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ABSTRACT
Community detection is an important topic in many fields of science. Taking note of the

pervasiveness of this problem, the research community developed several algorithms to find optimal
clusterings of a network as quickly as possible, also developing a function called modularity to
quantify the quality of a partition. In particular, many publications proposed the usage of a wide
range of Evolutionary Computation strategies to solve the problem of modularity maximization,
with varying degrees of success. However, a considerable portion of these proposals either had to
be adapted to be able to solve the problem or took too much time to find good solutions, raising
questions about their effectiveness in this context. This paper explores these strategies and other
studies about the characteristics of modularity, arguing for strengths and weaknesses.
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1. Introduction
Complex networks have become a widely discussed topic in many fields of science. Biol-

ogists have employed complex networks in the analysis of interconnected systems, such as neural
and metabolic networks [Achacoso and Yamamoto, 1991; Jeong et al., 2000; Meunier et al., 2014]
and in the identification of protein complexes [Nepusz et al., 2012]. In the context of social sci-
ences, complex networks have been applied in the analysis of collaborations by scientists [Newman,
2001] and criminal organizations [Ferrara et al., 2014]. Researchers in the medical sciences have
also been employing complex networks in their studies, such as in the examination of disease trans-
mission networks [Bell et al., 1999] and in the mitigation of epidemics in a variety of situations
[Bishop and Shames, 2011; Marcelino and Kaiser, 2012; Pastor-Satorras et al., 2015].

Real-world networks display a high level of organization, a characteristic that is ab-
sent from mathematical networks such as lattices and Erdős–Rényi (random) networks [Fortunato,
2010]. An important aspect of these systems is their community structure, where a community is
characterized by a high connection density between its components, but few connections to ele-
ments outside of it. Bedi and Sharma [2016] states that a community can be defined as a group
of individuals who are closer or interact more frequently in comparison to other individuals. The
ability to identify these communities is relevant to a wide range of applications in many fields of
science, such as in the functional analysis of biological networks [Radicchi et al., 2004; Fortunato,
2010; Fortunato and Hric, 2016].

In Newman and Girvan [2004], the modularity function was introduced as a measure of
a partition. This function was widely adopted by the research community, and a significant portion
of subsequent publications on the topic used modularity as an objective function [Fortunato, 2010].
The modularity function is defined as

Q(S) =

∑
C∈S

[
|EC |
m
−
(∑

v∈C dv

2m

)2
]
, (1)

where S is the set of all communities, composed of disjoint sets of nodes, |EC | is the number of
connections between the members of community C, m is the amount of connections in the network
and dv represents the degree of a node v.

The modularity maximization problem has been proven to be NP-hard by Brandes et al.
[2008]. Due to this reason, heuristics are typically employed to find near-optimal partitions of a
network [Clauset et al., 2004; Agarwal and Kempe, 2008; Blondel et al., 2008; Rotta and Noack,
2011; Aloise et al., 2013; Djidjev and Onus, 2013; Nascimento and Pitsoulis, 2013; Newman, 2013;
Bedi and Sharma, 2016]. The heuristics CNM [Clauset et al., 2004] and Louvain [Blondel et al.,
2008] are especially noteworthy, since they are scalable to networks with thousands of nodes.

Even though the modularity function Q provides an acceptable measurement of a parti-
tion, some studies have shown that it possesses certain degeneracies. In Fortunato and Barthélemy
[2007], the authors demonstrated that detecting communities via modularity maximization suffers
from a phenomenon called resolution limit, where modules smaller than a specific threshold fail to
be distinguished from the network structure, even if these modules are cliques. Thus, two or more
well-defined communities might be merged into the same cluster in the optimal solution, blurring
the expected cluster structure identification. Another degeneracy is the existence of a larger than
exponential number of high-quality but structurally different partitions, causing difficulties both for
finding the globally optimal solution and for the interpretation of high-modularity partitions [Good
et al., 2010; Fortunato and Hric, 2016].

In this paper, we focus our attention on the analysis of the effectiveness of Evolutionary
Computation (EC) strategies in the context of the modularity maximization problem in complex
networks. The motivation for this study is the number of publications about EC strategies that tend
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to demand an unusual computational time to find partitions with a small gap on the modularity score
when compared to the solutions obtained by the fastest known methods.

The next sections of this paper are divided as follows: Section 2 briefly explores tech-
niques put forth by the research community for maximizing modularity; Section 3 reviews concepts
of EC that are relevant for this work; Section 4 relates EC strategies to community detection, briefly
describing typical methods for solving the problem; Section 5 thoroughly analyzes published ap-
proaches that rely on EC to maximize modularity, outlining their characteristics and comparing
them with alternative strategies; finally, Section 6 presents our concluding thoughts and provides an
outlook about the topics examined in this paper.
2. Related Works

Ever since the modularity objective function was put forward by Newman and Girvan
[2004], there has been several published papers proposing methods to maximize the Q value. These
methods apply different strategies to identify communities, like graph partitioning, function opti-
mization, hierarchical clustering and mathematical programming [Fortunato and Hric, 2016; Bedi
and Sharma, 2016].

In Clauset et al. [2004], a greedy heuristic was presented. It was scalable to more than
hundreds of thousands of nodes. This heuristic consists of merging a pair of communities that best
improves the modularity maximization objective function. One of the keys to its performance is
the use of a heap data structure that quickly recovers the best merge option at each iteration. As
the heuristic merges communities, the number of iterations is bound to the number of nodes. The
usual starting solution is a partition composed of communities with a single node, so the number of
communities is equal to the number of nodes in this solution.

Blondel et al. [2008] developed a local search that is known in the literature as Louvain
method or BGLL. This method has two phases. The first phase tries to move all nodes from their
community to the one that best improves the modularity maximization objective function. The
nodes are selected randomly. If an improvement is found, the first phase is repeated. Otherwise,
the second phase starts. In the second phase, all the nodes that belong to the same community are
merged, composing a meta-node. The edges between the nodes, which now belong to a meta-node,
have their weights accumulated in a single meta-edge. A self-loop-edge is used to represent the
internal edges between the nodes of the same community. After that, the meta-nodes are considered
nodes for a new execution of the first phase. When no improvement is found, the method stops. The
heuristic is known to solve graphs with hundreds of thousands of nodes.

Rotta and Noack [2011] performed one of the most important analyses among the universe
of the best-known heuristics for modularity maximization. They classified, combined, and tested
greedy and local search heuristics for modularity maximization in different evaluation functions.
The modularity value and the time required are used during their arguments when analyzing the
results of the experiments performed. They combined greedy and local search methods into a
heuristic called multilevel. This heuristic used the merging steps from a greedy search to refine
the solutions with the local search methods. Heuristics that have followed this design obtained the
highest modularity score.

The modularity maximization problem also received some efforts in the field of exact
methods. Xu et al. [2007] suggested a mixed integer quadratic programming model based on the
edges to define the variables. After that, Brandes et al. [2008] defined an integer nonlinear pro-
gramming model, where the number of variables is |V |2, and V is the set of nodes from the graph
instance. Aloise et al. [2010] created column generation models that used heuristics to quickly find
improved variables to insert into the model that solved the larger instances than previous works.
They solved instances with up to 512 nodes.
3. Evolutionary Computation

The desire to employ concepts related to evolution in optimization strategies has been
present in the field of Computer Science since the decade of 1960. Around this date, John Holland
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involved himself in studies concerning the formalization of adaptive mechanisms usually encoun-
tered in nature and how computers might be used to simulate these phenomena. His efforts resulted
in the invention of genetic algorithms, which became a widely used optimization technique and
gave rise to the field of Evolutionary Computation [Goldberg, 1989; Mitchell, 1998].

Various other evolutionary optimization methods were developed since the advent of ge-
netic algorithms. This list includes genetic-inspired techniques such as Evolutionary Program-
ming and Evolution Strategies, swarm-based algorithms like Particle Swarm Optimization and Ant
Colony Optimization, and other heuristics such as Differential Evolution and Harmony Search.
While each one of these methods has their own intricacies, some characteristics are shared with
them.

All EC heuristics are population-based. This means that instead of trying to improve
upon a single solution, as in local searches, population-based methods use a number of solutions
that aid each other in some way during the process of optimization [Back et al., 1997]. These
solutions are the individuals inside of the population. The manner in which individuals cooperate
depends on the algorithm; the crossover operator is the usual approach, introduced with Holland’s
genetic algorithms and adopted by various methods. A crossover between two individuals generates
one or more offspring arranged in a specific way, containing parts of the original individuals. This
operator is based on the belief that a combination between two good solutions has a high probability
of resulting in an even better solution [Mitchell, 1998].

The population aspect of EC methods provides a robust exploration because it allows
to have solutions from multiple regions of the search space. Along with exploration, an effective
search procedure must also offer the capability to exploit a limited region of the search space, in
an attempt to improve an already promising solution. These two characteristics combined are what
differ metaheuristics (and by extension, EC methods) from heuristics, enabling them to escape from
locally optimal solutions.

In the context of EC, the exploitation component of the search is specific to each strategy.
Genetic algorithms and similar methods achieve this capability through a combination of the pre-
viously described crossover operator and the selection operator, which is analogous to the natural
selection process observed in nature. The selection operator is responsible for choosing individu-
als from the population to undergo reproduction through the crossover operator [Goldberg, 1989].
Even though there is no unique definition of how the selection operator should behave, the search
procedure is only effective if it prioritizes individuals with the best fitness values (solutions closer
to the global optimum). However, the other individuals should also have a chance to be selected;
otherwise, the exploration aspect of the algorithm would be compromised.

An aspect that distinguishes genetic algorithms and other EC strategies from traditional
search methods is the improvement of candidate solutions. It does not depend on auxiliary informa-
tion about the problem, such as the neighborhood of a solution, as is the case in local searches like
hill climbing [Goldberg, 1989]. In contrast, evolution happens through the combination of charac-
teristics from specific individuals, using the previously explained crossover operator. Thus, instead
of moving smoothly through the search space, solutions repeatedly jump to different (usually better)
positions, since they receive significant changes at each iteration of the process.

Establishing a balance between exploration and exploitation is an essential task in the
design of a robust search procedure. Fundamentally, the goal of such an algorithm is to avoid getting
stuck in local optima that are far from the global optimum, since such a condition would cause the
optimization process to prematurely terminate with a solution that is usually far from satisfactory
[Goldberg, 1989]. Thus, an algorithm that possesses an extremely performant explorative capacity
will almost always be able to escape from local optima, but doing so would render it incapable of
improving a specific solution, causing it to behave like a random search. In contrast, an algorithm
that does not efficiently explore the search space of the problem would become stuck in the first
encountered local optimum, no matter how powerful its exploitation ability is.
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In complex problems, whose search spaces generally have multiple dimensions and nu-
merous local optima, EC algorithms typically outperform simpler search procedures that have no
explorative ability [Goldberg, 1989]. The community detection problem is usually regarded as ex-
tremely complex, given the elevated number of publications that attempt to solve it using a wide
range of techniques. As such, it would be reasonable to suppose that EC algorithms would be able
to solve it effectively. This assumption will be explored in the following sections.

4. Detecting Communities with Evolutionary Computation Methods
Given the expressive number of papers that suggest the usage of EC strategies to detect

communities through modularity maximization and their evident effectiveness in solving difficult
optimization problems, one might assume that they have an excellent performance in the context
of modularity maximization. However, surveying the literature, one might also notice that the pro-
posed algorithms frequently have to be adapted in some manner to be able to adequately maximize
modularity. The improvement in quality they provide is often remarkably small when compared
to competing methods (usually non-evolutionary), while also exhibiting longer running times. In
this section, we introduce a few of these papers, and also point out some characteristics of the
modularity function that may contribute to the aforementioned issues.

One of the first attempts to employ EC algorithms for solving the modularity maximiza-
tion problem was made by Pizzuti [2008]. The author proposed a genetic algorithm named GA-Net
which used a metric called community score as the fitness (quality) function, also introduced by the
author. Along with synthetic networks, three real-world networks were used in the experiments;
however the author did not publish the run-time of the algorithm, and the only quality measure pre-
sented was Normalized Mutual Information (NMI). In a later work by Zhou and Wang [2016], the
authors introduced an algorithm based on Particle Swarm Optimization, comparing it with GA-Net
and other algorithms, providing running times and modularity values for both methods. In the next
section, both studies will be explored.

Another study involving the usage of EC algorithms was carried out by Gach and Hao
[2012], using a hybrid genetic algorithm. Their approach combines the crossover operator with a
local search procedure, improving the intensification aspect of the heuristic. The authors employed
the Louvain method [Blondel et al., 2008] as the local search and also as the initial solution gen-
erator. They reported experimental results with 11 real-world networks with up to 27519 nodes,
presenting both the maximum modularity encountered and the running time of their algorithm.
However, compared to the Louvain method by itself, their algorithm improved the modularity value
by less than 1%. We comment this result further in the next section, relating it to the properties of
the search space of the problem.

In Atay et al. [2017], six different EC algorithms were developed to solve the modularity
maximization problem. The authors argued that due to the NP-hardness of the problem, the usage
of these algorithms is an appropriate approach for solving it. They also stated that four of the six
algorithms had to be modified, either by employing new techniques or by including other strategies,
to be able to properly find optimal solutions. Their experiments involved nine networks with up to
732 nodes, taking an average of 4 hours to find solutions for a network of this size.

Local searches have obtained suboptimal solutions for modularity maximization in the
literature [Duch and Arenas, 2005; Reichardt and Bornholdt, 2006; Blondel et al., 2008; Santiago
and Lamb, 2016a]. These results suggest that they are able to access the region of suboptimal
solutions easily. This region has an exponential suboptimal number of solutions [Good et al., 2010;
Santiago and Lamb, 2016b]. Reaching this area can be done by changing the highest degree ranked
nodes [Santiago and Lamb, 2016b], so a local search can move these nodes from low-scored clusters
to better ones. Usually, complex networks have a greater number of small degree nodes than high
degree nodes.

Fortunato and Hric [2016] also provide a discussion on the topic of the landscape of the
modularity function. Continuing the explorative analysis initiated by Good et al. [2010], the authors
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comment that identifying the globally optimal solution for the modularity maximization problem is
nearly impossible, but finding high-quality partitions in terms of modularity is relatively easy. The
authors also state that partitions with similar modularity values may be completely distinct from
each other. This implies that none of these nearly optimal partitions can be expected to represent
the correct community structure of a network; thus, a marginal increase in the modularity value of
a partition is practically meaningless.

Taking these observations about modularity into account, we investigate several publica-
tions related to the usage of EC strategies in the context of this problem, discussing their results
in terms of consistency and relevance. Furthermore, we perform experiments with a basic local
search, aiming to identify the difficulty of finding a high-quality partition of a network, as well as
establishing how likely it is for a search with no explorative ability to become stuck in local optima,
using eight real-world networks as problem instances. Our results are shown in the next section.

5. Analysis and Experimental Evaluation
In this section, we critically evaluate selected papers that propose the utilization of EC

algorithms to solve the community detection problem through modularity maximization. We also
provide comments on the topology of the search space and comparisons to alternative algorithms,
regarding quality and speed.

5.1. Preliminaries
Papers proposing algorithms to solve the community detection problem frequently em-

ploy computational experiments to demonstrate the effectiveness of their methods. To facilitate
comparisons to alternative techniques, researchers have come to a general consensus about a few
real-world networks to be used as problem instances in the experiments. Table 1 presents some
of the most frequently observed networks in the literature, along with their best-known modularity
value (Q), the number of nodes (n) and the number connections (m). Network names might slightly
differ.

Table 1: Real-world networks commonly used in the literature

Network Q n m
Zachary’s Karate Club 0.4198* 34 78
Bottlenose Dolphins 0.5286* 62 159
Politics Books 0.5273* 105 441
American College Football 0.6046* 115 613
C. Elegans Metabolic 0.4531 453 2025
E-mail Network 0.5828 1133 5451

An asterisk in the modularity value indicates that the value was obtained by an exact
method [Aloise et al., 2010], and thus it cannot be exceeded. The other three values were obtained
through the memetic algorithm proposed by Gach and Hao [2012], also explored in this paper.

In order to attain a better comprehension of the search space topology of the modularity
function, we developed and ran experiments with a simple local search (SLS) with no explorative
ability, and thus unable to escape local optima. The design details of this heuristic are presented
in the following subsection. We performed 100 experiments for each network in Table 1 on a
computer with an Intel Core 2 Duo E8400 3.00 GHz processor, running Ubuntu 16.04 LTS. On
the same computer, we also performed experiments with CNM and Louvain heuristics. The latter
heuristic was tested 30 times due to its probabilistic property.

Table 2 shows the average results obtained by the tested heuristics (SLS, CNM, and Lou-
vain). These results are also compared results of other heuristics from the literature. The table is
divided into three parts. The first part shows the optimal results obtained by Aloise et al. [2010]
and the best-known results from the literature. The second part shows results of constructive and
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greedy local search heuristics (GRASP+PR and VNDS), including the tested ones (SLS, CNM, and
Louvain). The third part shows the results of EC algorithms found in the literature (GSA, BA, BB-
BC, SSGA, BADE, HDSA, DPSO, GA, PSO). The gaps are calculated by using the referred value
divided by the best-known Q value, multiplied by 100. A dash (–) indicates that the authors did not
use the network in question in their experiments. The symbol ∼ is used to indicate that the values
are obtained by observing the results from charts in the selected paper.

Table 2: Comparison between non-evolutionary heuristics and EC algorithms. The reference for each
method is idenfified as following: 1. Clauset et al. [2004]; 2. Blondel et al. [2008]; 3. Nascimento and
Pitsoulis [2013]; 4. Aloise et al. [2013]; 5. Atay et al. [2017]; 6. Gach and Hao [2012]; 7. Zhou and Wang
[2016]; 8. Pizzuti [2008].

Karate Dolphins Polbooks
Q %gap T(s) Q %gap T(s) Q %gap T(s)

Optimal .4198 .34 .5285 7.75 .5272 45.65
Best-known .4198 .5286 .5273

SLS .3824±0.0022 8.89% .00 .4988±0.0021 5.62% .005 .5063±0.0013 3.98% .02
CNM1 .3806 9.32% .00 .4954 6.26% .00 .5019 4.80% .001
Louvain2 .4155±0.0 1.00% .002 .5233±0.0 1.00% .0001 .5266±0.0 0.13% .00033
GRASP+PR3 .4198 0.00% .00 .5285 0.02% .00 .5270 0.06% 1.00
VNDS4 .4197 0.00% .00 .5285 0.02% .00 .5272 0.01% .00

GSA5 .4170 0.67% 39.88 .4677 11.52% 104.17 .4661 11.61% 309.82
BA5 .4133 1.55% 37.22 .4917 6.98% 105.72 .5020 4.80% 279.34
BB-BC5 .4196 0.05% 46.22 .5141 2.74% 128.68 .4914 6.81% 373.51
SSGA5 .4198 0.00% 57.40 .5200 1.63% 139.96 .5203 1.33% 469.04
BADE5 .4188 0.24% 48.00 .5128 2.99% 135.86 .5178 1.80% 372.28
HDSA5 .4198 0.00% 45.20 .5282 0.08% 128.16 .5272 0.02% 371.55
MA-COM6 .4198 0.00% .30 .5286 0.00% .50 .5273 0.00% 1.40
DPSO7 .4132 1.57% ∼ 10 .5109 3.35% ∼ 20 .5235 0.72% ∼ 40
GA8,7 .4060 3.29% ∼ 40 .4634 12.33% ∼ 105 .4798 9.01% ∼ 150
PSO7 .3835 8.65% ∼ 10 .5114 3.25% ∼ 20 .4969 5.77% ∼ 40

Football Celegans Metabolic Email
Q %gap T(s) Q %gap T(s) Q %gap T(s)

Optimal .6046 249.41 - - - - - -
Best-known .6046 .4531 .5828

SLS .5731±0.0017 5.20% .02 .3952±0.001 12.77% .73 .5480±0.0008 5.97% 11.55
CNM1 .5772 4.52% .001 .4058 10.44% .009 .5147 11.67% .04
Louvain2 .6044±0.0 0.03% .001 .4350±0.0 3.99% .0045 .5695±0.00004 2.28% .01
GRASP+PR3 .6046 0.00% 1.00 .4520 0.24% 98.00 .5820 0.14% 1565.00
VNDS4 .6045 0.00% .00 .4528 0.04% 1.97 .4271 26.71% 1.69

GSA5 .4032 33.31% 337.89 .3039 32.93% 5297.44 – – –
BA5 .5272 12.80% 333.43 .3438 24.12% 6413.49 – – –
BB-BC5 .5061 16.29% 450.71 .3266 27.92% 8245.63 – – –
SSGA5 .5277 12.72% 521.48 .3220 28.93% 10074.91 – – –
BADE5 .5513 8.82% 433.54 .3385 25.29% 9265.17 – – –
HDSA5 .6033 0.22% 437.76 .4074 10.09% 8256.21 – – –
MA-COM6 .6046 0.00% 1.00 .4531 0.00% 8.30 .5828 0.00% 23.10
DPSO7 .6015 0.51% ∼ 55 – – – – – –
GA8,7 .5906 2.32% ∼ 165 – – – – – –
PSO7 .6021 0.41% ∼ 60 – – – – – –

5.2. Simple Local Search
In Algorithm 1, the local search used in this paper is shown. It uses an one-neighborhood

strategy, lacking any ability to escape local optima, in which the search is done by moving nodes
to other clusters. The best movement is selected by using the highest value obtained by the ∆Q
function, defined by Equation 2. The candidate movements are stored in a fibonacci heap (heap). At
the start of this local search, the starting solution (si) is considered the best solution (sbest). Every
candidate movement is inserted into a fibonacci heap (by the startF ibonacciHeap function). Then
an iterative phase starts, where the best movement is selected from the heap. If this movement
improves the objective function, then a new iteration is executed; otherwise, the procedure stops.
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Before a new iteration is done, the new movement options are inserted into the fibonacci heap
(updateHeap).

Algorithm 1: Simple Local Search
Input : G(V,E), si
sbest← si
Qsbest ← Q(si)
heap← startF ibonacciHeap(si)
while not heap.empty() do
{s,∆Q} ← heap.pop()
Qs ← Qsbest + ∆Q
if Qs ≤ Qsbest then

break
sbest ← s
Qsbest ← Qs

updateHeap(sbest)

return sbest

To avoid Θ(n2) operations, the function ∆Q is defined to quickly calculate the best neigh-
bor community to move node v from community Cv to Ck, where dw is the degree of node w ∈ V .

∆Q(v, k) =
1

|E|

[ ∑
u∈Ck

(
avu −

dvdu
2|E|

)
−
∑
u∈Cv

(
avu −

dvdu
2|E|

)]
(2)

5.3. Analysis on Evolutionary Computation Methods
The first paper analyzed is about one of the earliest attempts at developing a genetic

algorithm for the community detection problem called GA-Net, proposed by Pizzuti [2008]. The
author described a standard genetic algorithm with an additional characteristic: if two individuals
i and j belong to the same community, they must also have a connection between them. Thus, the
operators of crossover and mutation had to be adapted to take this constraint into account. The GA-
Net algorithm starts with a randomly generated population. Instead of modularity, a new evaluation
metric named community score was used as the fitness function, and the author did not present the
run-time of the algorithm. However, both time and modularity values could be found in a paper by
Zhou and Wang [2016]; our comments are based on these results. The real-world networks tested
were Zachary’s Karate Club, Bottlenose Dolphins, Politics Books and American College Football.
The exact modularity values are known for these networks, shown in Table 1. GA-Net was able to
approach these values by a small margin of approximately 2% to 12%, indicating that it is capable
of finding solutions close to the global optimum, but unable to identify it exactly. In the smallest
network (Karate Club), Zhou and Wang [2016] reports a run-time of approximately 50 seconds,
while in the largest one (College Football), the algorithm took approximately 165 seconds to solve
the problem.

While the results suggest that the GA-Net algorithm is good at finding relatively high-
quality solutions, it takes an extremely long time do so, even in networks with less than 106 nodes.
Compared to our local search, the difference in quality is less than 5% on average, but its run-time
is several orders of magnitude higher, as the simple local search takes much less than one second in
every case. This observation raises multiple questions about the effectiveness of genetic algorithms
in the modularity maximization problem. For instance, we might wonder why a simple local search
with absolutely no ability to escape from local minima was able to find solutions with a modularity
value so close to the ones obtained through a genetic algorithm, which is a much more robust search

2060



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

procedure. We might also question whether or not an improvement of 5% is worth of a running time
that is more than a thousand times slower, considering the degeneracies of the modularity function.

Gach and Hao [2012] proposed a memetic algorithm, named MA-COM, which combines
a genetic algorithm with the Louvain method. The genetic algorithm portion of their proposed
heuristic is significantly different from a typical implementation: the selection operator is com-
pletely random, making no distinction between good and bad solutions; there is no mutation oper-
ator, slightly limiting its ability to explore the search space; and the crossover operator is meant to
generate a solution worse than its parents, since it tries to increase the number of communities.

The Louvain method is used both to generate the initial population and to improve solu-
tions generated through the crossover operator. This means that the MA-COM algorithm already
starts with a set of extremely high-quality solutions, as multiple papers have shown that the Lou-
vain method is one of the most effective algorithms for detecting communities, both in quality and
speed [Fortunato and Hric, 2016; Yang et al., 2016]. Running it after every crossover operation also
guarantees that solutions will always have a high modularity value, thereby rectifying the deterio-
ration in quality caused by the higher number of communities. The results presented by the authors
indicate that the memetic algorithm provides absolutely no improvement over the Louvain method
in networks with less than 200 nodes. In the remaining six networks, an average improvement of
approximately 1% was observed. Taking into account the characteristics of the search space of the
modularity function described throughout this and related papers, such as the fact that the region of
partitions with nearly optimal modularity values is more than exponentially large, we can infer that
the partitions obtained through the algorithm are highly likely to be still incorrect, since they are
not guaranteed to be globally optimal.

In Zhou and Wang [2016] a new method based on discrete PSO is proposed, named as
DPSO here. The authors used a method similar to label propagation to generate initial solutions,
pointing out that the use of good early solutions can reduce the searching time significantly. The
strategy used to initialize and update the swarm is based on the impact of each node, where all nodes
receive a tag as a reference. Each node is sorted by its rank in descending order. The node with
the highest degree assigns its tag to the nodes that have a higher degree of connection. However,
the authors do not know when the algorithm converges to a stable state on different networks, and
due to this reason, they used a different update strategy, proposed by Gong et al. [2012], in uneven
iterations.

Also in Zhou and Wang [2016], the authors stated that modularity density (D) was used
as the objective function for the algorithm, but they employ Q and NMI when presenting their
results. Compared to the proposed algorithm, our simple local search was able to find solutions with
slightly less quality, with an average difference of approximately 5%. Moreover, when comparing
their results to other heuristics, the authors present modularity values higher than the exact values,
identified by Aloise et al. [2010], for some combinations of heuristic and network, especially in
the College Football instance. This is a serious inconsistency that may raise questions about the
legitimacy of their experiments.

Atay et al. [2017] proposed six EC heuristics to solve the modularity maximization prob-
lem. They are Bat Algorithm (BA), Gravitational Search Algorithm (GSA), Big Bang-Big Crunch
(BB-BC), Bat Algorithm based on Differential Evolutionary Algorithm (BADE), Hyperheuristic
Differential Search Algorithm (HDSA), and Scatter Search based on Genetic Algorithm (SSGA).
The authors do not compare their results with other methods in the literature, so the claim about
showing “the success of effective hyperheuristic differential search algorithm which has offered the
solutions containing the best modularity” cannot be supported. For some classical networks, the
run-time required to obtain solutions at most 5% better than the Louvain method was extraordinar-
ily higher than the reported in the modularity maximization literature (see Table 2). Considering
the existence of an exponential number of suboptimal solutions, we cannot rely on the notion that
small improvements in modularity score mean better solutions than other suboptimal ones.
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6. Discussion and Concluding Remarks
In this paper, we explored the characteristics of the modularity function and how effective

Evolutionary Computation (EC) algorithms are. We critically reviewed papers which proposed the
usage of these algorithms and observed either insignificant quality improvements or high run-times
when compared to non-evolutionary algorithms like the Louvain method [Blondel et al., 2008].

The most important aspect of EC strategies is that they are extremely effective at explor-
ing the search space of the problem, easily escaping from local optima while still having a fairly
satisfactory run-time. However, experimenting a local search without any explorative ability in net-
works with up to 1133 nodes, we observed an absence of local optima in the region of solutions
with up to approximately 90% of the modularity value of the best-known partition. This result can
be clearly seen in Table 2. The space above this region is likely to be the plateau comprised of an
exponential number of solutions, initially described by Good et al. [2010].

Since this region of high-quality partitions can be easily accessed through greedy or con-
structive local search heuristics like CNM, the Louvain method and even by a simple local search
(see Sections 2 and 5.2), the usage of EC algorithms may be questionable. Most EC strategies
demand an excessive amount of computational time to find acceptable solutions, unless they incor-
porate non-evolutionary techniques, and even so the improvement they provide (if any) is too small
to justify the time and effort required.

The modularity function itself is also a deeply controversial topic, since it displays some
degeneracies that limit its ability to identify the communities of a network correctly. Nevertheless,
detecting communities by maximizing modularity may be feasible in applications where time is a
priority and approximate solutions are acceptable, such as in directed advertising or in the division
of interconnected systems (e.g. metabolic networks and electrical grids) into smaller modules with
the intent of facilitating their study.

As further works, we suggest the study of the behavior of several heuristics and meta-
heuristics in the search space of the modularity maximization problem to understand which patterns
are followed by them. It can be used to improve the search, and to identify how and when to use
greedy, local search, or metaheuristics like EC strategies.
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