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ABSTRACT 

 

It is important for companies interested in trading at the Free Trading Environment 

(FTE) to understand the development of the market over time, considering macroeconomic 

variables and specific indicators. In this context, this article proposes the use of genetic 

programming (GP) to build a multivariate model for the electricity consumption of the Brazilian 

FTE. Variables such as industrial production, number of clients in the FTE, and industrial 

electricity tariff, are considered as candidate variables in the GP framework. Different models are 

built with GP, and the best one is selected through the evaluation of the forecasts on a validation 

set. To evaluate the model’s performance, forecasts are made on a test set, and are compared with 

forecasts of other methods, such as artificial neural networks, multiple linear regression, 

SARIMA and exponential smoothing. The results show that the symbolic regression model built 

via GP provides the best forecasts for the FTE. 
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1. Introduction 

 

In Brazil, there are two different electrical energy trading environments, the Regulated 

Trading Environment (RTE) and the Free Trading Environment (FTE). In the RTE, distribution 

companies (DISCOs) purchase energy through public auctions by means of medium and long 

term contracts (Street, et al., 2012), whereas, in the FTE, net consumers, generation companies 

and trading companies freely negotiate energy through bilateral contracts (Street, et al., 2012). 

The RTE has always been responsible for the major share of the Brazilian electricity 

consumption (see Figure 1). The FTE, however, is gaining ever more attention, especially due to 

increasing electricity tariffs of DISCOs (ANEEL) and to special benefits for those who trade 

renewable energy in the FTE (Bruno, Ahmed, Shapiro, & Street, 2016). In this context, it is 

important that companies, when assessing the possibility of trading electrical energy at the FTE, 

understand the development of the market. One way of doing this is by producing valuable 

medium and long term forecasts of the market’s electrical energy consumption. 

Several techniques can be applied to forecast electricity consumption. Multivariate 

models can consider explanatory variables in their modeling, as opposed to univariate models, 

which cannot. When considering explanatory variables, one can take into account the many 

factors that affect the electricity consumption; furthermore, one is capable of making what-if 

analysis (Hong & Fan, 2016) by producing scenarios based on pre-established (long-term) 

assumptions for one or more explanatory variables. Both aspects are of great importance for 

decision making in the long-term. 

 

Figure 1 – Share of electrical energy consumption in Brazil. Source: (EPE) 

According to (Hong & Fan, 2016), the most common multivariate models for load 

forecasting are multiple linear regression (MLR) models (Chatfield, 2000), artificial neural 

networks (ANNs) (Haykin, 1999) and support vector regression (SVR) models (Smola & 

Schölkopf, 2004). MLR models are based on regression analysis, a statistical technique for 

estimating the relationships among variables (Hong & Fan, 2016). ANNs and SVR are, on the 

other hand, machine learning models. ANNs are inspired by biologic neurons and by the massive 

parallel structure of the brain (Haykin, 1999). SVR models are based on statistical learning theory 

and on the principle of structural risk minimization (Chou & Ngo, 2016). 

When modeling a problem with MLR, one must specify the functional form that relates 

input and output variables. This relationship, however, is not always known. When modeling a 

problem with ANN and SVR, one does not need to specify the functional form. The ANNs are 

trained to learn and to generalize the input-output relationship from the historical data. The SVR, 

on the other hand, maps the input-output relationship in a high-dimensional space and finds a 
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function that best fits the data (Kong, Liu, Shi, & Lee, 2015). Both ANN and SVR models offer 

no insights to the input-output relationships. However, the insight may be desirable in order to 

understand the process that is being modeled. 

The variables that affect the electricity consumption of the Brazilian FTE and the 

relations that these variables have with it are not quite known. However, knowing which are the 

variables, and what are their relations with the Brazilian FTE, is valuable to understand the 

dynamics of the FTE. In this context, genetic programming (GP) (Koza, 1992) could be used to 

build a multivariate model for the electricity consumption of the Brazilian FTE. Genetic 

programming is an evolutionary computation technique that aims at learning computer programs 

(models) by a process that mimics theory of evolution (e.g., survival of the fittest) and genetics 

(e.g., gene mutation). GP uses this process to search the best computer program (model) for a 

specific problem, in a space of possible computer programs (models) (Lee, Lee, & Chang, 1997). 

GP could, therefore, be used to construct a model that best relates input and output, without 

having prior knowledge about their relationship (Yang, Li, Wang, Lian, & Ma, 2015). As with 

ANN and SVR, GP does not require the specification of a functional form. The form will be 

discovered by the evolutionary algorithm. GP offers, thus, interpretability, as it constructs a 

model with defined functional form and coefficients. 

Genetic programming has already been applied in electricity consumption and load 

forecasting. Amber, Aslam, & Hussain (2015) developed an MLR model and a GP model to 

forecast the daily electricity consumption of a building; the input variables presented to the model 

were: temperature, weekday index, solar radiation, relative humidity and wind speed. 

Forouzanfar, et al. (2012) applied multi-level GP to forecast the transport energy demand of Iran; 

they used as explanatory variables: population, gross domestic product (GDP) and number of 

vehicles. Lee, Lee, & Chang (1997) applied genetic programming to create a long-term load 

forecasting model; the inputs included GDP and population (with time lags). 

This work aims at building a representative multivariate model for the monthly 

electricity consumption of the Brazilian FTE. In order to do that, genetic programming technique 

is employed to produce a symbolic regression model. Industrial production, industrial electricity 

tariff, number of FTE clients and FTE consumption (with time lags) are considered as candidates 

for explanatory variables. The GP procedure is applied several times, so that different models are 

built. The best one is selected by evaluating the (ex-post) forecasts on a validation set. In order to 

assess the performance of the selected model, its forecasts are evaluated in a test set and 

compared with forecasts produced using MLR, ANN, SARIMA (Box & Jenkins, 1976) and 

Exponential Smoothing (Hyndman, Koehler, Snyder, & Grose, 2002). 

This paper contributes to the modeling of the electricity consumption of the Brazilian 

FTE. It proposes use of genetic programming to discover a model for the FTE electricity 

consumption. The genetic programming process maps different candidate variables to find a 

nonlinear multivariate model for the FTE consumption. The model could then be used to produce 

what-if analysis or to forecast the electricity consumption of the FTE, assessing decision-makers 

in long-term decisions related to trading in the FTE. 

This paper is structure as follows: after the introduction, a brief overview on genetic 

programming is made in the second section. In the third section, the modeling of the problem is 

described. In the fourth section, the results are presented, and in the fifth section the conclusions 

are made. 

 

2. Genetic Programming Overview 

 

Genetic programming (GP) was first introduced by Koza in 1992 (Koza, 1992). Since 

then, it has been used in different types of problems. According to Amber, Aslam, & Hussain 

(2015), GP is a branch of machine learning algorithms in which a population of computer 

programs is evolved. The computer programs are also called GP individuals or GP solutions. 

Each individual is a computer program and, thus, a potential solution of the problem presented to 

the GP. Individuals are represented as trees whose nodes are procedures, functions, variables and 
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constants (Lee, Lee, & Chang, 1997). Figure 2 illustrates the representation of the program 𝑥2 +

𝑦. The trees are evolved in the GP process. Individuals can be multigene, i.e., can contain more 

than one gene. In this case, each gene receives a weight, and the multigene individual is the 

weighted sum of all of its genes (see (Searson, 2015)). In general, the restriction on the number of 

genes (for multigene individuals) and on the depth of trees allows one to produce less complex 

and more compact models. In GP modeling, the user defines all the possible functions, variables 

and constants that can be used as nodes (Lee, Lee, & Chang, 1997). 

 

Figure 2 – Tree representation of the program x2 + y 

The evolution of programs with GP follows six steps (see (Forouzanfar, 

Doustmohammadi, Hasanzadeh, & Shakouri G, 2012)). (1) First, the algorithm creates an initial 

random population of programs and sets current population as this initial population. Following 

this, (2) the algorithm selects programs of the current population for breeding. The selection is 

usually made considering the fitness of the programs: the best ones, which have higher fitness, 

have more probability of being selected by the algorithm. It is possible, however, to consider 

other criteria in the selection process, e.g., fitness and model complexity (see, for example, Pareto 

tournament selection in (Searson, 2015)). After the selection, (3) genetic operators such as 

crossover, mutation and reproduction are applied. A new population of offspring is then created. 

(4) Each offspring in this new population is evaluated (fitness). (5) This new population is made 

to be the current population, and steps (2)-(5) are repeated until a stopping criteria is achieved 

(e.g., until the procedure achieves a given number of generations). (6) Select the best program 

created by the procedure. For an in depth read on GP, please refer to (Koza, 1992). 

In the context of this work, the GP method is applied to find a model that estimates the 

electricity consumption of the Brazilian FTE based on macroeconomic variables and variables 

related to the Brazilian FTE and RTE. GP is then used to produce a model that has the form 

�̂�𝑔𝑝 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛). 

 

3. Methodology 

 

3.1 Explicative Variables 

 

In order to develop a multivariate model for the electricity consumption of the FTE, one 

needs first to identify the variables that could help explain it. Considering that approximately 

90% of the total electricity consumption of the FTE is due to industrial clients (CCEE, 2016), the 

variables selected for the GP modeling were related to the Industry sector; indicators of the FTE 

were also selected as candidate variables. The variables considered to explain the FTE 

consumption were the following: 

 Total electricity consumption of the FTE; 

 Total number of clients participating of the FTE; 

 Total industrial production in Brazil; 

 Electricity tariff for the industrial class in the RTE. 

In this work’s modeling approach, it is considered that the consumption of the FTE 

(i.e., the variable of interest), at a given time 𝑡, could be explained by all the above-listed 
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variables at given time 𝑡 and at times 𝑡 − 𝑘, where 𝑘 = 1,2,3. Considering this, the final candidate 

variables for the problem were those presented in Table I. 

Table I – Candidate variables for the model 

FTE 

Consumption 
Number of Clients 

Industrial 

Production 

Industrial Electricity 

Tariff 

consumption(t-1) clients(t) industrial_production(t) industrial_tariff(t) 

consumption(t-2) clients(t-1) industrial_production(t-1) industrial_tariff(t-1) 

consumption(t-3) clients(t-2) industrial_production(t-2) industrial_tariff(t-2) 

 clients(t-3) industrial_production(t-3) industrial_tariff(t-3) 

 

3.2 Dataset 

 

The data of the variables used in the modelling were obtained from different sources. 

Data of the electricity consumption and number of clients of the FTE were collected from the 

Electrical Energy Trading Council (CCEE, in portuguese). Data regarding the industrial 

production and industrial electricity tariffs were provided by Tendências Consultoria Integrada. 

The historic data consists of monthly observations, and was obtained from January 2008 until 

December 2016, totalizing 105 observations for each of the variables listed above. 

In order to evaluate the performance of the models in forecasting the FTE consumption 

and generalization capability, the historic data was divided into three sets: training set, validation 

set and test set. The data in the training set is used by the GP to obtain the model for the FTE 

consumption through evolutionary process described in previous sections. The training set 

contained 87 examples of the historic data, with time t ranging from April 2008 until June 2015). 

The data in the validation set is used to evaluate the performance of the models and to 

identify the best one. The set used in this work contained 9 examples of the historic data, with 

time t from July 2015 until March 2016. The test set, finally, is used to evaluate if the selected 

model can generalize well the data, i.e., if it does provide good forecasts. The set also contained 9 

examples of the historic data, with t ranging from April 2016 until December 2016. The split is 

implemented in order to select and evaluate the model obtained by the methodology. In Figure 3, 

the time series of the variable of interest is illustrated.  

 
Figure 3 – Time series of independent variable (black) and candidate explanatory variables (blue) 
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An excerpt of the database is shown in Table II. The variable of interest is listed in the 

second column, and the explicative variables in the subsequent columns. The first example, 

observed at time 𝑡 = 1 (April 2008), is listed in first row that follows the table’s heading. 

Table II – Database structure 

t cons(t) cons(t-1) cons(t-2) cons(t-3) clients(t) clients(t-1) ... 

1 8678 8693 8592 8413 685 681 ... 

2 8779 8678 8693 8592 678 685 ... 

3 8852 8779 8678 8693 676 678 ... 

4 8842 8852 8779 8678 667 676 ... 

5 8748 8842 8852 8779 663 667 ... 

6 8637 8748 8842 8852 654 663 ... 

7 8766 8637 8748 8842 658 654 ... 

8 8231 8766 8637 8748 650 658 ... 

9 7117 8231 8766 8637 651 650 ... 

10 7352 7117 8231 8766 658 651 ... 

11 7658 7352 7117 8231 643 658 ... 

12 8009 7658 7352 7117 634 643 ... 

13 7875 8009 7658 7352 630 634 ... 

14 7805 7875 8009 7658 630 630 ... 

15 7887 7805 7875 8009 633 630 ... 
 

 

3.3 Genetic Programming Application 

 

In this work, the individuals in a population are models for the FTE consumption. The 

GP method receives the input and output data contained in the training set. GP uses its 

evolutionary process to learn how to relate the explicative variables in a way that it fits the output 

values. In order to implement the GP to find a model, the user has to specify several parameters 

that affect the evolutionary process. Aiming to find the best model for the FTE consumption, 

different parametrization of GP were tested. The number of individuals in a population, the 

maximum depth of the program, the maximum number of genes, and others, were varied. 

In Table III
1
 the different GP configurations tested in the work are presented. The 

parameters of maximum number of genes and maximum depth of trees were chosen so that it 

would be possible to search in the space of compact models (reduced number of genes and 

depth). Furthermore, the population size was made to vary from 500 to 900 individuals, and the 

number generations from 100 to 300. These values were chosen so that the total number of 

individuals searched during GP process would not surpass 150,000. 

After implementing all experiments, each of them will have found a symbolic 

regression model for the FTE consumption. The model for the FTE is the one that presents the 

best forecasting accuracy when evaluated on the validation dataset. 

 

3.4 Model Selection and Forecasting 

 

In order to select the best symbolic regression model for the FTE, all models produced 

by the GP experiments are implemented to forecast 9 values that follow the training set, which 

are the target values contained in the validation set. The selected model will be the one whose 

forecast has lowest Mean Absolute Percentage Error (an accuracy measure that is described in 

Subsection 3.5) on the validation dataset. 

 

                                                           
1
 The ‘Pareto’ column in Table III contains the percentage of tournaments that were made to be Pareto tournaments. 
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Table III – GP parametrizations tested 

ID 
Pop. 

Size 
Generations 

Max. 

Genes 

Max. 

Depth 
Pareto Functions 

1 900 100 2 3 0,3 *, -, +, sqrt, square, add3, mult3 

2 400 250 3 3 0,3 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube 

3 400 250 3 3 0,2 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube 

4 500 300 3 3 0,2 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube, log 

5 500 300 3 4 0,2 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube, log 

6 500 300 4 4 0,2 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube, log 

7 500 300 4 4 0,3 
*, -, +, sqrt, square, add3, 

mult3, tanh, cube, log 

 

In order to produce the forecasts for the model selection phase, the inputs presented to 

the models will be observations of (i) number of clients, (ii) industrial production and (iii) 

industrial electricity tariff. The values of electricity consumption, however, will not be those 

observed, but those estimated by the models. 

Let the training set contain 𝑁 observations, and let 𝑇 be the time at which the last value, 

i.e., the 𝑁-th value, was observed. The forecast 𝜏-steps ahead of time 𝑇 is then represented as 

�̂�𝑇(𝜏). The observed value at time 𝑇 + 𝜏 is represented as 𝑦𝑇+𝜏. Also, let 𝑥1,𝑇+𝜏 be the observed 

value of clients at time 𝑇 + 𝜏, 𝑥2,𝑇+𝜏 be the industrial production at time 𝑇 + 𝜏, and 𝑥3,𝑇+𝜏 be the 

industrial electricity tariff at time 𝑇 + 𝜏. The forecast one step ahead of time, two steps ahead of 

time, and 3 steps ahead of time are then obtained by functions as those presented in Equations 

(1), (2) and (3), respectively
2
. 

 

�̂�𝑇(1) = 𝑓(𝑦𝑇 , 𝑦𝑇−1, 𝑦𝑇−2, 𝑥1,𝑇+1, 𝑥2,𝑇+1, 𝑥3,𝑇+1, 𝑥1,𝑇 , 𝑥2,𝑇 , 𝑥3,𝑇 , 𝑥1,𝑇−1, 𝑥2,𝑇−1, 𝑥3,𝑇−1) (1) 

�̂�𝑇(2) = 𝑓(�̂�𝑇(1), 𝑦𝑇 , 𝑦𝑇−1, 𝑥1,𝑇+2, 𝑥2,𝑇+2, 𝑥3,𝑇+2, 𝑥1,𝑇+1, 𝑥2,𝑇+1, 𝑥3,𝑇+1, 𝑥1,𝑇 , 𝑥2,𝑇 , 𝑥3,𝑇) (2) 

�̂�𝑇(3) = 𝑓(�̂�𝑇(2), �̂�𝑇(1), 𝑦𝑇 , 𝑥1,𝑇+3, 𝑥2,𝑇+3, 𝑥3,𝑇+3, 𝑥1,𝑇+2, 𝑥2,𝑇+2, 𝑥3,𝑇+2, 𝑥1,𝑇+1, 𝑥2,𝑇+1, 𝑥3,𝑇+1) (3) 

… … 

When facing the task of out-of-sample forecasting, the observations of the explicative 

variables are not available. In this case, rather than providing observations as input to the 

multivariate model, estimated values (e.g., univariate forecasts) of the input variables are 

provided. Equations (1)-(3) are then rewritten as (4)-(6). Note that the values that were previously 

considered as observations at times 𝑇 + 𝜏, with 𝜏 > 0,  are now estimated values. 

 

�̂�𝑇(1) = 𝑓(𝑦𝑇 , 𝑦𝑇−1, 𝑦𝑇−2, �̂�1,𝑇(1), �̂�2,𝑇(1), �̂�3,𝑇(1), 𝑥1,𝑇 , 𝑥2,𝑇 , 𝑥3,𝑇 , 𝑥1,𝑇−1, 𝑥2,𝑇−1, 𝑥3,𝑇−1) (4) 

�̂�𝑇(2) = 𝑓(�̂�𝑇(1), 𝑦𝑇 , 𝑦𝑇−1, �̂�1,𝑇(2), �̂�2,𝑇(2), �̂�3,𝑇(2), �̂�1,𝑇(1), �̂�2,𝑇(1), �̂�3,𝑇(1), 𝑥1,𝑇 , 𝑥2,𝑇 , 𝑥3,𝑇) (5) 

�̂�𝑇(3) = 𝑓 (�̂�𝑇(2), �̂�𝑇(1), 𝑦𝑇 , �̂�1,𝑇(3), �̂�2,𝑇(3), �̂�3,𝑇(3), �̂�1,𝑇(2), �̂�2,𝑇(2), �̂�3,𝑇(2), �̂�1,𝑇(1), �̂�2,𝑇(1), �̂�3,𝑇(1)) (6) 

… … 

To evaluate the performance of the selected model in out-of-sample forecasting 

situations, the model will be applied to forecast 9 of the target values contained in the test set. 

                                                           
2
 It is important to take note that, depending on the model that will be created by GP’s evolutionary 

process, not all variables will appear in its mathematical expression. However, aiming to illustrate the 

forecasting approach, all variables are explicitly shown in Equations (1)-(3) (and, later, in Equations (4)-

(6)). 
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The forecast will then be compared with forecasts obtained from multivariate models (MLR and 

ANN) and from univariate models (SARIMA and Exponential Smoothing). 

 

3.5 Accuracy Measure 

 

In order to evaluate the forecasts, the Mean Absolute Percentage Error (MAPE) is 

adopted. MAPE is recommended as accuracy measure for forecasts by several books, as pointed 

out in (Hyndman & Koehler, Another look at measures of forecast accuracy, 2006). Its use is not 

recommended when the observations of the time series have values near zero (Hyndman & 

Koehler, Another look at measures of forecast accuracy, 2006). As this is not the case in this 

work, MAPE will be considered as the accuracy measure. MAPE is detailed in Equation (7). 

𝑀𝐴𝑃𝐸 =
1

ℎ
∑

|�̂�𝑇(𝑖) − 𝑦𝑇+𝑖|

𝑥𝑇+𝑖

,

ℎ

𝑖=1

 (7) 

Where �̂�𝑇(i) is the forecasted value of the series for time 𝑇 + 𝑖, 𝑦𝑇+𝑖 is the observed 

value of the series at time 𝑇 + 𝑖, and ℎ is the number of steps ahead of time forecasted. 

 

4. Results  

 

The genetic programming framework was implemented in MATLAB, using the 

GPTIPS 2 platform (Searson, 2015). Each GP experiment constructed a symbolic regression 

model for the FTE consumption. The MAPE measures of fit (in the training set) and forecast (in 

the validation set) for each of the models are presented in Table IV. 

Table IV – MAPEs of the symbolic regression models in the training and validation datasets 

Model 

ID 

MAPE 

Training Validation 

1 2.043% 2.975% 

2 1.853% 3.027% 

3 2.073% 3.253% 

4 2.104% 3.513% 

5 1.916% 4.011% 

6 2.711% 3.208% 

7 1.444% 1.561% 

 

Considering the results, the model selected was the one named with ID 7, i.e., which 

presented the lowest MAPE in validation dataset and lowest ratio between validation MAPE and 

training MAPE. The model has the following mathematical expression: 

 
�̂�𝑡 = 0.96 ∗ 𝑦𝑡−1 − 0.96 ∗ 𝑥1,𝑡−1 − 20.02 ∗ 𝑥2,𝑡−1 + 19.05 ∗ 𝑥2,𝑡−2 + 5.90 ∗ 𝑥2,𝑡−3

+ 24.95(𝑥2,𝑡 − 𝑥2,𝑡−1)
2

+ √𝑥1,𝑡−3

+ 0.0009(𝑥2,𝑡 − 𝑥2,𝑡−1)
2

(𝑥2,𝑡 + 𝑥2,𝑡−1 + 4.054)(𝑥2,𝑡−1 + √𝑥3,𝑡−3 + 4.271)

+ 163.9 

(8) 

 

It is possible to see that the model provides relations that are not straightforward. For 

example, it considers that an increase in the number of clients of the FTE in a previous month 

will cause a decrease on FTE’s electricity consumption in the following month.  

After selecting the symbolic regression model, we verify if it performs better than other 

models considering a test dataset. 
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MLR and ANN models are designed as multivariate models, and SARIMA and 

Exponential Smoothing are univariate models. To select the input variables of the MLR and ANN 

models, the standard backward elimination procedure (Draper & Smith, 1981) was applied. The 

candidates for explanatory variables are the ones presented in Table I (i.e., the same candidates as 

those presented to the GP). 

After applying the backward elimination procedure, six variables were selected as 

significant to the FTE consumption: consumptiont-1, consumptiont-3, industrial_productiont, 

industrial_productiont-1, industrial_productiont-2, industrial_productiont-3. These variables were 

considered, then, as input to the MLR and ANN models. MLR was estimated via ordinary least 

squares (OLS), and resulted in the model presented in Equation (9). 

 
�̂�𝑡 ≅ 0.70 ∗ 𝑦𝑡−1 + 0.30 ∗ 𝑦𝑡−3 + 34.27 ∗ 𝑥𝑡 − 31.75 ∗ 𝑥𝑡−1 − 25.05 ∗ 𝑥𝑡−2 + 22.96 ∗ 𝑥𝑡−3 (9) 

 

The ANN developed in this study was a fully-connected multilayer ANN, trained with 

ten different parametrizations. The selected ANN was the one that presented lowest variation 

between the training and validation MAPE
3
. The chosen ANN had 5 perceptrons in the input 

layers, 3 in the hidden layers, and 1 in the output layer; the perceptrons had logistic activation 

function. The parametrizations and results of all ANNs are shown in Table V. It is possible to 

note that most of the ANN configurations led to an overtraining of the series (very low MAPE in 

training, and considerably higher MAPE in validation). The configuration with logistic activation 

function, however, presented a reasonable result, with a ratio of 1.10 between validation MAPE 

and training MAPE. The training and forecasting of the ANN models were programmed and 

implemented in MATLAB. 

Table V – Results of the ANN modeling 

ANN 

ID 
Config. 

Activation 

Function 

Learning 

Rate 

Interval 

Weight 

Max 

Epochs 

MAPE 

Training Validation 

1 [5 3 1] tanh 0,05 [-0,01 0,01] 100.000 0,736% 3,011% 

2 [5 3 1] tanh 0,10 [-0,01 0,01] 100.000 0,569% 1,983% 

3 [5 3 1] tanh 0,15 [-0,01 0,01] 100.000 0,474% 1,559% 

4 [5 3 1] tanh 0,20 [-0,01 0,01] 100.000 0,600% 2,012% 

5 [5 3 1] tanh 0,15 [-0,01 0,01] 1.000.000 0,417% 2,664% 

6 [5 3 1] tanh 0,15 [-0,05 0,05] 1.000.000 0,475% 4,451% 

7 [6 3 1] tanh 0,15 [-0,01 0,01] 1.000.000 0,335% 3,595% 

8 [5 3 1] tanh 0,15 [-0,01 0,01] 10.000 1,123% 2,008% 

9 [5 3 1] tanh 0,10 [-0,01 0,01] 10.000 1,147% 1,935% 

10 [5 3 1] logistic 0,15 [-0,01 0,01] 10.000 2,110% 2,327% 

 

The SARIMA and Exponential Smoothing (ES) models were estimated considering the 

training and validation sets altogether. Fit and forecast were made using FPW software. The 

resulting SARIMA for the FTE time series was a SARIMA(0,1,0)x(0,1,1)12, with Θ12 = 0.8844. 

The resulting ES model had no trend and multiplicative seasonality, with four seasonal indexes. 

Table VI shows the MAPE of the fit (training set) and forecasts (validation and test 

sets) for all multivariate models implemented. Table VII shows the MAPE of the forecasts (test 

set) for the univariate models and for the GP model. 

 

 

 

 

                                                           
3
 This selection criterion was chosen based on the assumption that a low variation on training and 

validation errors would lead to a model that generalizes well. 
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Table VI – Comparison of MAPEs on training, validation and test sets (multivariate models vs GP model) 

Model 
MAPE 

Training Validation Test 

MLR 1.937% 2.947% 5.252% 

ANN 2.110% 2.327% 4.595% 

GP 1.444% 1.561% 2.238% 

Table VII – Comparison of MAPEs on the test set (univariate models vs GP model) 

Model 
MAPE 

Test 

SARIMA 3.650% 

ES 3.427% 

GP 2.238% 

 

It is possible to note that the symbolic regression model, built via genetic programming, 

produces lowest MAPEs comparing to all other methodologies tested. The model’s accuracy on 

the test set, specifically, is considerably higher than the other models. Even when training the 

univariate models with training and validation sets altogether, they do not produce better forecast 

than the GP model. The GP model is, therefore, a relative good model for the electricity 

consumption of the Brazilian FTE. It could, therefore, be used to forecast the FTE consumption, 

and, by extension, to infer the electricity wholesale market’s development. 

 

5. Conclusions 

 

This paper used genetic programming to find a nonlinear multivariate model for the 

electricity consumption of the Brazilian Free Trading Environment (FTE). Several genetic 

programming experiments were made, in order to find a model for the FTE that could generalize 

well to unseen data (i.e., that could produce forecasts with MAPE that did not vary much from 

the training to the validation set). The genetic programming experiments searched for models 

with industrial production, industrial electricity tariffs, number of clients in the FTE and FTE’s 

electricity consumption as explicative variables, all considering time lags. 

The forecasts of the best genetic programming model have shown to be more accurate 

than the forecasts from other models, such as multiple linear regression, artificial neural 

networks, SARIMA, and exponential smoothing. The genetic programming model allows one to 

have an understanding about the relations between explicative variables and the variable of 

interest. Furthermore, the model allows one to produce what-if analysis, assessing in long-term 

decisions related to the FTE. 

Future works include the optimization of the genetic programming framework, aiming 

to find a more accurate or representative model for the FTE consumption. It is known that the 

genetic programming finds a suboptimal solution for a problem. An optimal model for the 

problem could, therefore, be found by enhancing the genetic programming framework. Other 

future work would be to include other explanatory variables in the modeling framework. 
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