

APLICAÇÃO DO CONTROLE DE QUALIDADE PARA DETERMINAR O PERÍODO DE AQUECIMENTO EM SIMULAÇÃO DE FILAS

Leonardo R. O. Merelles

Pontifícia Universidade Católica de Goiás — MEPROS Avenida Universitária, nº 1.440, Setor Universitário, Goiânia-GO merellesleonardo@gmail.com

Maria J. P. Dantas

Pontifícia Universidade Católica de Goiás – MEPROS Avenida Universitária, nº 1.440, Setor Universitário, Goiânia-GO mjpdantas@gmail.com

José E. Menezes

Pontifícia Universidade Católica de Goiás – MEPROS Avenida Universitária, nº 1.440, Setor Universitário, Goiânia-GO jelmo.maf@gmail.com

Viviane S. Dias

Pontifícia Universidade Católica de Goiás – MEPROS Avenida Universitária, nº 1.440, Setor Universitário, Goiânia-GO engvivianedias@gmail.com

RESUMO

Para automatizar e controlar processos que envolvam filas é necessária a aplicação de ferramentas e *software* para garantir a qualidade da simulação. Propõe-se a aplicação do *software* R para simular filas e para implementar algoritmos que determinam o comprimento, número de replicações e o período de aquecimento. Foram simulados dois modelos de filas e aplicadas ferramentas de controle estatístico para determinar o período de aquecimento. As ferramentas de controle estatístico adotadas foram: gráfico de média, gráfico de amplitude e gráfico de desvio padrão. O número de replicações é considerável para taxas de utilização próximas de 100% e o gráfico de desvio padrão apresenta maior quantidade de alarmes falsos, alterando a identificação do período de aquecimento ideal. A inicialização das variáveis de estado impacta na variabilidade da simulação, sendo necessário aplicar técnicas para manter a qualidade do modelo simulado.

PALAVRAS CHAVE. controle estatístico de processo, período de aquecimento, simulação de filas. SIM - Simulação / EST - Estatística

ABSTRACT

In order to automate and control processes involving queues, it is necessary to apply tools and software to guarantee the quality of the simulation. We propose the application of the software R to simulate queues and to implement algorithms that determine the length, number of replications and the warm-up period. Two queuing models were simulated and statistical control tools were applied to determine the warm-up period. The statistical control tools adopted were: average, amplitude and standard deviation chart. The number of replications is considerable at utilization rates close to 100%, and the standard deviation graph presents the highest number of false alarms by changing the identification of the ideal warm-up period. The initialization of the state variables impacts on the global mean of the simulation, being necessary to apply techniques to maintain the quality of the simulated model.

KEYWORDS. statistical process control, warm-up period, queue simulation. **SIM** - Simulation / **EST** - Statistic

1. Introdução

As filas estão presentes em nosso cotidiano em supermercados, bancos, linhas telefônicas, geralmente onde exista espera por um serviço ou oportunidade de gestão de sistemas. A aplicação da teoria das filas até meados da década de 50 se concentrou em problemas de congestionamento de linhas telefônicas, ampliando para outras áreas, como: transporte e sistemas de estocagem; controle de tráfego aéreo; processamento de informações; casos de saúde; e sistemas de produção.

Através da simulação podem ser apresentadas diretrizes que conduzam a modelagem do processo e assim, auxiliar na tomada de decisão, mas esta abordagem deve ser aplicada em um estado estacionário [Bertrand e Fransoo, 2002; Ramirez-Nafarrate e Muñoz, 2016]. Além desse, outros problemas na simulação podem ocorrer devido ao tempo de aquecimento e replicações dimensionados de forma inadequada.

O período de aquecimento de um modelo pode ser determinado de várias formas. As abordagens mais adotadas são exclusão de dados e inicialização inteligente. Os métodos para detecção do período de aquecimento podem ser agrupados em: teste de vício de inicialização; gráficos; heurística; estatístico; e híbrido [Norato e Duarte, 2011]. O método ideal ainda é um *gap* para estudos [Robinson, 2007].

Apesar destes métodos serem conhecidos há décadas, existe outras ferramentas gráficas da qualidade que podem auxiliar na determinação do período de aquecimento como: inspeção simples de séries temporais; gráfico de soma cumulativa; gráfico de controle de média móvel exponencial [Rossetti et al., 2005]; e método de controle estatístico de processos [Robinson, 2007].

O controle estatístico de processo (CEP) monitora o período em que a série é imutável ao longo do tempo, separando o caráter estacionário [Montgomery, 2009]. Este método possui vantagens devido à simplicidade em analisar os dados de saída de uma simulação. Entretanto, a técnica de controle estatístico pode gerar problemas com os limites, ocasionando falsos alarmes após o período de aquecimento [Wu et al., 2016]. Esta questão depende da interpretação e julgamento humano, que pode ocasionar diferentes decisões.

Wu et al. [2016] buscaram otimizar o ponto entre o período de aquecimento e o estado estacionário, incluindo um filtro lateral que auxilia na sua seleção. Ramirez-Nafarrate e Muñoz [2016] realizaram análise de variabilidade para determinar o número de replicações e assim retiraram amostra para determinar o período de aquecimento.

Os resultados produzidos sem o período de aquecimento em simulações de filas produzem resultados similares ao teórico [Banks e Chwif, 2011]. Por esta razão, este artigo tem por objetivos: (1) simular as filas M/M/1 e M/M/2 utilizando o software R; (2) automatizar o comprimento da simulação, e o número de replicações; e (3) determinar o período de aquecimento através dos gráficos de controle estatístico da qualidade.

2. Revisão

2.1. Simulação de filas e período de aquecimento

Ao chegar em um sistema e encontra-lo ocupado, tem-se uma fila de espera. De acordo com Akhavian e Behzadan [2014] este sistema pode possuir as disciplinas *first in first out* (FIFO), *first in last out* (FILO), *priority* (PRI) e *service-in-random-order* (SIRO). A FIFO é a mais conhecida e pode ser encontrada em postos de combustível e supermercados; a FILO pode ser encontrada em um sistema de armazenagem, disco rígido e elevador; a PRI ou prioritária pode ser encontrada em hospitais; e a SIRO consiste em serviço com ordem aleatória. As disciplinas de fila estão ilustradas na Figura 1.

Para descrever um processo de filas pode ser utilizada a notação de Kendall A/B/m/K/n/D, em que: A e B é a função de distribuição de tempo de chegada e atendimento; m é o número de servidores; e K é a capacidade do sistema; n é o tamanho da população; e D representa a disciplina da fila [Sztrik, 2012]. A notação mais conhecida é M/M/m, onde M é o processo de chegada, e o segundo M é o processo de serviço (M de Markov para ambos processos). G/G/m é um processo como o anterior, mudando para distribuição generalizada [Banks e Chwif, 2011].

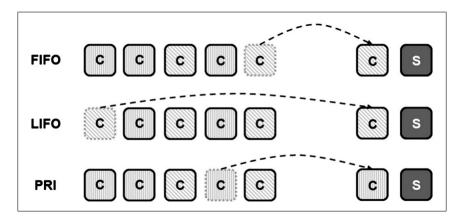


Figura 1: Demonstração das disciplinas de filas FIFO, LIFO e PRI Fonte: adaptado de Akhavian e Behzadan [2014]

O processo de chegada em um sistema de filas pode ser determinístico ou estocástico. Quando determinístico, o número de clientes que chega no sistema é conhecido. No caso estocástico (maioria) é aplicado número aleatório, assim, a saída da simulação é puramente aleatória. Por este motivo, é necessária cautela na tomada de decisões [Law, 2007].

É possível que ocorra erros em uma simulação, no entanto estes não ocorrem somente devido a variáveis aleatórias. Os erros podem ocorrer em diferentes fases: coleta de dados; construção do modelo; verificação e validação; análise dos resultados; gráficos de simulação; gerenciamento de processos simulados; fator humano [Banks e Chwif, 2011]; e o período de aquecimento [Ramirez-Nafarrate e Muñoz, 2016]. Para as filas, o erro pode ser reduzido ao comparar o valor teórico com o simulado.

2.2. Controle estatístico de qualidade

No sistema produtivo podem ocorrer dois tipos de variações, mudança na média ou oscilações no sistema produtivo. Pequenas oscilações podem ocorrer devido a presença de aleatoriedade do processo, o que não implica na alteração da média [Montgomery e Runger, 2010]. O processo que varia nestas condições é dito que está sobre controle, caso haja alterações na média o processo começa a variar com outro padrão de distribuição, dito assim que está fora de controle [Bersimis et al., 2016].

De forma semelhante a esta análise, aplica-se este direcionamento à saída de uma simulação. Quando a simulação se encontra em estado estacionário com variabilidade conhecida, diz-se que está sob controle. No período de aquecimento pode ser dito que está fora de controle [Robinson, 2007].

2.3. Software R

Para realizar os gráficos de controle de qualidade a adoção de um *software* é fundamental para auxiliar na elaboração e interpretação dos resultados [R-Team, 2017]. Ocorre que em alguns casos esta aquisição pode ser elevada, levando a busca de *softwares* livres como Octave e R. Neste artigo foi aplicado o *software* R pela possibilidade de modificação e implementação de rotinas [Crawley, 2007], além de possuir diversos pacotes como o qcc [Scrucca, 2004].

3. Métodos

Foi aplicado o algoritmo de Perim-Filho [1995] para filas, com um servidor e dois servidores em paralelo no R. Os algoritmos das filas estão na Tabela 1. O algoritmo, inicialmente, faz n=15 replicações com comprimento de m=250 usuários que chagam no sistema (default) e permite taxas de utilização ρ entre $0<\rho<1$. A rodada média é determinada no vetor Y_m , que contém as média das n replicações para $m=(1,\ldots,m)$.

Tabela 1: Algoritmo para filas simples, servidores em série e com duplos servidores

	M/M/1	M/M/2	
Chegada Início do atendimento Término do atendimento	$a_i = a_{i-1} + r_i$ $b_i = \max\{c_{i-1}, a_i\}$ $c_i = b_i + s_i$	$a_{i} = a_{i-1} + r_{i}$ $b_{i} = \max\{a_{i}, \min\{c_{i-1}^{1}, c_{i-1}^{2}\}\}$ $c_{i} = b_{i} + s_{i}$	
Término do atendimento no 1° servidor	-	$c_i^1 = \begin{cases} c_i & \text{se } c_{i-1}^1 \le c_{i-1}^2, \\ c_{i-1}^1 & \text{se } c_{i-1}^1 > c_{i-1}^2. \end{cases}$	
Término do atendimento no 2º servidor	-	$c_i^2 = \begin{cases} c_{i-1}^2 & \text{se } c_{i-1}^1 \leq c_{i-1}^2, \\ c_i & \text{se } c_{i-1}^1 > c_{i-1}^2. \end{cases}$	
Tempo na fila Tempo de sistema	$w_i = b_i - a_i$ $u_i = c_i - a_i$	$w_i = b_i - a_i$ $u_i = c_i - a_i$	

onde a_o e c_o é igual a zero; r_i é a taxa de chegada λ ; s_i é a taxa de atendimento μ ; e i é o número de usuário (i = 1, ..., m).

Logo, se o comprimento da simulação m não convergir para estabilidade este número é atualizado. O método aplicado para determinar o comprimento da simulação foi baseado em análise de séries temporais [Montgomery et al., 2015] através da função de autocorrelação a seguir:

$$\rho_k = \frac{C_k}{s^2} \tag{1}$$

em que ρ_k é a função de autocorrelação; C_k é a covariância de defasagem k; e s^2 é a covariância do tamanho da amostra. O comprimento da simulação é definido pelo ponto k, onde ele se estabiliza entre os intervalos de confiança da função de autocorrelação. Esta métrica é atualizada pela equação a seguir:

$$m = \begin{cases} k \cdot 5 & \text{se } k \cdot 5 > m, \\ m & \text{se } k \cdot 5 \le m. \end{cases}$$
 (2)

O número de replicações necessário é dependente da média, variância e quartis do tempo médio de sistema [Ramirez-Nafarrate e Muñoz, 2016]. Para atualizar o número de replicações foi aplicado a equação seguinte:

$$n^* = n \left(\frac{h}{h^*}\right)^2 \tag{3}$$

em que n é o número de replicações atuais; n^* é o número de replicações necessárias; h e h^* são os intervalos de confiança atual e desejado, nesta ordem.

Adotou-se o gráfico de controle estatístico para determinar o período de aquecimento das filas de acordo com Robinson [2007]. Para Montgomery e Runger [2010] de forma geral, a linha central do processo é μ_w e os limites são $\mu_w \pm L\sigma_w$, em que L é a distância dos limites. Os gráficos de controle aplicados foram de média, amplitude e desvio padrão. Sendo o período de aquecimento l o último ponto fora de controle. Os limites de controle podem ser determinados pelas equações:

$$LCX = \bar{x} \pm A_{2n}\bar{R} \tag{4}$$

$$LCR = D_{i_n}\bar{R} \tag{5}$$

$$LCS = B_{in}\bar{S} \tag{6}$$

em que LCX, LCR e LCS são os limites de controle de qualidade para média, amplitude e desvio padrão; A_2 , B_i {i = 5 e 6} e D_i {i = 3 e 4} são os fatores para construção de gráficos para variáveis (tabelado); n é o número de replicações.

Em seguida, para determinar a média do curso-estável foi necessário retirar ou deletar o período de aquecimento Law [2007]. Dadas as observações $\{Y_1,Y_2,\ldots,Y_m\}$ a média do curso-estável é:

$$\bar{Y}_{m,l} = \frac{\sum_{i=l+1}^{m} Y_i}{m-l} \tag{7}$$

em que m é o número de usuários que chegam no sistema; e l é o período de aquecimento.

4. Resultados

Inicialmente, foram gerados 20.000 tempo de chegada e atendimento com $\lambda=1$ e $\mu=2$ para validar a distribuição exponencial. O *p-value* com teste de Kolmogorov-Smirnov foram 0,494 e 0,686, nesta ordem. O resultado da simulação da fila M/M/1 com algoritmo de Perim-Filho [1995] para utilização de 50% está representada na Figura 2. Sendo o tempo teórico uma medida para comparar a saída da simulação [Banks e Chwif, 2011], observa-se que com 20.000 usuários no sistema, aparentemente foi suficiente para convergir as saídas para o tempo teórico.

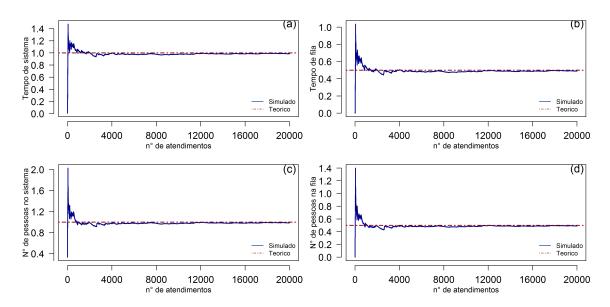


Figura 2: Simulação da fila M/M/1 com utilização de 50%. Figura 2a - tempo médio no sistema. Figura 2b - tempo médio na fila. Figura 2c - número de cliente médio no sistema. Figura 2d - número de cliente médio na fila

De forma visual, após 5.000 usuários a simulação atingiu uma reta com curso-estável (ver Figura 2). Então foi removido este período do tempo de sistema para avaliar a saída da simulação. As distribuições que mais aderiram no teste de Kolmogorov-Smirnov foram exponencial, gamma e weibull com *p-value* de 0,906, 0,818 e 0,781, nesta ordem. O tempo de sistema com as distribuições testadas está na Figura 3. A validação foi realizada para todas as saídas da fila M/M/1 e M/M/2.

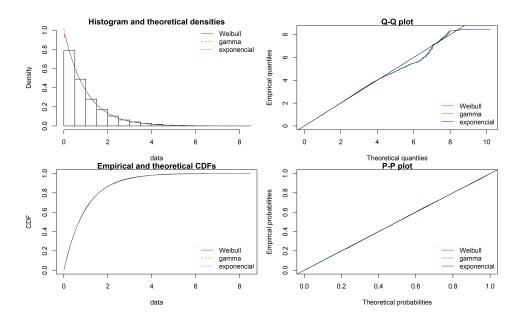


Figura 3: Tempo de sistema com utilização de 50%

O comprimento da simulação m foi grande (ver Figura 2), o que pode ocasionar excesso de tempo ao rodar a simulação. Validados os algoritmos de fila, o comprimento da simulação m foi iniciado em 250 usuários e o número de replicações em n=15 rodadas. As taxas de utilização ρ foram determinadas com $\lambda=\{0.1,0.2,\ldots,0.9\}$ e $\mu=\{1\text{ e }2\}$ para fila M/M/1 e M/M/2, nesta ordem. Para atualizar o número de usuários m necessário para que o tempo de sistema se torne um curso-estável foi aplicada a Equação 2 no vetor médio das rodadas Y_m . A Equação 3 foi utilizada para determinar o número de replicações n.

Tabela 2: Algoritmo para filas simples, servidores em série e com duplos servidores

ρ	Replicação	Comprimento	Intervalo de confiança	Teórico
Fila N	1/M/ 1			
0,10	15	990	$1,088 \le \mu_{ts} \le 1,132$	1,111
0,20	21	415	$1,213 \le \mu_{ts} \le 1,276$	1,250
0,30	15	1130	$1,385 \le \mu_{ts} \le 1,476$	1,428
0,40	34	250	$1,562 \le \mu_{ts} \le 1,708$	1,666
0,50	15	1615	$1,927 \le \mu_{ts} \le 2,104$	2,000
0,60	211	250	$2,427 \le \mu_{ts} \le 2,610$	2,500
0,70	52	1044	$3,153 \le \mu_{ts} \le 3,484$	3,333
0,80	328	1716	$4,902 \le \mu_{ts} \le 5,158$	5,000
0,90	15	38445	$9,593 \le \mu_{ts} \le 10,413$	10,000
Fila N	1/M/2			
0,10	15	250	$1,975 \le \mu_{ts} \le 2,101$	2,020
0,20	15	378	$2,006 \le \mu_{ts} \le 2,126$	2,083
0,30	15	588	$2,116 \le \mu_{ts} \le 2,254$	2,197
0,40	15	1344	$2,281 \le \mu_{ts} \le 2,410$	2,381
0,50	32	250	$2,454 \le \mu_{ts} \le 2,694$	2,667
0,60	15	2090	$2,907 \le \mu_{ts} \le 3,160$	3,125
0,70	62	1356	$3,743 \le \mu_{ts} \le 4,127$	3,921
0,80	15	25956	$5,595 \le \mu_{ts} \le 5,958$	3,556
0,90	150	3870	$9,616 \le \mu_{ts} \le 10,617$	10,526

onde μ_{ts} é o tempo médio de sistema; o tempo teórico para M/M/1 é $1/(\mu-\lambda)$; e o tempo teórico para M/M/2 é $W_q+1/\mu\,$ ou $L/\lambda\,$ [Sztrik, 2012]

Após aplicado o algoritmo ($\rho=0.10,\ldots,0.90$) foi analisado o comprimento m, número de replicações n e o tempo de sistema. As saídas das rodadas estão na Tabela 2. O intervalo de confiança foi elaborado com 95% de certeza e erro de 0,05 na média. Nota-se que quanto maior ρ , maior o comprimento e o número de replicações. Também, observa-se que o comprimento e o número de replicações são inversamente proporcionais.

Para determinar o período de aquecimento, primeiro é verificado o número de replicações. Se o número de replicações for maior que 25, é necessária a divisão em subgrupos, pois o número máximo de amostras n para os gráficos de controle é 25 [Montgomery, 2009]. Para criar os subgrupos, divide-se o número de replicações por 25 e o resto é adicionado no último subgrupo. Assim, pode ser aplicado o gráfico de controle para média, amplitude e desvio padrão com os limites de 3σ .

O período de aquecimento determinado pelos gráficos de controle com $\lambda=1,98$ e $\mu=2$ está ilustrado na Figura 4. Para estabilizar o sistema foram necessários 2 milhões de usuário e 1.260 replicações. Nota-se que o gráfico de controle para média antecipou o período de aquecimento e o de amplitude chegou mais próximo do curso-estável.

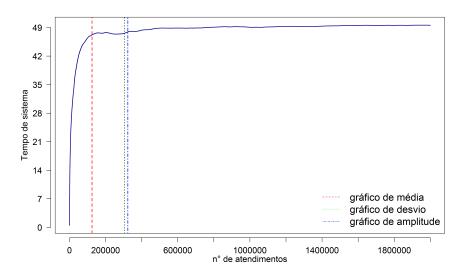


Figura 4: Período de aquecimento para fila M/M/1 com utilização de 99%

De acordo com Wu et al. [2016] o gráfico de controle pode gerar falsos alarmes, necessitando de outra ferramenta que possua auxílio de filtros laterais para determinar o período de aquecimento. No entanto, Ramirez-Nafarrate e Muñoz [2016] propuseram aplicar lotes (replicações) para determinar com maior qualidade o período de aquecimento.

O gráfico de desvio padrão aplicado por Robinson [2007] pode gerar alarmes falsos, necessitando de julgamento humano. Este problema pode ser resolvido através do dimensionamento do comprimento m, o número de replicações n e a quantidade de lotes ao aplicar o gráfico de controle. O gráfico de média recorta um período antecipado, podendo influenciar na simulação. Para aplicações em filas, o gráfico de amplitude apresentou melhor desempenho, selecionando o ponto mais próximo da estabilidade.

O tempo de sistema foi analisado sem e com o período de aquecimento (warm-up) para ρ de 0,10 à 0,90. O valor das média e variância está na Tabela 3. Observa-se que a média do tempo de sistema das filas quase não difere, isso ocorre porque durante o período de aquecimento a média oscila acima e abaixo do valor alvo. Por outro lado, a variância possui uma diferença significativa.

Tabela 3: Análise de variabilidade do tempo de sistema

	Parâmetro	Fila M/M/1		Fila M/M/2	
ρ	estatístico	Média	Variância	Média	Variância
0,10	Com warm-up	0,543	0,179	2,050	0,261
0,10	Sem warm-up	1,110	0,002	2,038	0,013
0,30	Com warm-up	1,428	0,133	2,159	0,319
0,30	Sem warm-up	1,430	0,007	2,185	0,015
0,50	Com warm-up	2,029	0,258	2,586	0,229
0,50	Sem warm-up	2,016	0,026	2,574	0,110
0,70	Com warm-up	3,310	0,280	3,935	0,572
0,70	Sem warm-up	3,284	0,165	3,935	0,294
0,90	Com warm-up	10,934	7,417	10,149	9,628
0,90	Sem warm-up	10,003	0,549	10,117	0,745

5. Conclusões

Este artigo compara resultados de simulação de filas M/M/1 e M/M/2 com resultados de modelos analíticos, mostrando a importância da estimativa de alguns parâmetros que garantem a qualidade dos resultados obtidos.

O *software* R simulou de forma satisfatória o sistema de filas e apresentou um excelente desempenho na geração de números aleatórios. O RStudio, por sua vez, facilitou o gerenciamento dos comandos e a visualização do projeto. A interface entre o *software* R e o RStudio consiste em uma forte ferramenta estatística que possui uma linguagem amigável e vários pacotes disponíveis.

Os experimentos mostram que quanto maior a taxa de utilização mais importante será a estimativa dos parâmetros: comprimento da simulação; quantidade de replicações; e tempo de aquecimento (*warm-up*). Por exemplo, para a utilização de 99% foram necessárias 2.000.000 de usuários e 1.260 replicações para garantir a estabilidade do sistema.

Os experimentos também possibilitaram inferir que quando a taxa de utilização é pequena o comprimento da simulação e o número de replicações também são pequenos, dessa forma a não determinação do período de aquecimento impacta diretamente na média e variância dos resultados da simulação. Já para altas taxas de utilização, o valor dos parâmetros é grande e o período de aquecimento é pequeno em relação ao curso-estável da simulação. Por esse motivo, o período de aquecimento pouco difere na média final do sistema, isso ocorre porque o fator multiplicativo (utilizado na determinação do comprimento da simulação) faz com que o curso-estável seja maior que o *warm-up*. Em termos de variabilidade a aplicação do *warm-up* é significativa.

As ferramentas de controle estatístico podem ser utilizadas para separar o curso-estável do aquecimento em uma simulação. Este estudo aplicou o gráfico de controle em amostras das replicações, ao invés de determinar o período de aquecimento com apenas uma replicação. O gráfico de amplitude foi o que apresentou melhor desempenho, reduzindo os falsos alarmes ou ruídos laterais. Os ruídos foram reduzidos devido a determinação dos parâmetros comprimento da simulação e número de replicações.

Agradecimentos – Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro para a realização deste estudo e de outras atividades do Mestrado em Engenharia de Produção e Sistemas da Pontifícia Universidade Católica de Goiás.

Referências

- Akhavian, R. e Behzadan, A. H. (2014). Evaluation of queuing systems for knowledge-based simulation of construction processes. *Automation in Construction*, 47:37–49.
- Banks, J. e Chwif, L. (2011). Warnings about simulation. *Journal of Simulation*, 5(4):279–291.
- Bersimis, S., Sgora, A., e Psarakis, S. (2016). The application of multivariate statistical process monitoring in non-industrial processes. *Quality Technology & Quantitative Management*, 13: 1–24.
- Bertrand, J. W. M. e Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. *International Journal of Operations & Production Management*, 22(2): 241–264.
- Crawley, M. J. (2007). The R book. John Wiley & Sons.
- Law, A. M. (2007). Simulation modeling and analysis, volume 4. McGraw-Hill New York.
- Montgomery, D. C. e Runger, G. C. (2010). *Applied statistics and probability for engineers*. John Wiley & Sons, 5 edition.
- Montgomery, D. C. (2009). Introduction to statistical quality control. John Wiley & Sons, 6 edition.
- Montgomery, D. C., Jennings, C. L., e Kulahci, M. (2015). *Introduction to time series analysis and forecasting*. John Wiley & Sons, 2 edition.
- Norato, H. G. e Duarte, A. R. (2011). Uma proposta para detecção do adequado período de aquecimento em modelos de simulação. *Gepros: Gestão da Produção, Operações e Sistemas*, 6(4): 11–26.
- Perim-Filho, C. (1995). Introdução à simulação de sistemas. UNICAMP.
- R-Team, C. (2017). R: A language and environment for statistical computing. vienna, austria: R foundation for statistical computing; 2014. r foundation for statistical computing.
- Ramirez-Nafarrate, A. e Muñoz, D. F. (2016). Performance evaluation of output analysis methods in steady-state simulations. *Journal of Computational and Applied Mathematics*, 301:64–73.
- Robinson, S. (2007). A statistical process control approach to selecting a warm-up period for a discrete-event simulation. *European Journal of Operational Research*, 176(1):332–346.
- Rossetti, M. D., Li, Z., e Qu, P. (2005). Exploring exponentially weighted moving average control charts to determine the warm-up period. In *Proceedings of the 37th conference on Winter simulation*, p. 771–780. Winter Simulation Conference.
- Scrucca, L. (2004). qcc: an r package for quality control charting and statistical process control. *R News*, 4(1):11–17.
- Sztrik, J. (2012). Basic queueing theory. University of Debrecen, Faculty of Informatics, 193.
- Wu, J., Chen, Y., Zhou, S., e Li, X. (2016). Online steady-state detection for process control using multiple change-point models and particle filters. *IEEE Transactions on Automation Science and Engineering*, 13(2):688–700.