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RESUMO
Este trabalho investiga um problema real de sequenciamento de tarefas em uma linha de

têmpera de uma indústria siderúrgica. O objetivo é encontrar um conjunto de soluções que mini-
mizem o custo total por consumo de energia e o tempo total de atraso e adiantamento. O problema
de sequenciamento de máquinas é de natureza combinatória e bem difundida na literatura como um
problema do tipo NP-difı́cil. Devido a esta caracterı́stica, um grande número de metaheurı́sticas
foram aplicadas para sua resolução. Neste trabalho, uma abordagem multiobjetivo do algoritmo
Variable Neighborhood Descent é proposto. Experimentos computacionais com dados reais foram
realizados para verificar o desempenho do método e os resultados tem se mostrado valiosos para
futuras pesquisas no assunto.

PALAVRAS CHAVE. Têmpera. Sequenciamento de No-Wait Flow Shop. Otimização Multi-
objetivo.

Tópicos: PO na Indústria

ABSTRACT
This paper investigates a real scheduling problem in a steel factory for a quenching

and tempering line. The goal is to find solutions for this particular no-wait flow shop case, with
sequence-dependent setup times, that minimizes the production total energy costs and total weigh-
ted earliness and tardiness. Machine scheduling problems are of combinatorial nature and known
in literature as NP-hard, therefore, a great number of metaheuristics have been applied for their
resolutions. In this paper, a multiobjective approach of a Variable Neighborhood Descent algo-
rithm is proposed. Computational experiments with real data have been carried out to verify the
effectiveness of the method and the results are useful for future research in the topic.

KEYWORDS. Quenching and Tempering. No-Wait Flow Shop Scheduling. Multiobjective
Optimization.

Paper topics: OR in Industry
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1. Introduction
Production scheduling plays an important role in industry and can be a key tool to promote

an efficient use of manufacturing resources. It is not easy to find the optimal allocation of people,
equipments, stocks and/or tasks over time. The combinatorial nature of these problems includes an
extensive search through possible solutions that, depending on the problem size, cannot be done in
feasible time, even with the use of computer algorithms. Therefore, optimization techniques have
been applied in many real scheduling problems. In this paper, we study a real scheduling case in a
steel quenching and tempering line.

Quenching and tempering (QT) are types of heat treatment processes applied in metals or
alloys in order to improve the material strength and hardness properties [Dosset and Boyer, 2006].
In a steel mill, they are also responsible for relieving the stress boosted in the metal during the
previous rolling stage. They are tightly controlled operations, in which the materials are heated and
cooled at specific rates, providing products with different properties for different applications, such
as construction, transportation, and oil/gas exploration.

The steel pieces in the QT line are heated in combustion furnaces powered by natural gas.
This fuel represents the bigger parcel of changeable costs in this manufacturing line and minimiza-
tion of its consumption can increase the company competitiveness and reduce their environmental
impacts. According to Zhang and Chiong [2016], investment on new equipment and hardware can
contribute to industrial energy saving, but it is often very expensive. On the other hand, the use of
techniques such as scheduling optimization can also promote energy saving at no additional cost to
the industry. One of the goals of this paper is to find scheduling solutions for the heat treatment line
to minimize the total energy costs.

In this study case, the definition of the day of the week that the products are going to be
treated is done manually and the main objective is to attend the clients delivery dates. Delays can
lead to contractual fines and generate more costs, but precedence can also impact the production, be-
cause it increases the stocks between the quenching and tempering line and the next manufacturing
stages. Therefore, minimization of the total weighted tardiness and earliness is also an interesting
objective of this scheduling optimization problem.

In many real scheduling applications more than one objective must be achieved simultane-
ously. Once they represent a trade-off, a multiobjective optimization can be applied. The advantage
of using this approach is to present to the decision makers a set of compromise solutions from which
they can choose the more appropriate one [Silva et al., 2004].

The bi-objective scheduling of the QT production line can be modeled as a no-wait flow
shop problem. In a flow shop, a set of n jobs are processed inmmachines in the same order. The no-
wait constraint occurs when the job operations must be treated continuously without interruptions
on and between the machines. This kind of scenario is frequent in metallurgical processes and
in other practical environments like chemical industries [Nagano and Miyata, 2016]. Quenching
and tempering must follow one another immediately to avoid the degradation of the materials and
rework. These types of problem have been addressed by Bertolissi [2000] and Sapkal and Laha
[2013] and were used as base for the applied mathematical model.

Another characteristic of this study case, that were also considered in modeling, are the
sequence-dependent setup times. The setup times are needed to change the furnaces temperatures
between two products and they have an impact in both job completion times and energy consump-
tion. The first papers addressing scheduling problems have appeared in literature in mid-1950s,
but only in mid-1960s setup times were explicitly considered, mainly motivated by industrial and
service applications [Allahverdi, 2015].

No-wait flow shop scheduling problems have been proved to be non-deterministic poly-
nomial time hard (NP-hard) in a strong sense [Nagano and Miyata, 2016][Hall and Sriskandarajah,
1996]. It justifies the recent increase on metaheuristic proposals for solving both single and multi-
objective applications. Even thought these techniques do not guarantee the discovery of exact so-
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lutions, good results can be found within reasonable computational cost. Blum and Roli [2003], in
their review of metaheuristics for combinatorial optimization, enumerate some algorithms that can
be used for solving scheduling problems, such as Simulated Annealing, Tabu Search (TS), GRASP,
Iterated Local Search (ILS), Variable Neighborhood Search (VNS) and Genetic Algorithms (GA).
An ILS algorithm is proposed by Naderi et al. [2012] for the solution of a multiobjective no-wait
flow shop problem with a mixed integer programming model. Hybrid GA were used by Zhang and
Chiong [2016] and Dai et al. [2013] in multiobjective scheduling problems to minimize total energy
consumption. Choobineh et al. [2006] uses a TS to solve a tree objective single machine scheduling
problem with sequence-dependent setup times.

A multiobjective approach of a Variable Neighborhood Descent (VND) algorithm is pro-
posed to solve the quench and tempering scheduling problem. This method is a variant of VNS
and it deserves attention for being used as a local search routine for other metaheuristics. Vanchi-
pura et al. [2014] used VND to improve a constructive heuristics in the solution of a flow shop
with sequence-dependent setup times. Gao et al. [2008] implemented a hybrid genetic and Variable
Neighborhood Descent algorithm to optimize a three objective job shop scheduling problem and
Fleszar et al. [2012] applied a hybrid VND and Mathematical Programming in parallel machines
with sequence-dependent setup times.

The remainder of this paper is organized as follows: in Section 2, a detailed description
of the QT scheduling problem is presented together with the applied mathematical model; Section
3 introduces the proposed multiobjective VND algorithm; Section 4 presents the performed com-
putational experiments and discusses the results, and; finally, in Section 5, the final considerations
and directions for future researches are given.

2. The Quenching and Tempering Scheduling Problem
The layout of the quenching and tempering production line is shown in Figure 1. The

process begins in the hardening furnace (HF), where the material is heated above the steel transfor-
mation temperature [Dosset and Boyer, 2006]. Immediately after heating, each steel piece goes into
a water cooling system where they will be rapidly cooled to obtain the appropriate product hardness
property, part of the quenching procedure. After the water immersion, the material goes through
a cooling bed (CB) and it enters the tempering furnace (TF), primarily to increase ductility and
toughness. Temperature in this furnace is below the hardening one and cooling is then performed
by still air in the subsequent cooling bed [Dosset and Boyer, 2006].

Figura 1: Layout of the quenching and tempering line
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The process is continuous and, once a material goes inside the HF, it flows through the
equipments, in the same order without interruption (no-wait flow shop), according to the arrows
shown in Figure 1. The furnaces and cooling beds were scaled for a high production and they are
capable of treating simultaneously more than one steel piece with the same process conditions. Pro-
ducts with different treatment settings requires a line setup. The machines capabilities, represented
by the white rectangles of Figure 1, are merely illustrative.

A client request for an amount of a particular product generates a production job with
specific process parameters, that are: the production flow rate and the treating temperatures in the
HF and TF furnaces. The combination of these parameters establishes the desirable heating and
cooling curves of the treated material, as presented in Figure 2. The production flow rate, also
known as cycle times, is given in seconds by equipment position. The temperatures are in degrees.

Figura 2: Desired temperature profile for the quenching and tempering processes

2.1. Mathematical Model
In this subsection the suggested mathematical model applied to the QT scheduling opti-

mization problem is presented in details.
A production job i represents a set of qi pieces requested by a client with certain charac-

teristics. Each job has a planned execution date ei and a production rate ri. The furnaces heating
temperatures for job i are tik, where k is the machine index. The cooling bed temperatures are set to
zero to eliminate their influence in setup time and energy consumption calculation. The equipments
capacities are zk.

Figure 3 shows a schedule view of the QT line. The equipments are displayed in the
horizontal axis, with a scale band proportional to the machine capacity (merely illustrative), and
the production times are in the vertical axis. The grey parallelogram represents two consecutive
production jobs.

Figura 3: Schedule view of the QT line

The job processing time pi, which is the time between first steel piece goes into production

1288



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

and the last one goes out, is calculated by (1).

pi = riqi +
m∑
k=1

rizk, (1)

in which the first part of the equation represents the total time to enter all qi pieces from the job i
in the production line (pti) and the second part is the sum of the last piece processing time in each
equipment (ptik). Parameter m is the total number of machines.

The total time between the start of jobs i and j on the first machine, when job j directly
follows job i in scheduling, is the sum of the necessary line setup time and minimum delay to
render the production no-wait constrains. The setup time (sij) is required to change the HF and TF
furnaces temperatures from job i to job j. Each furnace has its own setup time (sijk) depending on
its cooling and heating rates and the difference in treatment temperatures. The total setup is given
by the maximum value between the furnaces, such as calculated by (2).

sij = maxk∈{1,...,m}sijk (2)

Production jobs with different process conditions (cycle times and temperatures) cannot
be treated simultaneously in the furnaces. The minimum delay term (dij) guarantees that the first
steel piece of job j does not arrive in the machines until they have completely processed job i,
otherwise, production will be interrupted. The calculation of dij was adapted from the paper of
Bertolissi [2000], such as shown in (3).

dij = pti + pti1 + maxk∈{2,...,m}

 k∑
q=2

ptiq −
k−1∑
q=1

ptjq, 0

 (3)

Given a set of n jobs and the variable vector ~σ = [σ1, σ2, . . . , σn]
T , which is the sequence

they will be processed on the m machines, the completion date (ci) of each job can be calculated
using (1), (2), and (3). For i ∈ {1, 2, . . . , n} and k = {1, 2, . . . ,m}, we have:

cσ1 = pσ1 , (4)

cσi =
i∑

j=2

(
dσj−1σj + sσj−1σj

)
+ pσi . (5)

The total weighted earliness and tardiness (TWET) of each job from sequence σ is then
given by (6):

TWET =
n∑
i=1

weiT
e
i +

n∑
i=1

wtiT
t
i , (6)

in which T ei and T ti are, respectively, the earliness (calculated using (7)) and tardiness (calculated
using (8)) of job i, being wei and wti earliness and tardiness weight parameters.

T ei = max[ei − ci, 0] (7)

T ti = max[ci − ei, 0] (8)

In the course of production, natural gas (NG) is regularly burned up by the furnaces. NG
is consumed constantly while the furnace is processing the steel pieces from a job and also when
it is empty, preparing itself for the entrance of a new material. The time each furnace k stays idle,
between two consecutive jobs i and j, is shown in Figure 4 and is calculated as given in (9).

iijk = dij + sij +
k∑
l=2

ptjl−1 −

(
pti +

k∑
l=1

ptil

)
(9)
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Figura 4: Highlight of the machines empty periods between jobs

The total NG volume consumed by job i is sequence-dependent, and it can be determined
as shown in (10).

Vσi =

m∑
k=1

(
iσi−1σikfσi−1σik +

(
ptσi + ptσik

)
fσik

)
, (10)

in which fik is the constant NG flow required to keep the furnace at temperature tik and fijk is the
NG flow required to change the furnace temperature from tik to tjk.

The cost by volume of natural gas consumed in the furnaces is denoted by b. Therefore,
the total energy cost (TEC) of production sequence σ is calculated as described in (11).

TEC =

n∑
i=1

bVi (11)

Equations (6) and (11) expresses the two minimization objectives of the QT scheduling
optimization problem. Formulation of this problem can then be presented as:

Minimize
{
TWET
TEC

(12)

3. Proposed MOVND Algorithm
Variable Neighborhood Descent (VND) is a variant of Variable Neighborhood Search

(VNS), a metaheuristic proposed to solve hard optimization problems, such as the quenching and
tempering production scheduling. This method relies on systematically changing neighborhoods
while searching for solutions in the exploration space. In the particular case of VND, the neigh-
borhood structures are explored in a deterministic way. Its efficiency is based on three factors
[Hansen and Mladenovic, 2003]: the local minimum of a neighborhood is not necessarily the lo-
cal minimum of another; the global minimum is a local minimum of all neighborhoods; in several
problems the local minimum between neighborhoods is relatively close.

A neighborhood in the QT case is represented by a set of permutation operations over the
n jobs of decision variable σ. Three neighborhoods are examined sequentially in this scheduling
problem. The first one consists on swapping two adjacent jobs (i and i+ 1), the second on exchan-
ging two jobs i and j, regardless of their adjacency, and the third on removing job i from its position
and inserting it at position j. Figure 5 exemplifies the swap, exchange, and insert operations. The
neighborhood cardinalities are n− 1 for swap, and n(n− 1)/2 for exchange and insert operations.

The local search strategy adopted for exploring the neighborhoods in the proposed algo-
rithm is based on first improvement, i.e. once an improved solution is found, it replaces the current
solution and a new local search starts. A diagram of the proposed local search routine is shown

1290



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figura 5: Neighborhoods

in Figure 6. No single solution exists that optimizes simultaneously TWET and TEC objectives.
Therefore the goal is to find solutions that are not outperformed1 by other ones and that present dif-
ferent trade-offs with regard to the two objectives. These are called nondominated Pareto solutions,
or efficient solutions, and they form a set of compromised solutions known as the Pareto set. Each
successful run of the local search leads to an update of the approximated Pareto set.

Figura 6: Proposed local search routine

Algorithm 1 describes the multiobjective VND (MOVND) method applied in the QT op-
timization problem. The procedure starts with the evaluation of an initial solution s that is added
to the approximated Pareto front. A local search is then performed over s and the solution is mar-
ked as investigated. If the local search is successful, a new random not investigated solution of

1It is said that a solution is outperformed (dominated) in multiobjective optimization if there is another solution that
is better than it in at least one objective without being worse in the other ones.
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the updated Pareto set approximation is chosen and a new local search is rolled. The randomness
method was implemented due to the multiobjective structure of the algorithm and it was based on
the works of Geiger [2004] and Naverniouk [2005]. The algorithm goes on until all solutions of the
Pareto approximation were visited or when ten successive local searches were performed without
improvement.

Algorithm 1: MOVND
Input: initial solution
Output: approximated pareto front
begin

Evaluate initial solution
Add initial solution to approximated pareto front
repeat

Select a not investigated solution s from approximated pareto front
Mark s as an investigated solution
Run local search in s and update approximated pareto front

until stop condition;
Return approximated pareto front

end

4. Computational Experiments

A real instance of the quenching and tempering scheduling problem was tested to analyze
the performance of the presented algorithm. This instance represents a set of 100 jobs to be pro-
duced in 10 days. The main aspects evaluated in the experiment were: the multiobjective approach
ability to find sufficient Pareto solutions, the evenness of the distribution of solutions along the
Pareto set, and the method convergence over different runs.

Figure 7 shows the approximated Pareto fronts found in 5 different runs of the MOVND
algorithm. The values presented in the chart axis, for both objectives TWET and TEC, were mul-
tiplied by a constant to preserve the company data. From the results, it is possible to see that the
solutions from different runs all gathered in the same chart region. Even though the optimal Pareto
front of the problem is unknown, it can be concluded that the method presents good convergence
over different executions, a property appreciated in multiobjective approaches. The diversity of the
Pareto set can also be observed in the results. A high density of solutions appears in the highlighted
red box of Figure 7 with an even distribution, but some points outside the box presents a discon-
tinuity, which can be a characteristic of the problem or an indication that the MOVND algorithm
diversity can be improved. Further studies must be performed to evaluate closely this matter.

The average execution time of a MOVND run, for this 100 jobs scheduling, was of 11
minutes. Although time performance is not a focus in the present analysis, this can be considered
an acceptable time for the problem size.

The initial solution adopted in all the runs of the test was the real production sequence
planned manually for the jobs set, which is suggested by the company planning sector. Figure 8
presents the values of TWET and TEC for this solution and also the overall nondominated Pareto
solutions from the five series displayed in Figure 7. The sequence choices that improve both objec-
tives when compared to the initial solution are highlighted in the red box. This result shows that the
application of an optimization technique enhances the actual process of production scheduling. An
estimated 3% reduction in the total energy costs can be achieved once we go for the Pareto solution
with maximum TEC. If we analyze the other extreme of the Pareto set, the reduction can be of more
than 6%.
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Figura 7: Approximated Pareto Fronts of 5 execuitons of the MOVND algorithm

Figura 8: Final Approximated Pareto Front of the MOVND algorithm
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5. Conclusion
This paper investigated a real scheduling problem in a steel factory quenching and tempe-

ring line concerning the minimization of the production total weighted earliness and tardiness and
total energy costs. To solve this issue, a mathematical model was developed based on the manu-
facturing no-wait flow shop and sequence-dependent setup time characteristics and the result was a
generic design applicable to other QT lines with different layouts. It is of no knowledge from the
authors the presence of a model applied to such a problem in literature.

A multiobjective approach was used to settle a set of compromised solutions for the sche-
duling problem. Due to its combinatorial nature and well known NP-hard behavior, a metaheuristic
based on the Variable Neighborhood Descent algorithm was proposed. The local search procedure,
based on first improvement, was used to explore three classic neighborhoods of permutation pro-
blems: swap, exchange, and insert. Real data was used in computational experiments to evaluate
the efficiency of the method. The MOVND showed good convergence and diversity in the results
within a reasonable execution time for a set of 100 jobs. It can also be observed from the results that
an optimized scheduling can decrease the energy costs from 3% up to 6% and improve the delays
in closely 50%, when compared to a manual scheduling. These results already justify the use of a
multiobjective approach to solve the QT production line scheduling.

This manuscript and its results are part of an initial study of the QT problem. The main
goal of this work was to prove the capability and benefits of using an optimization technique to
solve the production line scheduling. Future work will still be conducted and the following aspects
will be taken into consideration:

• Enhancement of the mathematical model with production windows restrictions. In this paper,
if the total completion time of the jobs in a solution overcomes the total production days
planned for this set of jobs, it is still considered as a feasible solution. In the QT line the
production windows are defined based in mandatory maintenance activities which must be
respected by the scheduling.

• Study and comparison of other algorithms, including linear programming. As shown in the
introduction section, several metaheuristics and mixed programming methods have been ap-
plied for the solution of scheduling problems with the QT characteristics. The focus is to find
the more suitable algorithm to optimize the heat treatment bi-objective scheduling. In this
step the execution times of the algorithms will be examined in detail.

• Analysis of the impacts of the scheduling solutions over the real production.
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