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ABSTRACT 

Modeling and simulating human behavior are still a traditional challenge in the field of 

simulation because of the complex principles that govern human actions. Nevertheless, Agent-

Based Simulation (ABS) has brought a new perspective of modeling and simulation. This new 

simulation approach offers the opportunity to model human behavior in more detail. In addition, 

ABS can be combined with Discrete Event Simulation (DES). From this combination emerges 

hybrid models that are able to depict real systems with a higher level of detail. Therefore, this paper 

aims to analyze the insertion of human characteristics inherent to operators present in an assembly 

line through hybrid simulation. In methodological terms, this paper uses the modeling and 

simulation methodology to build the hybrid model. The results of the hybrid model show that the 

addition of human characteristics in a simulation model increases the variability of the output data. 
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1. Introduction 

Despite the progress of technology, human beings still play a key role in modern 

production systems. Hence, researches involving the human element in production systems are 

being developed in simulation area to realistically represent the human factor and its behavior. 

However, [Bruzzone et al. 2007] admit that human behavior is still a traditional challenge for the 

simulation area itself and its application in the business areas. 

Regardless of the automation level, the performance of many manufacturing systems is 

affected by human behavior [Brailsford 2014]. Indeed, human labor is an essential element in 

modern manufacturing systems and, therefore, it must be reliably expressed in the modeling 

process of such systems [Digiesi et al. 2009]. [Baines et al. 2005] recognize that increasing the 

reliability of a simulation model is related to the act of representing the human factor more 

realistically within this model. 

For [Kasaie and Kelton 2015], identifying and conceptualizing the structure of human 

behaviors and interactions is a common problem in modeling complex systems involving human 

element. In Discrete Event Simulation (DES) models, the inclusion of human performance creates 

opportunity of knowledge about the impact and the importance of the human factor in the system 

[Baines et al. 2004]. However, DES tools often neglect the dynamic behavior of the human beings 

[Digiesi et al. 2009]. 

Agent-Based Simulation (ABS), also called Agent-Based Modeling and Simulation 

(ABMS), is a relatively new simulation approach that provides the modeler an opportune method 

to represent behavioral elements. According to [Bonabeau 2002], it is more usual to describe and 

to simulate a system composed by ‘‘behavioral’’ entities through ABS.  

It is possible to combine ABS approach with DES approach. From this combination 

hybrid models emerge, being able to depict real systems with a higher level of detail. [Dubiel and 

Tsimhoni 2005] argue that this combination enables the researcher to simulate system 

characteristics that would not be possible to simulate using one of these two techniques separately. 

Hybrid modeling is one of the research challenges in ABS area. The challenge is to link 

consistently two models with distinct logics that use modeling tools that also have distinct 

characteristics [Macal 2016]. Therefore, based on the importance of human beings to production 

systems and the challenge of combining two different simulation approaches, this paper aims to 

analyze the insertion of human characteristics inherent to operators present in an assembly line 

through hybrid simulation.  

In hybrid model, an assembly line will be represented by ten workstations composed of 

fourteen operators. The behavior of these workers will be described through a state diagram. 

Furthermore, based on the Westinghouse System of Rating [Barnes 1977], the factors effort and 

consistency will affect the behavior of each operator. 

In the analysis phase, two types of experiments will be defined in order to evaluate the 

representation of human behavior in the simulation. In the first experiment, the human factors will 

not interfere in the process time. In the second one, it will be considered the influence of the human 

factors in the process time. 

In conclusion, it is important to emphasize the structure of this paper, which consists of 

background, research method, results, conclusion, acknowledgments, and references. 

2. The combination of two distinct simulation approaches 

Discrete Event Simulation (DES) is one of the simulation approaches that supports 

decision makers. Through DES, it becomes possible to study and analyze complex systems [Banks 

et al. 2005]. With DES, it is possible to deal with stochastic uncertainties and to have an 

understanding about the process that is present in the system [Macal and North 2005]. Thus, 

according to [Siebers et al. 2010], it is appropriate to use DES in problems that involve simulations 

of queues or networks of complex queues. In these cases, the processes can be well defined and 

their uncertainties can be represented by means of stochastic distributions. 
In most production systems, the human element is one important component. In the 

literature there are researches addressing the human element from the perspective of DES. For 
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example, [Brailsford and Schmidt 2003] created a DES model for diabetic retinopathy screening 

based on human characteristics. In the manufacturing sector, another research to be cited is that of 

[Vilela 2015], which deals with the variation of the human work rhythm through a more detailed 

modeling of the input data.  

With the emergence of ABS, the insertion of the human element into simulation projects 

gained a new perspective. According to [Macal and North 2013], ABS approach provided the 

opportunity to model individual behaviors more easily. Thus, several limitations related to 

traditional approaches can be overcome through an agent-based model [Stummer et al. 2015]. 

There are several definitions about what ABS is. In this context, [Macal 2016] offers four 

alternative definitions for ABS in increasing order of complexity based on agent properties. The 

first definition is the Individual ABS that considers that agents have prescribed behaviors and they 

are represented in the model individually. In this paper, this definition for ABS will be adopted. 

The main difference between DES and ABS models is in the modeling approach. 

According to [Kasaie and Kelton 2015], the DES adopts a top-down modeling approach to 

represent the processes of a system. This type of approach affords a low flexibility in incorporating 

individual levels of behavior. As for ABS, it follows a bottom-up modeling approach that allows 

modeling diverse aspects of a system and its elements with high flexibility. This fact makes ABS 

a flexible and powerful tool for modeling systems that contain behavioral elements. 

It is possible to combine ABS and DES approaches. In accordance with [Fioretti 2012], 

integrating top-down and bottom-up approaches opens space for new types of ABS models. 

[Siebers et al. 2010] state that a hybrid model occurs when a process flow is represented by a DES 

model and the passive entities of this model are replaced by autonomous agents with proactive 

behavior through ABS.  

There is no consensus in the academic field about the precise definition of the term agent. 

Despite this non-agreement, there are points in common between the agent definitions [Macal and 

North, 2005]. The agents are autonomous elements that are self-organized by specific rules of 

decision-making [Mortazavi et al. 2015]. For [Brailsford 2014], agents are individuals present in 

ABS models that act independently. These agents may have the ability to learn from the past and 

to adapt their reactions and behaviors into a future scenario. Moreover, agents may also have the 

ability to communicate with one another and with their own environment. 

Representing the human factors in a productive system through agents increases the 

possibility of including characteristics related to human behavior in more detail. Despite this 

advantage, it is a challenge to define which human characteristics will be considered in the model 

due to their complexity. 

In manufacturing field, there are many issues involving the operators’ behavior. For 

example, in agreement with [Baines and Kay 2002], physical factors such as noise, heat, and light 

affect the operator's behavior; organizational factors such as labor pattern, incentives, and 

supervision also affect the operator's behavior. 

It is true that human factors are complex. Such complexity manifests itself through human 

decisions, behaviors and actions. Identifying the factors that interfere with human choices is 

difficult. However, this difficulty does not prevent the use of theories about the possible factors 

that influence the actions of the human element within a given environment. 

Based on Westinghouse System of Rating [Barnes 1977], this paper will represent the 

operators’ behavior considering the factors of effort and work consistency. This is because 

operators, in the real context, do not have the autonomy to change the skill and condition factors 

in a short time. In conclusion, the choice of Westinghouse System of Rating is related to the 

opportunity to explore effort and consistency values that estimate the performance of an operator.  

3. Research Method 

In the literature, several approaches serve as tools to create conceptual and computational 

models. One of these approaches is the one proposed by [Montevechi et al. 2010] which is divided 

into three major phases: (1) conception phase, when the conceptual model is created and validated, 

(2) implementation phase, when the computer model is created according to the conceptual model 
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of the previous phase; in this phase occurs the verification and validation of the computational 

model, and (3) analysis phase, when analyses are made from the validated computational model. 

Figure 1 shows more details about the phases. 

 
Figure 1: Phases of a simulation project 

Source: [Montevechi et al. 2010] 

In addition to the approach proposed by [Montevechi et al. 2010], this paper also adopts 

the ODD Protocol modeling tool. The ODD Protocol is essentially a tool for facilitating the writing 

and reading of Agent-Based Simulation models [Grimm et al. 2010]. This tool is divided into three 

large blocks as shown in Figure 2. 
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Figure 2: Phases of a simulation project 

Source: [Grimm et al. 2010] 

The sequence of steps proposed by [Montevechi et al. 2010] and the ODD Protocol developed by 

[Grimm et al. 2010] are the two methodological tools that will be applied in this paper. 

4. Results 

4.1 Conception 

The purpose of this paper is to analyze the representation of the human factor presented 

in a manufacturing line using ABS combined with DES. In this sense, an assembly line of printed 

circuit boards was chosen for this analysis. This assembly line is composed of ten workstations and 

fourteen operators as shown in Figure 3. 

 
Figure 3: Conceptual model of assembly line. 

Source: adapted from [Vilela 2015] 

The construction of the conceptual model used in this paper is based on the work 

developed by [Vilela 2015]. This conceptual model was constructed using the Integrated Definition 

Methods - Simulation (IDEF-SIM) [Leal 2008] and validated through Face Validity [Sargent 

2013]. 
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With the conceptual model built and validated, the agent-based conceptual model was 

created through the ODD Protocol tool. The purpose of the agent-based conceptual model is to 

represent the operator through his rhythm of work, taking into account the factors effort and 

consistency. Table 1 shows the values of these two factors. 

Table 1: Westinghouse System of Rating 

EFFORT 

+0,13 A1 
Excessive 

+0,12 A2 

+0,10 B1 
Excellent 

+0,08 B2 

+0,05 C1 
Good 

+0,02 C2 

0,00 D Average 

-0,04 E1 
Fair 

-0,08 E2 

-0,12 F1 
Poor 

-0,17 F2 

CONSISTENCY 

+0,04 A Perfect 

+0,03 B Excellent 

+0,01 C Good 

0,00 D Average 

-0,02 E Fair 

-0,04 F Poor 

Source: [Barnes 1977] 

The process overview and scheduling of the agent is represented by means of a state 

diagram shown in Figure 4. 

 
Figure 4: State diagram of each agent. 

Each operator works for 4 hours in the morning and 4 hours in the afternoon. Thus, 

operators perform their tasks for 8 hours daily from Monday to Friday [Vilela 2015]. Based on this 
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information, the first state is called "Resting": this state represents the hours of rest of the operators 

that are fifteen hours. The second state is the "Lunching": this state represents an employee's daily 

lunch hour. The third state is called "Working": the agent remains in this state during eight hours 

per day. 

Within the "Working" state, there are four more states. Three of these states represent the 

rhythm of the agent. For example, at each random hour of work, the agent goes to the "Calculating" 

state to change its rhythm of work. If rhythm is equal to one, the agent remains at its normal rhythm 

of work in the next random hour by going to the "Normal" state. If rhythm is above one, the agent 

will increase its rhythm of work in the next random hour by going to the "Fast" state. If rhythm is 

below one, the agent will decrease its rhythm of work in the next random hour by going to the 

"Slow" state. It is important to note that the rhythm to be adopted by each agent is not deterministic, 

since the value of the rhythm is stochastically determined based on the values in the Table 1. 

At the data collection stage, the random phenomenon collected was the process time of 

each assembly line workstation. In this collection stage, stopwatches and camcorders were used as 

resources [Vilela 2015]. For each workstation, 100 data were selected. Therefore, in total there are 

1,000 data. 

From these data, it was possible to find the probability distributions that represent each 

one of the workstations of the assembly line. Table 2 shows the workstations and their respective 

probability distributions. 

Table 2 - Workstations and their probability distributions 

Workstations Probability distributions Workstations Probability distributions 

WS 01 Normal (11.18, 70.14) WS 06 Normal (11.79, 77.20) 

WS 02 Normal (8.29, 61.33) WS 07 Normal (2.68, 39.66) 

WS 03 Normal (5.18, 50.97) WS 08 Normal (15.07, 178.54) 

WS 04 Normal (4.41, 86.02) WS 09 Normal (7.77, 93.95) 

WS 05 Normal (31.05, 215.16) WS 10 Triangular (16, 19, 17) 

4.2 Implementation 

Based on the validated conceptual model and the probability distributions of each 

process, the Hybrid Simulation Model (HSM) was constructed using AnyLogic® software. Figure 

5 shows the first part of the HSM. 

 
Figure 5 - The first part of the HSM 

In the first part of the HSM, two schedules and one variable were considered. The 

“ArrivalParts” schedule represents the rate of arriving parts per hour. The “WorkSchedule” 
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schedule defines the entry and exit times of the operators. The “TotalProduced” variable shows the 

number of parts produced by the operators. 

In the second part of the HSM are the fourteen operators of the assembly line. The agents 

that are connected to the resource pools and the workstations represent the fourteen operators. 

Figure 6 shows the second part of the HSM. 

 
Figure 6 - The second part of the HSM 

The third and last part of the HSM is shown in Figure 7, which represents the state 

diagram of the agent and its variable, parameters and schedules. 

 
Figure 7 - The third part of the HSM 

Based on the variables and parameters that influence the logic of the transitions that 

connect the seven states, the agent changes its rhythm of work during the simulation. The "Rhythm" 

variable interferes with the probability distribution of the workstation where the agent is. The value 

of the "Rhythm" variable is calculated when the agent changes its rhythm state. 

Once the computational model is constructed, the second step of the implementation 

phase is the verification of the computational models. The HSM was verified by comparing its 
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logic with the validated conceptual model logic. After this comparison, the debugger built model 

that Anylogic® software offers to find structural and logical errors was performed. .  

After verification, the HSM went to the third step of the implementation phase, which is 

the validation of the computational model. Within the context of an objective approach proposed 

by Sargent (2013), the data generated by HSM were compared with the real data through statistical 

tests.  

The statistical tests used in this paper were Normality Test, Outlier Test, and Two-Sample 

t for Mean. It is important to say that the level of significance (α) adopted was 0.05. The results of 

these statistical tests are in Table 3. 

Table 3 - Results of statistical tests 

STATISTICAL 

TESTS 
Null hypothesis Alternative hypothesis P-VALUE 

Normality Test 
Data follow a normal 

distribution 

Data do not follow a normal 

distribution 
0.89 

Outlier Test 

All values in the sample are 

from the same, normally 

distributed population. 

One of the values in the sample 

is not from the same, normally 

distributed population. 

0.78 

Two-Sample t 

for Mean 

The sample mean of the Real 

Data is not different from the 

sample mean of the HSM data 

The sample mean of the Real 

Data is different from the 

sample mean of the HSM data 

0.93 

The results of the statistical tests prove that the data generated by HSM is close to the 

real data. Thus, there is no evidence to reject the null hypotheses of the tests. In conclusion, the 

HSM is validated. 

4.3. Analysis  

After the conception and implementation phases, the analysis phase began. In this phase, 

the defined experiment consisted of comparing the results from HSM and Discrete Simulation 

Model (DSM) with Real Data. In DSM, operators are represented as simple production resources 

and their dynamic behavior will not be considered. The intention of this experiment is to verify if 

there are significantly differences between the results from the two simulation models. 

Before performing the experiment, DSM was constructed using AnyLogic® software. 

Then, DSM was also verified by comparing its logic with the validated conceptual model logic. 

DSM validation occurs through three statistical tests. Therefore, adopting 0.05 of level of 

significance (α), the following statistical tests were applied to DSM: Normality Test, Outlier Test, 

and Two-Sample t for Mean. Table 4 shows the results of statistical tests. 

Table 4 - Results of statistical tests 

STATISTICAL 

TESTS 
Null hypothesis Alternative hypothesis P-VALUE 

Normality Test 
Data follow a normal 

distribution 

Data do not follow a normal 

distribution 
0.42 

Outlier Test 

All values in the sample are 

from the same, normally 

distributed population. 

One of the values in the sample 

is not from the same, normally 

distributed population. 

0.73 

Two-Sample t 

for Mean 

The sample mean of the Real 

Data is not different from the 

sample mean of the HSM data 

The sample mean of the Real 

Data is different from the 

sample mean of the HSM data 

0.66 

Since both models were validated, the execution of the experiment   started. With 

reference to the thirty real data on the assembly line production, thirty replications were performed 
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from the HSM and the DSM. In order to analyze the insertion of human characteristics inherent to 

operators in HSM, a boxplot was performed to examine the center and spread of all samples data. 

 
Figure 8 - Comparison between Real Data, HSM, and DSM 

The comparison between the samples demonstrates that the variability of the model’s 

results is different. In the DSM, the results have the lowest variability. This fact is due to the non-

insertion of the work rhythm of the operators in the model and the small standard deviation of the 

probability distributions of each workstations. However, in the HSM, the insertion of the work 

rhythm increased the variability of the results. 

5. Conclusion 

The high degree of manual labor and the occurrence of changes at different moments of 

time are inherent characteristics of the chosen manufacturing system. In this context, it was possible 

to combine the concepts that encompass the human work rhythm, the Discrete Event Simulation 

(DES) and the Agent-Based Simulation (ABS). The combination of ABS with DES occurred when 

the agents were added to the model. In this case, the state diagram developed based on the ODD 

Protocol was essential to build the logic of agents. 

Despite the difficulty in detecting and describing the logical structures that govern human 

behavior, the modeling of the fourteen operators inserted in the assembly line was based on the 

Westinghouse System of Rating.  This concept focuses on the change in the work rhythm of each 

operator, considering the values of the factors of effort and consistency. Thus, in the hybrid model, 

the work rhythm of the operators changed at each random hour during the simulation based on the 

values of the Westinghouse System of Rating. 

Based on the statistical tests, the sample mean of the models are not statistically different 

from the sample mean of the real data. There is a considerable difference in the variation of the 

HSM data with the variation of the DSM data. This difference demonstrates that the variability of 

the model’s results increases when human characteristics are added. 

Finally, for future work it is suggested the inclusion of other factors in the computational 

model that influence human actions. Besides, human characteristics involving decision-making 

processes can also be considered to improve the behavior of the agents. Another suggestion is to 

model and simulate similar assembly line and compare the variability of the model’s results. 

DSM

HSM

REAL DATA

1640163016201610160015901580
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