.17 3.83
90 0.75 2 0 316 107.51 227.79 584.20
90 0.75 2 1 320 39.34 408.48 208.99
90 0.75 4 0 212 21.78 44.03 50.27
90 0.75 4 1 218 20.04 84.50 43.03
90 0.75 8 0 183 2.94 2.87 3.41
90 0.75 8 1 169 3.68 2.78 5.46

Average 9.08 30.77 27.56

Table 1: Running times of integer formulations for instances with at most 90 vertices.
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n d b i Optimum MTZ (s) MTZ (Serial) (s) DCUT (s)
120 0.25 2 0 434 683.87 1476.26 2359.79
120 0.25 2 1 466 600.08 3317.28 8020.24
120 0.25 4 0 300 2.06 1.73 4.48
120 0.25 4 1 321 4.85 5.94 4.11
120 0.25 8 0 233 0.60 0.50 1.00
120 0.25 8 1 246 0.76 0.63 0.93
120 0.50 2 0 398 3489.66 6613.45 6802.91
120 0.50 2 1 420 2923.59 2470.64 8719.21
120 0.50 4 0 302 141.83 194.11 570.71
120 0.50 4 1 295 11.86 13.50 12.99
120 0.50 8 0 231 3.66 2.97 4.97
120 0.50 8 1 254 10.55 12.82 17.27
120 0.75 2 0 403 4960.16 5090.58 16322.59
120 0.75 2 1 409 1958.91 3899.00 6163.77
120 0.75 4 0 289 982.21 1391.13 2379.59
120 0.75 4 1 300 206.16 863.92 292.57
120 0.75 8 0 212 4.61 5.85 4.85
120 0.75 8 1 241 19.77 13.60 32.83
150 0.25 2 0 538 1305.78 1677.46 6352.16
150 0.25 2 1 536 2263.90 6219.27 42304.22
150 0.25 4 0 355 9.33 14.10 11.27
150 0.25 4 1 383 7.20 6.75 7.76
150 0.25 8 0 321 11.69 14.01 9.44
150 0.25 8 1 321 2.93 2.50 2.56
150 0.50 2 0 495 4286.03 6250.46 10614.80
150 0.50 2 1 546 63243.97 111057.72 412665.05
150 0.50 4 0 362 2462.97 12326.15 5108.39
150 0.50 4 1 359 196.81 213.07 165.97
150 0.50 8 0 294 44.18 54.66 55.28
150 0.50 8 1 309 62.46 65.28 47.83
150 0.75 2 0 483 32807.35 96188.49 84107.06
150 0.75 2 1 * ** ** ***
150 0.75 4 0 363 4308.08 8943.04 6955.49
150 0.75 4 1 376 11197.05 7757.59 32463.48
150 0.75 8 0 273 41.45 77.68 79.91
150 0.75 8 1 273 49.55 56.74 105.44

Average 2207.70 4860.03 7061.93

Table 2: Running times of integer formulations for instances with more than 90 vertices.

As an attempt to improve the CPLEX performance with the MTZ formulation, we cus-
tomized its branch-and-bound in several points. In the following, we describe the two modifications
that produced the best results.

First, we propose a method for finding an initial solution based on iteratively solving the
problem restricted to a spanning subgraph of G. To define these iterations, let f : E → R+ be
defined as f(e) = we + min{f(e′) : e′ ∈ N−(e)}. In other words, f(e) is the weight of a shortest
path in D from a source to e (while considering the weights given by w). Sort E′ = E \ S,
where S is the source set of D, according to the non-decreasing order defined by f , to obtain
E′ = {e1, e2, . . . , em(G)−|S|}. For k = 1, 2, . . . , log(n(G)), let Pk be the problem restricted to

Gk = (V, S ∪E′k) and Dk = (S ∪E′k, A(S ∪E′k)), where E′k are the first km(G)−|S|
log(n(G)) edges of E′.

We solve Pk, k ≥ 3, until we find a feasible subproblem. We use its optimal solution as an initial
feasible solution.

Besides providing this solution to CPLEX, we also prioritizing the branching of some x
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variables. Such variables are related to edges whose distance to the source of D is a third of the
height of D.

The next table presents the computational results obtained by these two modifications
on instances with CPLEX B&B running time above 100 seconds. In comparison with the B&B of
CPLEX, we obtained an average improvement of 29.69%

n d b i CPLEX B&B (s) Technique (s) Improvement (%)
90 0.50 2 0 216.35 31.17 85.59
90 0.75 2 0 107.51 91.10 15.26

120 0.25 2 0 683.87 703.03 -2.80
120 0.25 2 1 600.08 353.40 41.10
120 0.50 2 0 3489.66 3191.55 8.54
120 0.50 2 1 2923.59 1422.61 51.34
120 0.50 4 0 141.83 84.82 40.19
120 0.75 2 0 4960.16 2610.95 47.36
120 0.75 2 1 1958.91 792.18 59.56
120 0.75 4 0 982.21 209.14 78.70
120 0.75 4 1 206.16 171.69 16.72
150 0.25 2 0 1305.78 173.18 86.73
150 0.25 2 1 2263.90 2606.37 -15.12
150 0.50 2 0 4286.03 6470.05 -50.95
150 0.50 4 0 2462.97 2465.26 -0.09
150 0.50 4 1 196.81 82.58 58.04
150 0.75 2 0 32807.35 42337.39 -29.04
150 0.75 4 0 4308.08 2621.25 39.15
150 0.75 4 1 11197.05 7406.94 33.84

Average 3952.54 3885.50 29.69
Median 1958.91 792.18 39,15
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